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COALESCENCE THEORY FOR A GENERAL
CLASS OF STRUCTURED POPULATIONS
WITH FAST MIGRATION

O. HÖSSJER,∗ Stockholm University

Abstract

In this paper we study a general class of population genetic models where the total
population is divided into a number of subpopulations or types. Migration between
subpopulations is fast. Extending the results of Nordborg and Krone (2002) and Sagitov
and Jagers (2005), we prove, as the total population size N tends to ∞, weak convergence
of the joint ancestry of a given sample of haploid individuals in the Skorokhod topology
towards Kingman’s coalescent with a constant change of time scale c. Our framework
includes age-structured models, geographically structured models, and combinations
thereof. We also allow each individual to have offspring in several subpopulations,
with general dependency structures between the number of offspring of various types.
As a byproduct, explicit expressions for the coalescent effective population size N/c are
obtained.
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1. Introduction

When studying the joint ancestry of a sample of n individuals, the coalescent has emerged
as an important tool. It was originally introduced in Kingman (1982a), (1982b) in the context
of a haploid Wright–Fisher (WF) model with constant population size N and nonoverlapping
generations. When N → ∞ and time backwards is rescaled in units of N , the number of
ancestors of the WF model converges to a continuous-time pure-death Markov process with the
number of ancestors as states and intensity

ca =
(

a

2

)

of a transition from a to a − 1 for 2 ≤ a ≤ n, with a = 1 an absorbing state. This
process, frequently referred to as Kingman’s coalescent, is surprisingly robust and turns up
as the limit ancestral process as N → ∞ for a number of more complicated population
genetic models, as reviewed, e.g. in Möhle (2000). Indeed, for diploid models (see Möhle
(1998b), Möhle and Sagitov (2003), and Pollak (2010)), self-fertilization and partial selfing
(see Fu (1997), Nordborg and Donnelly (1997), and Möhle (1998a)), geographically structured
populations with fast migration (see Nordborg and Krone (2002)), age-structured populations
with overlapping generations (see Sagitov and Jagers (2005)), and populations with a rapidly
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changing Markov regime population size (see Jagers and Sagitov (2004) and Pollak (2010)), it
turns out that the limiting ancestral process is a time-scaled version of Kingman’s coalescent
with intensity

ca = c

(
a

2

)

of a transition from a to a − 1. The constant c quantifies the speed at which ancestral lines
merge and, hence, the rate at which genetic drift occurs.

In this paper we study a very general class of structured population genetic models of
constant size N , divided into a number of subpopulations or types of individual. These may
represent geographical sites, age classes, or combinations thereof. It is assumed that migration
between subpopulations occurs at a fast rate, O(1), under the original time scale, as opposed
to coalescence events, which occur at a slower rate, O(N−1). We prove convergence in the
Skorokhod topology to Kingman’s coalescent under very general conditions. In particular, we
allow for dependency between the number of offspring of various types of each individual. In
particular, we give a general formula (3.2) for the coalescence rate c. Our results generalize
previous convergence results for fast migration models in Nordborg and Krone (2002) and
Sagitov and Jagers (2005).

It is often convenient to approximate a population of size N with a size Ne WF model, where
Ne is referred to as the effective population size. This is achieved by extracting some property
of the population and finding the WF model for which this property is the same. Depending
on the studied property, various versions of Ne are derived, such as the variance effective
population size, the inbreeding effective population size, the eigenvalue effective size, and
other versions; see Ewens (1982, pp. 119–128), (2004), Orrive (1993), and Waples (2002) for
reviews. Another version, the coalescent effective population size, was introduced in Nordborg
and Krone (2002) as

Ne = N

c
, (1.1)

provided the limiting ancestral process is a time-scaled version of Kingman’s coalescent. Sjödin
et al. (2005) argued that (1.1) is the most useful notion of effective population size since the
coalescent summarizes the most important (one-locus) aspects of the population history. On the
other hand, (1.1) is undefined for models with other limiting ancestral processes, for instance
the structured coalescent for geographically structured populations with slow migration (see
Notohara (1990), Herbots (1997), Nordborg and Krone (2002), and Sampson (2006)).

An interesting application of our findings is the calculation of the coalescent effective
population size (1.1) for models with combined geographical and age structure, or models
with age structure where survival and fertility are not independent. This extends the results of,
e.g. Sagitov and Jagers (2005); see also Cenik and Wakeley (2010). The approach of Engen et al.
(2005a), (2005b), on the other hand, can be used to calculate the variance effective population
size using forward diffusion approximations.

The paper is organized as follows. In Sections 2 and 3 we present the population genetics
model in detail and prove the main convergence result (Theorem 4.1) in Section 4. A number of
examples are given in Section 5 and an extension to migrating colonies, where individuals are
forced to migrate in groups, is discussed in Section 6. In Section 7 we summarize and discuss
possible extensions of our results, and the proof of Theorem 4.1 is given in Appendix A.
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2. Forward dynamics

Consider a haploid population of constant size N , divided into L subpopulations (or types)
of sizes Ni = Nai, i = 1, . . . , L, where

∑L
i=1 ai = 1. The population evolves in discrete

generations. In each new generation, an exact number Nkmki = Nakmki of all individuals in
subpopulation i originate from subpopulation k. Since the subpopulation sizes are assumed to
remain constant through time, this puts restrictions

L∑
k=1

akmki = ai, i = 1, . . . , L, (2.1)

on mki and ak . In our setting (2.1) typically requires that the largest eigenvalue of M =
(mki)

L
k,i=1 is 1, with left eigenvector (a1, . . . , aL); see Caswell (2001, pp. 72–92).

Consider a fixed generation, and suppose that the individuals of subpopulation k are num-
bered l = 1, . . . , Nk . Let νl

ki denote the number of ‘offspring’ of individual l of subpopulation
k that end up in subpopulation i. This includes children of l that are born in subpopulation i

and/or l itself, if it survives to the next generation and either remains in subpopulation i = k or
migrates to subpopulation i �= k. In order to guarantee (2.1), we impose

Nak∑
l=1

νl
ki = Nakmki, 1 ≤ k, i ≤ L. (2.2)

Let νl
k = (νl

k1, . . . , ν
l
kL) represent the number of offspring of various types of individual l of

subpopulation k. Crucial for our subsequent development will be the distributional properties
of νl

k . To this end, we assume that

(A1) for each k, {νl
k}Nk

l=1 are exchangeable random vectors,

(A2) {νl
k}Nk

l=1 are independent for different k.

