
Coalescence Theory, Structured Populations with

Fast Migration

Ola Hössjer
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Wright-Fisher model

One-sex population, constant size N

Nonoverlapping generations
Each gener. children choose parents randomly and independently

ν l = nr of children of parent l

ν = (ν l)Nl=1 ∼ Mult(N; 1/N, . . . , 1/N)

Follow ancestry of sample of n ≪ N individuals backwards

N = 10, n = 3
.
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Discrete time coalescence process

XN(τ) = nr of ancestors of sample τ generations back in time

Discrete time Markov chain with XN(0) = n and

P(XN(τ + 1) < a|XN(τ) = a) = 1 −
∏a−1

b=1(1 − b/N)
=

(

a

2

)

/N + o(N−1), a = 2, . . . , n

.

XN(0) = 3, XN(2) = 2, XN(9) = 1

.
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Continuous time coalescence process

Let N → ∞, keep n fixed.
Rescale time by factor N:

{XN(⌈Nt⌉); t ≥ 0}
L

−→ {A(t); t ≥ 0}

A is Kingman’s coalescent (Kingman, 1982a-b).
Continuous time Markov process
Infinitesimal generator (qab), with

qab =







(

a
2

)

, b = a − 1,
−

(

a
2

)

, b = a,
0, otherwise
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Six simulated Kingman coalescents with n = 25

Ta = |{t; A(t) = a}| ∼ Exp

((

a

2

))

.

See Hein, Schierup and Wiuf (2005).
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Generalizations and some references

Kingman’s result has been generalized to populations with

Two sexes (Möhle, 1998c)

Non-constant size (Jagers and Sagitov, 2004)

Geographic structure (Nordborg and Krone, 2002)

Age structure (Kaj et al., 2001, Sagitov and Jagers, 2005)

Self-fertilization (Fu, 1997, Nordborg and Donnelly, 1997)

Variable reproductivity (Möhle, 1998b)

and many other models ...
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Effective population size

N is (current) population size

Kingman’s coalescent is robust, since for a large class of
population genetic models

{XN(⌈Nt⌉); t ≥ 0}
L

−→ {A(ct); t ≥ 0}

where
c = coalescence rate

and

Ne = N/c

= coalescence effective population size
= size of WF model with same ancestry asymptotically.

Nordborg and Krone (2002), Sjödin et al. (2005).
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Coalescence rate and individual variability in reproductivity

One-sex population, constant size N

Nonoverlapping generations

ν l = number of children of parent l .

(ν l)Nl=1 exchangeable random variables.

Hence, since
∑N

l=1 ν l = N,

E (ν l) = 1

and it can be shown that

c = lim
N→∞

E
(

ν l(ν l − 1)
)

provided

E
(

(ν l)3
)

= o(N),

otherwise multiple mergers in limit.
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Structured Population Model

N = population size
L = number of subpopulations

Nai = size of subpopulation i (
∑L

i=1 ai = 1),
mki = “migration rate” from subp. k to i ,
ν l
ki = nr of “offspring” of lth individual of subpop. k that

end up in subpop. i (possibly including parent itself)

Constant subpopulation sizes is formulated as

∑Nak

l=1 ν l
ki = Nakmki ,

∑L

k=1 akmki = ai ,

Exchangeability of parental reproduction from subpop. k to i :

E (ν l
ki ) = mki (independently of N, i.e. fast migration)
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Example with L = 2 subpopulations

Parental generation

Offspring generation

N = 10,
a1 = 0.4, a2 = 0.6,
m11 = 3/4, m12 = 1/2, m21 = 1/6, m22 = 4/6,
ν1
11 = 2, ν1

12 = 1,
ν6
21 = 0, ν6

22 = 1,
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Ancestral process, main convergence result

XNi (τ) = nr of ancestors of sample in subpop. i , τ generations back
XN(τ) = total nr of ancestors of sample τ generations back

=
∑L

i=1 XNi (τ),
XN(0) = sample size

= n.