Exchangeability is a natural generalization of independence, first introduced in population
genetics in Cannings (1974). Because of exchangeability, we will sometimes drop the subscript
l and write νl

ki = νki . In particular, (2.2) and (A1) imply that

E(νki) = mki.

We also introduce the second moment quantities

Vkij =
{

E(νki(νki − 1)), i = j,

E(νkiνkj ), i �= j.

Whereas mki is independent of N , Vkij typically depends on N to some extent, although not
asymptotically as N grows.

Figure 1 illustrates our notation for two consecutive generations of a population with two
subpopulations.
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Parental generation

Offspring generation

Figure 1: Two consecutive generations of a population with N = 10 and L = 2 subpopulations (the
squares) numbered 1 and 2 from left to right. Individuals are marked with circles and offspring with
arrows. The subpopulation fractions are a1 = 0.4 and a2 = 0.6, and the migration rates are m11 = 3

4 ,
m12 = 1

2 , m21 = 1
6 , and m22 = 4

6 . The individuals of subpopulation 1 are more productive, since m11 +
m12 = 5

4 > 1 and m21 + m22 = 5
6 < 1. If individuals are numbered from left to right within each

subpopulation, we have, for the parental generation, ν1
1 = (2, 1), ν3

1 = (0, 1), ν4
1 = (1, 0), ν2

2 = (1, 1),
ν5

2 = (0, 2), ν6
2 = (0, 1), and νl

k = (0, 0) for all other k and l. The backward transition matrix B has entries
b11 = 3

4 , b12 = 1
4 , b21 = 1

3 , and b22 = 2
3 . Since M is not a stochastic matrix, the stationary distribution

of the backward Markov chain, (γ1, γ2) = ( 4
7 , 3

7 ), differs from (a1, a2). The n = 4 sampled individuals
have filled circles and, hence, the type distribution is xoffspring = (2, 2) in the offspring generation and
xparent = (2, 1) in the parental generation. Note that |xoffspring| − |xparent| = 4 − 3 = 1 due to one

coalescence event, the two children in the sample of individual 1 of subpopulation 1.

3. Backward dynamics

Assuming that

(A3) reproduction is independent across generations,

it follows that the ancestral types of an individual form a Markov chain with transition proba-
bilities

bik = Nakmki

Nai

= akmki

ai

.

By postulating that

(A4) the transition matrix B = (bik)
L
i,k=1 corresponds to an irreducible aperiodic Markov

chain,

we guarantee that the ancestral type history of an individual is a Markov chain with a unique
asymptotic distribution; say γ = (γ1, . . . , γL).

Let X = (X1, . . . , XL) denote the type distribution of a sample of size n, with Xi the
number of type-i individuals and |X| = ∑L

i=1 Xi = n. Assume for a moment that the ancestry
of these n individuals form n independent Markov chains with transition matrix B. Then the
equilibrium distribution is multinomial:

X ∼ Mult(n, γ1, . . . , γL). (3.1)

In practice (3.1) is only an approximation, since (2.2) imposes some dependency between the
ancestry of different individuals and there is merging of ancestry due to coalescence events.
However, it turns out that this approximation is increasingly accurate as N → ∞. To study the
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impact of coalescence we let N → ∞ and assume that

(A5) E((νki)
3) = o(N) as N → ∞ for all 1 ≤ k, i ≤ L,

(A6) σkij = (limN→∞ Vkij )/(mkimkj ) exist for all 1 ≤ i, j, k ≤ L.

Assumption (A6) guarantees that, asymptotically, as N → ∞, coalescence events occur one at
a time through pairwise merging of lines. The probability for two individuals of types i and j to
coalesce in one generation is σkij /(Nak) + o(N−1), given that both parents are of type k. This
implies that coalescence events take place on a slower time scale, O(N−1), than migration,
which proceeds at a fast rate, O(1); cf. Möhle (1998a).

The one-generation coalescence probability of a sample with type configuration X = x =
(x1, . . . , xL) takes place on the slow time scale, and, thus, has the form H(x)/N + o(N−1).
Following the argument of Nordborg and Krone (2002), we can motivate the form of H(x)

by noting that the probability for two type-i individuals to coalesce into a type-k individual
is approximately

(
xi

2

)
b2
ikσkii/Nk . Indeed, we can pick the individuals in

(
xi

2

)
different ways,

the probability for both of them to have a type-k parent is approximately b2
ik , and, given this

event, the probability of identical parents is approximately σkii/Nk . Similarly, the probability
for two individuals of types i �= j to coalesce into a type-k individual is, approximately,
xixj bikbjkσkii/Nk . Putting things together, by adding probabilities for all i, j , and k, we
obtain

H(x) =
L∑

k=1

1

ak

( L∑
i=1

(
xi

2

)
b2
ikσkii +

∑ ∑
1≤i<j≤L

xixj bikbjkσkij

)
.

Since coalescence events occur at rate O(N−1), the ancestral type configuration will typically
transverse the state space

Sn =
{
x = (x1, . . . , xL);

L∑
i=1

xi = n

}

many times and approximately converge to the equilibrium distribution (3.1) before the first
coalescence event. Using E(XiXj ) = n(n − 1)γiγj and E(Xi(Xi − 1)) = n(n − 1)γ 2

i , and
rescaling time by a factor N , a coalescence rate

cn = E(H(X)) = c

(
n

2

)
is obtained for a sample of size n, where

c =
L∑

k=1

1

ak

L∑
i=1

L∑
j=1

γiγj bikbjkσkij (3.2)

is the constant appearing in the denominator of (1.1). We may also rewrite (3.2) in the following
way. Assume that I and J are drawn independently from the stationary distribution γ , and that
K|I and K ′|J are both drawn as the next state of a Markov chain with transition matrix B,
currently in state I and J , respectively. Then

c = P(K = K ′) E

(
σKIJ

aK

∣∣∣∣ K = K ′
)

is the product of the probability that the ancestors of I and J belong to the same subpopulation
multiplied by the normalized coalescence rate σKIJ /aK of I and J given this event.
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4. Main result

Let XN(τ) denote the ancestral type configuration of a given sample of individuals τ = 0,

1, 2, . . . generations back in time. If |XN(0)| = n, XN(·) is a time-homogeneous discrete-time
Markov chain on the state space

S = S1 ∪ · · · ∪ Sn.

Changing the time scale by a factor N , we let AN(t) = |XN([Nt])| for t ≥ 0 denote the
number of ancestral lines at time t , with [Nt] denoting the largest integer smaller than or equal
to Nt . We view it as a random element of DE[0, ∞), the space of right-continuous functions
from [0, ∞) to E = {1, . . . , n}. Our main result states that in the limit N → ∞, AN converges
weakly to Kingman’s n-coalescent, run on time scale c.

Theorem 4.1. Assume that (A1)–(A6) hold. Then, as N → ∞,

{AN(t); t ≥ 0} L−→ {A(t); t ≥ 0}
in terms of weak convergence on DE[0, ∞) with respect to the Skorokhod topology. Here A is
a time-homogeneous continuous-time Markov chain on DE[0, ∞) with infinitesimal generator
matrix Q = (qab)

n
a,b=1, where qaa = −c

(
a
2

)
, qa,a−1 = c

(
a
2

)
, a = 2, . . . , n, c is given by (3.2),

and qab = 0 for all other a, b.

5. Examples

Example 5.1. (Subpopulations with newborns or adults only.) Suppose that we have a disjoint
decomposition {1, . . . , L} = A ∪ B of all subpopulations i into those that consist of adults
only (i ∈ A) or newborns only (i ∈ B). When i ∈ B, νl

ki represents the number of type-i
children of individual l of subpopulation k. When i ∈ A, νl

ki is an indicator for the event that
individual l of subpopulation k migrates from k to i. This implies in particular that∑

i∈A

νl
ki = 1{l survives to the next generation},

∑
i∈B

νl
ki = total number of children of l.

In particular, we have
Vkij = σkij = 0, i, j ∈ A,

as a simple consequence of the facts that νl
ki and νl

kj are both 0 or 1, and both of them cannot
equal 1. Hence, when all subpopulations consist of adults (A = {1, . . . , L}), we have c = 0.
Of course, this represents a degenerate case when coalescence events never appear.

Example 5.2. (Geographical structure.) A population with nonoverlapping generations and
L islands corresponds to B = {1, . . . , L}, first treated in Wright (1943). What is traditionally
referred to as migration in these models corresponds in our framework to offspring being born
at other subpopulations than their parents.

The WF model represents the simplest reproduction scenario, where the Nkmki individuals
of subpopulation i with parents in subpopulation k pick their parents independently from k, i.e.

(ν1
ki , . . . , ν

Nk

ki ) ∼ Mult

(
Nkmki; 1

Nk

, . . . ,
1

Nk

)
,
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Age 1

m1
m2

s1 s2 s3

m3

m4

Age 2 Age 3 Age 4

Figure 2: Illustration of the age-structured model of Example 5.3 with L = 4 age classes and N = 20
individuals, marked as circles. The migration rates sk and mk are indicated above the arrows. Since

a1 = 0.4, a2 = 0.3, a3 = 0.2, and a1 = 0.1, it follows from (5.1) that s1 = 3
4 , s2 = 2

3 , and s3 = 1
2 .

independently for different k, i. From this, it follows that limN→∞ Vkij = mkimkj for any pair
i, j of subpopulations, and, hence, σkij ≡ 1. This gives

c =
L∑

k=1

1

ak

L∑
i=1

L∑
j=1

γiγj bikbjk =
L∑

k=1

γ 2
k

ak

,

as noted in Nordborg and Krone (2002). In the special case when the row sums of M equal 1,
i.e. when M is a transition matrix of a ‘forward Markov chain’, we note that (see Naglyaki
(1980))

L∑
i=1

aibik =
L∑

i=1

ai

akmki

ai

= ak

L∑
i=1

mki = ak.

In view of the assumed uniqueness of the stationary distribution of B, this implies that γk = ak

and, hence, c = 1.

Example 5.3. (Age-structured models.) Felsenstein (1971) and Sagitov and Jagers (2005)
considered a model where subpopulations represent age classes. This also incorporates the
seed-bank model of Kaj et al. (2001). In detail, {1, . . . , L} represent age classes of individuals
of increasing age, with B = {1} containing all newborns and A = {2, . . . , L} containing the
adult age classes. The migration rate matrix has the form

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m1 s1 0 0 · · · 0
m2 0 s2 0 · · · 0
m3 0 0 s3 · · · 0
...

...
...

. . .
. . .

...

mL−1 0 0 0 · · · sL−1
mL 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where mk = mk1 represents the expected number of newborn children and sk = mk,k+1
represents the survival probability for individuals of age class k; cf. Figure 2 for an illustration.

From (2.1) we deduce that

ak = a1

k−1∏
i=1

si, a1 =
L∑

k=1

akmk, (5.1)
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which in conjunction with
∑L

k=1 ak = 1 imposes some restrictions, either on the reproduction
parameters mk or the survival parameters sk . If (5.1) holds we get nonzero backward transition
probabilities b1k = mkak/a1 =: pk and bk+1,k = 1. The corresponding stationary distribution
is γk = ∑L

i=k pi/γ , where γ = ∑L
k=1 kpk is a normalizing constant.

Set
Vk = lim

N→∞ Vk11 = lim
N→∞ E(νk1(νk1 − 1)) for k = 1, . . . , L

and
Ck = lim

N→∞ cov(νk1, νk,k+1) for k = 1, . . . , L − 1.