Under certain conditions

{XN(⌈Nt⌉); t ≥ 0}
L

−→ {A(ct); t ≥ 0}

in Skorohood topology on D{1,...,n}[0,∞).

What is c?
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Formula for coalescence rate

Any individual’s ancestral subpopulation history is a Markov chain with
state space {1, . . . , L} and trans. matrix (bik), where

bik = P(parent of subpop. i individual from subpop. k)
= akmki/ai

and unique equilibrium distribution

(γ1, . . . , γL).

Then, under mild regularity conditions, conv. to Kingman’s coalescent
with

c =
L

∑

i,j,k=1

γiγjbikbjkckij

where

ckij =

{

limN→∞ E
(

ν l
ki (ν

l
ki − 1)

)

/(m2
kiak), i = j ,

limN→∞ E
(

ν l
kiν

l
kj

)

/(mkimkjak), i 6= j ,

is the local coalescence rate for two lines that merge from subpop. i

and j to subpop. k.
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Example 1: Geographical structure, nonoverlapping

generations

Subpopulation = island

ν l
ki = nr of children of lth individual of subpop k born in subpop i .

If WF type reproduction

(ν l
ki )

Nak

l=1 ∼ Mult(Nakmki ; 1/(Nak), . . . , 1/(Nak))

gives local coalescence rate

ckij = 1/ak

and

c =
L

∑

i ,j ,k=1

γiγjbikbjka−1
k =

L
∑

k=1

γ2
k

ak

γk=ak= 1,

see Nordborg and Krone (2002).
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Example 2: Age structured models

Subpopulation = age class

s1 s2 s3

m1

m4

m2

3m

Age 1 Age 2 Age 3 Age 4

L = nr of age classes = 4,
mi = mi1 = exp. nr of children of parents of age i ,
si = mi,i+1 = survival prob from age class i to i + 1,

with
a1 = 0.4, a2 = 0.3, a3 = 0.2, a1 = 0.1,
s1 = 3/4, s2 = 2/3, s3 = 1/2.

See also Jagers and Sagitov (2005).

Ola Hössjer Coalescence Theory, Structured Populations with Fast Migration



Coalescence rate, age structured models
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ρ = Corr(ν l
k1, ν

l
k,k+1) = correl. between nr of children and survival

Figure (s1, s2, s3) (m1, m2, m3, m4), ck11ak

a) (1, 1, 0.5) (2,2,2,2)/7 -3/2
b) (1, 1, 0.5) (0,0,2,2)/3 1/2
c) (0.5, 0.5, 0.5) (8,8,8,8)/15 1/8
d) (0.5, 0.5, 0.5) (0,0,8,8)/3 13/8
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Example 3: Combined age and geographical structure

Subpopulation = (island nr,age nr)

(1−q)m

(1−q)m2

qm2

qm1

Age 2

Island 2

Island 1

1

1

1

Age 1

L = 4
N = 28
a(1,1) = a(1,2) = 3/14, a(2,1) = a(2,2) = 2/7
q = prob that all children are born in island different from parent
mi = fertility of adults of island i

m(1,1),(1,2) = 1, m(1,2),(2,1) = qm1 etc
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Coalescence rate, combined geographical and age structure

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

m
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a 2

m
1

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

γ 2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

c

q = 0.1 (dash-dotted), q = 0.5 (solid), q = 0.9 (dotted),
a2 = a(2,1) + a(2,2) = relative size of island 2,
γ2 = γ(2,1) + γ(2,2) = equilibrium prob of ancestor in island 2
mi = fertility of adults of island i ,
WF type reproduction
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Summary

Convergence to Kingman’s coalescent for

General class of structured models

Fast migration

Includes geographical and/or age structure

General dependency structure of offspring distribution

Coalescence rate =⇒ effective population size

Proof uses partially techniques and results from Möhle (1998a),
Kaj et al (2001) and Nordborg and Krone (2002).
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