Then

σkij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + Ck

mksk
if k = 1, . . . , L − 1 and (i, j) = (1, k + 1) or (k + 1, 1),

Vk

m2
k

if k = 1, . . . , L − 1 and i = j = 1,

0 otherwise.

Inserting this into (3.2), and using the fact that mk = a1pk/ak , we find that

c = 2
L−1∑
k=1

1

ak

γ1b1kγk+1bk+1,k

(
1 + Ckak

a1pksk

)
+

K∑
k=1

1

ak

(γ1b1k)
2 Vka

2
k

(a1pk)2

= 2

γ

L−1∑
k=1

pkγk+1

ak

+ 2

γ a1

L−1∑
k=1

Ckγk+1

sk
+ 1

γ 2a2
1

L∑
k=1

Vkak, (5.2)

which is a generalization of the formula with Ck ≡ 0 derived in Sagitov and Jagers (2005).
If Ck < 0 or Ck > 0, individuals with many children will respectively have a smaller or
larger chance of surviving to the next generation. In the latter case reproduction becomes more
unevenly distributed among parents, which naturally causes the coalescence rate c to increase,
as illustrated in Figure 3.

Example 5.4. (Combined age and geographical structure.) Consider a simple model with two
islands and two age groups within each island: newborns and adults, as illustrated in Figure 4.
We write k = (k1, k2) for a subpopulation, where k1 ∈ {1, 2} refers to the island and k2 ∈ {1, 2}
refers to the age group. All newborn children survive to the next generation but remain within
the same island. Adults have children, all of whom reside within the same island (probability
1 − q) or move to the other island (probability q). Adults do not survive to the next generation.
Let ηl

k1
denote the number of children of the lth adult of island k1, and let I l

k1
denote the indicator

for the event that the children move to the other island. We thus have

νl
ki =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, k = (k1, 1), i = (k1, 2),

(1 − I l
k1

)ηl
k1

, k = (k1, 2), i = (k1, 1),

I l
k1

ηl
k1

, k = (k1, 2), i = (3 − k1, 1),

0, otherwise.

It is assumed that ηl
k1

and I l
k1

are asymptotically independent, with

mk1 = E(ηl
k1

), Vk1 = lim
N→∞ E(ηl

k1
(ηl

k1
− 1)), q = P(I l

k1
= 1).
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0.4

0.3

0.2

0.1
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c

0.6

0.5
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0.1

0.0

(b)

(c) (d)

ρ ρ

Figure 3: Plots of c as a function of the correlation ρ = Corr(νk1, νk,k+1), k = 1, . . . , L−1, for the age-
structured model of Example 5.3 with L = 4 age classes, survival probabilities s = (s1, s2, s3), offspring
sizes with means m = (m1, m2, m3, m4), and dispersion coefficients σk = Vk/m2

k , where (a) s =
(1, 1, 0.5), m = 2(1, 1, 1, 1)/7, σk ≡ − 3

2 ; (b) s = (1, 1, 0.5), m = 2(0, 0, 1, 1)/3, σk ≡ 1
2 ; (c) s =

(0.5, 0.5, 0.5), m = 8(1, 1, 1, 1)/15, σk ≡ 1
8 ; and (d) s = (0.5, 0.5, 0.5), m = 8(0, 0, 1, 1)/3, σk ≡ 13

8 .
The proportionality constants of m are chosen to satisfy (5.1) and σk is chosen to allow for the largest pos-
sible range of correlations. Indeed, ρ = ±1 requires νk1 = mk ± (νk,k+1 − sk)

√
var(νk1)/(sk(1 − sk))

when 0 < sk < 1, with var(νk1) = mk + m2
k(σk − 1). This amounts to νk1 = 2mk1{νk,k+1=(1+ρ)/2} when

sk = 0.5 and σk = 2 − 1/mk , i.e. individuals have a fixed number 2mk of children if and only if they
survive (ρ = 1) or if and only if they die (ρ = −1), respectively. Although this violates the requirement

on νk1 to be a nonnegative integer, it still suggests that ρ can be chosen close to ±1.

This implies that

mki =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, k = (k1, 1), i = (k1, 2),

(1 − q)mk1 , k = (k1, 2), i = (k1, 1),

qmk1 , k = (k1, 2), i = (3 − k1, 1),

0, otherwise,

and

σkij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Vk1

(1 − q)m2
k1

, k = (k1, 2), i = j = (k1, 1),

Vk1

qm2
k1

, k = (k1, 2), i = j = (3 − k1, 1),

0, otherwise.



1036 O. HÖSSJER

Age 2

Island 2

Age 1

Island 1 ( )q m− 11

( )q m− 21

mq 2

mq 1

1

1

Figure 4: Illustration of migration rates of the model in Example 5.4, with two islands, two age classes,
and L = 2 · 2 = 4 subpopulations. Individuals are depicted as circles, N = 28, a11 = a12 = 3

14 , and
a21 = a22 = 2

7 .

Without loss of generality, we assume that the adults of island 1 are less productive than those
of island 2, i.e. m1 ≤ 1 ≤ m2. In order for (2.1) to have a solution, it is required that

m2 = 1 − (1 − q)m1

1 − q − (1 − 2q)m1
,

with island sizes a11 = a12 = a1/2 and a21 = a22 = a2/2, where

a1 = qm2

q(m1 + m2) + 1 − m1
= 1 − a2

is the total fraction of individuals in island 1. The backward transition probabilities are

bik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, i = (i1, 2), k = (i1, 1),

(1 − q)mi1 , i = (i1, 1), k = (i1, 2),

1 − (1 − q)mi1 , i = (i1, 1), k = (1 − i1, 2),

0, otherwise,

which has a unique stationary distribution, with γ11 = γ12 = γ1/2 and γ21 = γ22 = γ2/2,
where

γ1 = 1 − (1 − q)m2

2 − (1 − q)(m1 + m2)
= 1 − γ2

is the equilibrium probability that the backward Markov chain is in island 1. Putting things
together, we obtain

c =
2∑

k1=1

2

ak1

(
(γk1(1 − q)mk1/2)2Vk1

(1 − q)m2
k1

+ ((γ3−k1)(1 − (1 − q)m3−k1)/2)2Vk1

qm2
k1

)
.

Figure 5 illustrates this model for various parameter values.
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Figure 5: Plots of m2, a2, γ2, and c as a function of m1 for two islands, each with two age classes
(Example 5.4). The migration probability q is either 0.1 (dash–dot lines), 0.5 (solid lines), or 0.9 (dotted
lines). WF-type reproduction is assumed (V1/m2

1 = V2/m2
2 = 1). The coalescence rate c = 0.5 when

individuals of both islands are equally productive (m1 = m2 = 1), regardless of q. When q is small, the
more productive individuals have m2 ≈ 1 regardless of m1. In particular, when q and m1 are both small,
the whole system can be approximated by the age-structured model of Example 5.3 with L = 2, where
children always survive, adults but not newborns have children, and, hence, c = 0.5 according to (5.2).
When q is large and m1 small, there is a small fraction of very productive individuals in subpopulation 2,
and a large fraction of individuals with low productivity in island 1. This causes the coalescence rate c to

increase.

6. Rapidly varying population size and migrating colonies

Interestingly, our framework has similarities to coalescence theory with a rapidly varying
population size (see Jagers and Sagitov (2004)), whose variation backward in time is controlled
by an aperiodic and irreducible Markov chain with transition matrix B, states Na1, . . . , NaL,
and equilibrium distribution γ . We can regard this as the whole population moving between
subpopulations of sizes Nai . This requires a slight redefinition of the migration rates (2.1) and
the forward reproduction condition (2.2). If the whole population is currently in i, let K denote
the subpopulation of the previous generation, i.e. P(K = k | i) = bik . We then assume that

akmki = ai, Nai =
Nak∑
l=1

νl
ki , if K = k. (6.1)
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A sample of size n can only be in one of L configurations, x1 = ne1, . . . , xL = neL, where
ei has a 1 in position i and 0s elsewhere. The coalescence probability is σkii/(Nak) + o(N−1)

for a pair of individuals of subpopulation i to coalesce, given that it is known that they both
originate from subpopulation k, where

σkii = Vkii

m2
ki

= Vkii

(ai/ak)2 .

The coalescence rate for configuration xi is H(xi )N
−1 + o(N−1), where

H(xi ) =
(

n

2

) L∑
k=1

bik

σkii

ak

.

The (quasi) equilibrium distribution of the type configuration X of a sample of size n, before
any coalescence events have occurred, is

P(X = xi ) = γi, i = 1, . . . , L.

This gives a coalescence rate cn = c
(
n
2

)
, with

c = E(H(X)) =
L∑

i=1

L∑
k=1

γibik

Vkii

m2
kiak

(6.1)=
L∑

i=1

L∑
k=1

γibikVkii

ak

a2
i

, (6.2)

in agreement with Jagers and Sagitov (2004).
In principle, we can generalize (6.2) to a colony whose n members are constrained to

reside within the same subpopulation, although the whole population may not be forced to
that. For instance, the first equality in (6.2) remains valid if the whole colony moves between
subpopulations according to B, but migration of the whole population is controlled by (2.1)–
(2.2).

Further extensions are possible, for instance, a set of e > 1 colonies of sizes n1, . . . , ne that
move independently between subpopulations, but the members of each colony are restricted to
migrate together, within the same subpopulations. However, individuals need not necessarily
coalesce within the same colony, only within the same subpopulation.

Yet another possibility is a geographically structured coalescent model with rapidly varying
populations size; cf. Sampson (2006). A subpopulation then involves both the geographical site
and its size, and the backward Markov chain controls movement between these subpopulations.
The backward history of a sample of size n corresponds to a migrating colony constrained not
to reside in one single subpopulation, but rather to a group of subpopulations that correspond
to restrictions imposed by population sizes.

7. Discussion

We have considered a general class of haploid population genetic models with constant
population size and fast migration. The main result is a proof of weak convergence of the
ancestral process towards Kingman’s coalescent as the total population size N → ∞. An
important application of this result is the calculation of coalescent effective population sizes
for populations with age and spatial structures, allowing for dependency between the number
of offspring of various types of individual.
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Several extensions of our work are possible. For instance, Engen et al. (2005a) derived the
variance effective population size for age-structured diploid models. It would be interesting to
obtain expressions for the coalescent effective diploid population size in our context of age and
spatial structures. It would also be useful to study migration at a slow rate, O(N−1), and extend
the structured coalescent results of Nordborg and Krone (2002) for WF-type reproduction to
our setting.

Rapidly varying population sizes (see Jagers and Sagitov (2004)) could also be analyzed, as
indicated in Section 6. Another possibility is to study scenarios where the population size varies
on an intermediate time scale of O(N). In this case the limit process is typically a stochastic
time change of Kingman’s coalescent (see Kaj and Krone (2003) and Sano et al. (2004)).

In order to simplify the proofs, we have required a fixed amount of migration (2.2) between
subpopulations. We conjecture that this condition can also be relaxed. For instance, a condition
like

L∑
k=1

Nak∑
l=1

νl
ki = Nai,

Nak∑
l=1

νl
ki = Nakmki(1 + Op(N−1/2)),

would incorporate the nonconservative migration model of Sampson (2006), where individuals
produce an effectively infinite number of propagules that migrate between subpopulations at
fixed proportions mki . The next generation is then formed by sampling randomly, within each
subpopulation, from the infinite pool of propagules.

Appendix A. Proof of Theorem 4.1

We will follow the method of proof in Kaj et al. (2001), Nordborg and Krone (2002), and
Sagitov and Jagers (2005).

Let da denote the number of states of Sa , and let d = d1 + · · · + dn be the number of states
of S. The states of each Sa are numbered in some fixed but otherwise arbitrary way and the
states of S are numbered so that the d1 states of S1 are listed first, followed by the d2 states of
S2, etc. until we finally reach the dn states of Sn. Let �N denote the d × d transition matrix
of the Markov chain XN . It was shown in Nordborg and Krone (2002), using Theorem 2.12 of
Ethier and Kurz (1986, p. 173), that it suffices to establish

lim
N→∞

∑
y∈Sb

�
[Nt]
N (x, y) =

∞∑
w=0

tw

w!q
(w)
ab (A.1)

for all 1 ≤ a, b ≤ n and x ∈ Sa . Here �τ
N is the τ -fold product of �N and q

(w)
ab is the element

a, b of Qw.
We will establish below the existence of d×d matrices A and C whose entries do not involve

N , such that

�N = A + 1

N
C + o

(
1

N

)
, (A.2)

with limτ→∞ Aτ = P a d × d block diagonal matrix P = diag(P 1, . . . , P n), where P a is a
da × da matrix having identical rows corresponding to the asymptotic distribution (3.1), i.e.

lim
τ→∞ Aτ (x, y) = P (x, y) = a!

y1! · · · yL!
L∏

i=1

γ
yi

i for x, y ∈ Sa. (A.3)
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We can then invoke a crucial lemma due to Möhle (1998a), i.e.

lim
N→∞

(
A + 1

N
C + o

(
1

N

))[Nt]
= P − I + etG, (A.4)

where I is the d × d identity matrix and G = PCP is the limiting (as N → ∞) infinitesimal
generator matrix of XN run on the time scale N . Because of (A.4), (A.1) will follow if we can
show that ∑

y∈Sa

Gw(x, y) = q
(w)
ab (A.5)

for all w ≥ 0, 1 ≤ b ≤ a ≤ n, and x ∈ Sa . Equation (A.5) was proved recursively with respect
to w in Nordborg and Krone (2002) for a WF model with birth types only. Scrutinizing their
proof, it turns out that (A.5) will follow in our setting as well if we can verify that

∑
y∈Sa−1

C(x, y) = H(x), 2 ≤ a ≤ n, (A.6)

and
C(x, y) = 0 if x ∈ Sa, y ∈ Sb, 1 ≤ b ≤ a − 2 ≤ n − 2. (A.7)

Hence, in order to prove Theorem 1, we need to verify (A.2), (A.3), (A.6), and (A.7) for our
model.

Let x ∈ Sa for some 2 ≤ a ≤ n represent the type configuration of a fixed offspring
generation and let y ∈ Sb, 1 ≤ b ≤ a, represent that of the corresponding parent generation. It
will be convenient to represent x as u = (u1, . . . , ua), assuming that the a individuals in x are
numbered in some fixed but arbitrary way, with us the type of individual s. Assume that the
parent of us is of type vs , and let v = (v1, . . . , va) represent the types of all parents.

In order to characterize the coalescence pattern between u and v, we first note that yk ≤
|{s; vs = k}|, with equality for all k = 1, . . . , L if and only if there are no coalescence events.
If yk < |{s; vs = k}|, some parents s with vs = k will correspond to the same individual. We
can identify these sets of ‘identical parents’ by numbering the type-k individuals of the parent
generation as l = 1, . . . , Nk in some fixed but arbitrary way and then letting l = (l1, . . . , la)

represent the individual numbers of the parents in v = (v1, . . . , va) within their respective
subpopulations, i.e. 1 ≤ ls ≤ Nvs . Then yk is the number of different ls among those s with
vs = k. The coalescence pattern between u and v is summarized through

g = {gr
k; k = 1, . . . , L, r = 1, . . . , yk},

where gr
k = (gr

k1, . . . , g
r
kL) and gr

ki = |{s; us = i, vs = k, ls = lskr
}| is the number of offspring

of type i, within the sample, of the rth parent of type k. We assume (without loss of generality)
that skr is selected to be the rth new value of ls among all {s; vs = k}, transversed in increasing
order. Thus, gr

k represents the offspring subpopulation membership distribution within the
sample of the rth parent of type k.

Since y = y(v, g), we can write the backward transition probability as

�N(x, y) =
∑
v,g

y(v,g)=y

P(v, g | u), (A.8)
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independently of how we choose to represent x by u. In order to find an expression for
P(v, g | u), note first that

P(v, g, l | u) = f (x, g)
E(

∏L
k=1

∏yk

r=1(ν
lskr

k )gr
k
)∏L

i=1(Ni)xi

, (A.9)

where

f (x, g) =
L∏

i=1

xi !
(xi − x̃i )! ∏L

k=1
∏

r;|gr
k |≥2(g

r
ki)!

denotes the number of ways to vary which individuals within u should merge according to the
coalescence pattern g, with |gr

k| = ∑L
i=1 gr

ki and x̃i = ∑L
k=1

∑
r;|gr

k |≥2 gr
ki denoting the total

number of children of type i that merge. We use the notation (Ni)xi
= Ni(Ni − 1) · · · (Ni −

xi + 1), so that the denominator of (A.9) refers to the number of ways to assign individuals that
are offspring of parents within the sample. The numerator of (A.9) is (the expected value of)
the number of these that conform with the coalescence pattern, with (νl

k)gr
k

= ∏L
i=1(ν

l
ki)gr

ki
.

Invoking the exchangeability and independence assumptions, (A1)–(A2), we find that

P(v, g | u) =
∑

l

P(v, g, l | u)

= f (x, g)

∏L
k=1(Nk)yk∏L
i=1(Ni)xi

L∏
k=1

E

( yk∏
r=1

((νr
k)gr

k
)

)
, (A.10)

where the sum is taken over all
∏L

k=1(Nk)yk
choices of l that conform with v and g.

In order to approximate (A.10), we write UN ∼ VN to denote that UN/VN → 1 as N → ∞.
Since Nk = Nak , it is easy to show that

∏L
k=1(Nk)yk∏L
i=1(Ni)xi

∼ N |y|−|x|
L∏

k=1

a
yk−xk

k . (A.11)

Substituting (A.11) into (A.10) we find that

P(v, g | u) ∼ f (x, g)N |y|−|x|
L∏

k=1

a
yk−xk

k

L∏
k=1

E

( yk∏
r=1

(νr
k)gr

k

)
. (A.12)

We will now simplify (A.12) further in order to approximate �N(x, y) in three major cases.
Case I: no coalescence events. Assume that |x| = |y|. It follows from Lemma A.1 below

that
L∏

k=1

E

( yk∏
r=1

(νr
k)gr

k

)
∼

L∏
k=1

yk∏
r=1

E((νr
k)gr

k
) ∼

L∏
k=1

L∏
i=1

(mki)
nki , (A.13)

where

nki = |{s; us = i, vs = k}| =
yk∑

r=1

gr
ki

denotes the migration frequency between subpopulations k and i within the sample. In the last
step of (A.13) we used the fact that gr

k has 1 in a single position, say i, and 0s elsewhere, so
that E((νr

k)gr
k
) = mki .
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Combining (A.12) and (A.13) with f (x, g) = 1 and mki = aibik/ak , we obtain

P(v, g | u) ∼
L∏

k=1

a
yk−xk

k

∏
k,i

(
aibik

ak

)nki

=
∏
k,i

b
nki

ik , (A.14)

where in the last equality we usedxi = ∑
k nki andyk = ∑

i nki . Since the transition probability
in (A.14) does not involve coalescence events, we drop g in the notation and write P(v | u). In
view of (A.2), (A.8), and (A.14), we thus define

A(x, y) = lim
N→∞

∑
v

y(v)=y

P(v | u) =
∑

v
y(v)=y

L∏
s=1

busvs

when |y| = |x| = a, with yk(v) = |{s; vs = k}|. When |y| �= |x|, we set A(x, y) = 0. Note
that A is obtained by the components vs changing independently according to a Markov chain
with transition matrix B and then keeping track of the subpopulation distribution y = y(v).
Although v → y(v) is noninvertible, it still preserves the Markov property when applied to a
Markov chain with transition matrix B⊗L. Therefore,

Aτ (x, y) =
∑

v
y(v)=y

L∏
s=1

Bτ
us ,vs

.

Since γ is the equilibrium distribution of B,

lim
τ→∞ Aτ (x, y) =

∑
v

y(v)=y

L∏
s=1

γvs = a!∏L
i=1 yi !

L∏
i=1

γ
yi

i ,

and this proves (A.3).
Case II: one coalescence event. Assume that |y| = |x| − 1 and that g corresponds to a

single coalescence event where two offspring of types i and j are merged into type k. Then

f (x, g) =
⎧⎨
⎩

(
xi

2

)
, i = j,

xixj , i �= j,

and Lemma A.1 below implies that

L∏
κ=1

E

( yκ∏
r=1

(νr
κ )gr

κ

)
∼

L∏
κ=1

yκ∏
r=1

E((νr
κ )gr

κ
) ∼ Vkij

mkimkj

L∏
κ=1

L∏
ι=1

(mκι)
nκι . (A.16)

Combining (A.12), (A.16), and assumption (A6), we thus find that

P(v, g | u) ∼ f (x, g)σkij

N

L∏
κ=1

ayκ−xκ
κ

∏
κ,ι

(
aιbικ

aκ

)nκι

= f (x, g)σkij

N

L∏
κ=1

ayκ−ỹκ
κ

∏
κ,ι

bnκι
ικ

= f (x, g)σkij

Nak

∏
κ,ι

bnκι
ικ , (A.17)
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where in the first equality we used

xι =
∑
κ

nκι, ỹκ := |{s; vs = κ}| =
∑

ι

nκι,

and in the second equality we used ỹk = yk + 1 and ỹκ = yκ for κ �= k. In view of (A.4),
(A.8), and (A.17), we define

C(x, y) =
∑
v,g

y(v,g)=y

f (x, g)σkij

ak

∏
κ,ι

bnκι
ικ (A.18)

when 1 ≤ |y| = |x| − 1 ≤ n − 1. Note that k, i, j , and {nκι} all depend on v, g in (A.18).
Given x ∈ Sa , by summing (A.18) over all y ∈ Sa−1 we obtain

∑
y∈Sa−1

C(x, y) =
L∑

k=1

1

ak

L∑
i=1

(
xi

2

)
σkii

∑
v

∏
κ,ι

bnκι
ικ

+
L∑

k=1

1

ak

∑ ∑
1≤i<j≤L

xixjσkij

∑
v

∏
κ,ι

bnκι
ικ

=
L∑

k=1

1

ak

( L∑
i=1

(
xi

2

)
b2
ikσkii +

∑ ∑
1≤i<j≤L

xixj bikbjkσkij

)

= H(x). (A.19)

In the first equality of (A.19), when i = j , we summed over all v such that vs1 = vs2 = k are
kept fixed, with s1 and s2 an arbitrarily chosen pair of indexes (out of all

(
xi

2

)
possible) such

that us1 = us2 = i. We thus have

∑
v

∏
κ,ι

bnκι
ικ =

∑
v

L∏
s=1

busvs = b2
ik, (A.20)

where in the last step we interchanged the order of the product and sum and utilized the fact
that the row sums of B are 1. Similarly, when i �= j in (A.19), we sum over all v such that
vs1 = vs2 = k are kept fixed, with s1 and s2 an arbitrarily chosen pair of indexes (out of all xixj

possible) such that us1 = i and us2 = j . The sum analogous to (A.20) is bikbjk instead of b2
ik .

Summarizing, we see from (A.19) that (A.6) is verified.
Case III: more than one coalescence event. We need to verify (A.7). In view of (A.2), since

A is block diagonal, it suffices to prove that

�N(x, y) = o(N−1)

when |x| − |y| ≥ 2. However, this is an immediate consequence of (A.8), (A.12), and
Lemma A.1, since the number of terms of size o(N−1) on the right-hand side of (A.8) is
uniformly bounded, independently of N .

Lemma A.1. Consider y individuals l = 1, . . . , y from subpopulation k, with coalescence
pattern g = (g1, . . . ,gy), where gl = (gl1, . . . , glL) and gli is the number of offspring of l



1044 O. HÖSSJER

within the sample from subpopulation i. Let

|g| =
y∑

l=1

|gl | =
y∑

l=1

L∑
i=1

gli ,

so that |g| − y is the number of lines that coalesce. Then, as N → ∞,

E

( y∏
l=1

(νl
k)gl

) ⎧⎪⎨
⎪⎩

∼
y∏

l=1

E((νl
k)gl

) if |g| = y, y + 1,

= o(N |g|−y−1) if |g| ≥ y + 2.

(A.21)

Proof. We will sketch a proof by establishing (A.21) recursively with respect to g. See
also Möhle (1998c), Sagitov (1999), and Jagers and Sagitov (2004) for similar calculations.
Loosely speaking, we proceed by induction with respect to (y, g).

Case 1. When y = 1, the result is trivially true when |g| = 1, it follows from assumption
(A4) for |g| = 2, from assumption (A5) and Hölder’s inequality for |g| = 3, and by repeated
use of νl

ki ≤ Nkmki = O(N) (see (2.2)) and Hölder’s inequality for |g| > 3.
Case 2. Assume that |g| = y > 1, i.e. no coalescence events, with glil = 1 for l = 1, . . . , y,

so that il is the type of the single descendant of l. Then

E

( y∏
l=1

νl
kil

)
= 1

(Nk)y
E

( ∑
l1,...,ly different

y∏
r=1

ν
lr
kir

)

= 1

(Nk)y
E

( Nk∑
l1,...,ly=1

y∏
r=1

ν
lr
kir

)
+ o(1),

∼ 1

(Nk)y
E

( y∏
r=1

Nk∑
lr=1

ν
lr
kir

)
+ o(1),

∼ 1

(Nk)y

y∏
r=1

Nkir

∼
y∏

r=1

mkir ,

where in the first step we utilized the exchangeability condition (A1), in the second step we
obtained a remainder term o(1) by tacitly assuming that (A.21) has already been established
for all configurations g with less than y parents, and in the fourth step we used (2.2) and
Nki = Nkmki .

Case 3. Assume that y ≥ 2, |g1| = 2, and |g2| = · · · = |gL| = 1. If g1i1 = 2 and glil = 1
for l = 2, . . . , y, we find that

E

(
(ν1

ki1
)2

y∏
l=2

νl
kil

)
= 1

(Nk − 1)y−1
E

( ∑
l2,...,ly different>1

(ν1
ki1

)2

y∏
r=2

ν
lr
kir

)

= 1

(Nk − 1)y−1
E

( Nk∑
l2,...,ly=1

(ν1
ki1

)2

y∏
r=2

ν
lr
kir

)
+ o(1),
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∼ 1

(Nk − 1)y−1
E

(
(ν1

ki1
)2

y∏
r=2

Nk∑
lr=1

ν
lr
kir

)

∼ 1

(Nk − 1)y−1
Vki1i1

y∏
r=2

Nkir

∼ Vki1i1

y∏
r=2

mkir ,

where again in the second step we assumed that (A.21) has already been proved for all g with
less than y terms. The case when g1i1 = g1j1 = 1 for some i1 �= j1 and glil = 1 for l = 2, . . . , y

is proved analogously.
Case 4. Assume that y ≥ 2, |g1| = 3, and |g2| = · · · = |gL| = 1. The proof of (A.21) is

similar to that of case 3.
Case 5. Suppose that y = 2, with |g1| = |g2| = 2 and g1i1 = g1i2 = g2j1 = g2j2 = 1 for

some i1 �= i2 and j1 �= j2. We use the exchangeability condition (A1) to deduce that

Nkj1Nkj2 E(ν1
ki1

ν1
ki2

) = E

( Nk∑
l1=1

Nk∑
l2=1

ν1
ki1

ν1
ki2

ν
l1
kj1

ν
l2
kj2

)

= (Nk − 1) E(ν1
ki1

ν1
ki2

ν2
kj1

ν2
kj2

) + E(ν1
ki1

ν1
ki2

ν1
kj1

ν1
kj2

)

+ (Nk − 1)(Nk − 2) E(ν1
ki1

ν1
ki2

ν2
kj1

ν3
kj2

)

+ (Nk − 1) E(ν1
ki1

ν1
ki2

ν1
kj1

ν2
kj2

) + (Nk − 1) E(ν1
ki1

ν1
ki2

ν2
kj1

ν1
kj2

),

which is equivalent to

E(ν1
ki1

ν1
ki2

ν2
kj1

ν2
kj2

) = (Nk − 1)−1Nkj1Nkj2 E(ν1
ki1

ν1
ki2

) − (Nk − 1)−1 E(ν1
ki1

ν1
ki2

ν1
kj1

ν1
kj2

)

− (Nk − 2) E(ν1
ki1

ν1
ki2

ν2
kj1

ν3
kj2

) − E(ν1
ki1

ν1
ki2

ν1
kj1

ν2
kj2

)

− E(ν1
ki1

ν1
ki2

ν2
kj1

ν1
kj2

)

= Nkmkj1mkj2Vki1i2 − Nkmkj1mkj2Vki1i2 + o(N)

= o(N),

which proves (A.21), since |g|− y = 4 − 2 = 2. In the last step we utilized the fact that (A.21)
has already been proved for the first two terms (case 1), the third term (case 3), and the last
two terms (case 4), on the right-hand side. The case when i1 = i2 and/or j1 = j2 is proved
analogously.

Case 6. Suppose that y = 2, with |g1| = 3 and |g2| = 2. For instance, if g1i1 = 2 and
g1i2 = g2j1 = g2j2 = 1, we derive

E((ν1
ki1

)2ν
1
ki2

ν2
kj1

ν2
kj2

) ≤ Nki1 E(ν1
ki1

ν1
ki2

ν2
kj1

ν2
kj2

) = o(N2),

from case 5 and the fact that ν1
ki − 1 ≤ ν1

ki ≤ Nki , which is a consequence of (2.2). This proves
(A.21) since |g| − y = 5 − 2 = 3. The proof for other choices of g1 and g2 with |g1| = 3 and
|g2| = 2 is analogous.

Proceeding in a similar way, we can establish (A.21) recursively for all possible g.
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