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Abstract In this paper, we develop a method for computing the variance effective
size NeV , the fixation index FST and the coefficient of gene differentiation GST of a
structured population under equilibrium conditions. The subpopulation sizes are con-
stant in time, with migration and reproduction schemes that can be chosen with great
flexibility. Our quasi equilibrium approach is conditional on non-fixation of alleles.
This is of relevance when migration rates are of a larger order of magnitude than
the mutation rates, so that new mutations can be ignored before equilibrium balance
between genetic drift and migration is obtained. The vector valued time series of sub-
population allele frequencies is divided into two parts; one corresponding to genetic
drift of the whole population and one corresponding to differences in allele frequen-
cies among subpopulations. We give conditions under which the first two moments
of the latter, after a simple standardization, are well approximated by quantities that
can be explicitly calculated. This enables us to compute approximations of the quasi
equilibrium values of NeV , FST and GST . Our findings are illustrated for several repro-
duction and migration scenarios, including the island model, stepping stone models
and a model where one subpopulation acts as a demographic reservoir. We also make
detailed comparisons with a backward approach based on coalescence probabilities.
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1 Introduction

Most populations exhibit some degree of spatial heterogeneity. This structure is often
quite complicated and influences not only the spatial distribution, but also the time
dynamics of allele frequencies. It is therefore helpful to extract a few summary statistics
that broadly characterize the main properties of the population. This includes the
effective population size (Wright 1931, 1938), defined as the size of an ideal population
exhibiting the same rate of genetic drift as the focal population, and the fixation index
(Wright 1951) which quantifies the degree of heterogeneity among subpopulations.

Many closely related versions of the effective population size and fixation index
exist, see for instance Orive (1993), Caballero (1994), Wang and Caballero (1999),
Waples (2002), Ewens (2004), Ryman and Leimar (2008), Hössjer et al. (2013). We
will focus on the variance effective population size and a fixation index defined in
terms of variance of subpopulation allele frequencies.

Ewens (1982) noted that the variance effective size is analytically intractable for
structured populations. It is still of practical importance, since one of the most common
procedures for assessing effective size from real data, the temporal method, estimates
the variance effective size (Nei and Tajima 1981; Waples 1989; Jorde and Ryman
2007; Ryman et al. 2013). Procedures for estimating the fixation index from real data
have been developed by several authors. One of the most widely used estimators is due
to Weir and Cockerham (1984), see also Leviyang and Hamilton (2011) and references
therein.

Our main interest is short time scales, so that the mutation rate is assumed small in
comparison to the genetic drift and migration rate. We therefore disregard occurrence
of new mutations and focus instead on equilibrium between genetic drift and migration.
Half the inverse effective size then equals the rate of loss of heterozygosity, which is
of great importance for quantifying population inbreeding and risk of extinction in
conservation biology (Jamieson and Allendorf 2012). See also Palstra and Ruzzante
(2008) and Hare et al. (2011) for recent reviews for wildlife populations.

Equilibrium between migration and genetic drift typically exists for infinite popu-
lations. For instance, values of the fixation index for the infinite island model can be
derived from results of Sved and Latter (1977). For finite populations, no equilibrium
value exists in absence of new mutations, since some allele will eventually become
fixed at any locus. It is then of interest to study the quasi equilibrium behaviour of the
system, conditional on non-fixation, see for instance Cattiaux et al. (2009) and Collet
and Martinez (2013) for general results on quasi stationarity. Hössjer et al. (2013)
formalized ideas of Nei et al. (1977) and derived quasi equilibrium values of the fix-
ation index for the finite island model, conditionally on no fixation. We now extend
this approach to joint computation of the fixation index and effective population size
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Quasi equilibrium for subdivided populations 1059

at quasi equilibrium for a large class of finite population models. This class includes
general migration and reproduction schemes, subject only to a constraint of constant
subpopulation sizes over time.

In more detail we introduce in Sect. 2 the dynamics of how genes are transmitted
from one generation to the next. In Sect. 3 we define the effective population size, the
fixation index and their quasi equilibrium limits for a single biallelic locus and arbitrary
schemes of weighting subpopulations. To this end, we introduce the vector valued,
time inhomogeneous process of all subpopulations’ allele frequencies. In Sect. 4 we
demonstrate how it can be decomposed into two parts, one corresponding to genetic
drift of the whole population and the other to fluctuations of allele frequencies among
subpopulations. After a simple standardization, the latter becomes a (quasi) stationary
process. It is proved in Sect. 5 that the first two conditional moments of this process
and its innovations converge for large populations as long as no allele gets fixed.

In general, it is difficult to obtain closed form expressions, even for approximations
of the quasi equilibrium effective population size and fixation index, although the
island model is an exception. Instead, we present in Sect. 6 a general algorithm for
computing approximations of these two quantities. In particular, we show that they
simplify considerably when alleles are weighted proportionally to the reproductive
values of their subpopulations. This weighting scheme was proposed by Felsenstein
(1971) in the context of age-structured models and investigated by means of simula-
tions in Waples and Yokota (2007). To illustrate the generality of our approach, several
reproduction and migration examples are presented in Sects. 7 and 8. In Sect. 9 we con-
sider multiallelic and multilocus extensions of the variance effective population size
and Nei’s (1973) coefficient of gene differentiation (GST ), and give upper bounds for
how well their quasi equilibrium limits are approximated by the formulas of Sect. 6.
Numerical results are presented in Sect. 10. In Sect. 11 we compare our forward
approach with the backward approach of Slatkin (1991), where the (nucleotide) effec-
tive size and fixation index are computed from expected coalescence times of pairs of
genes under a small mutation rate assumption. In this process, we generalize Slatkin’s
results to our framework of general migration patterns and subpopulation weights,
and give conditions under which the two approaches are asymptotically equivalent
for large populations. Finally, we discuss possible extensions in Sect. 12, and present
proofs and longer mathematical calculations in Appendices A–F.

2 Migration model

Consider a population that evolves in discrete non-overlapping generations t =
0, 1, . . .. It is assumed to have a size of N diploid individuals that is constant over
time and can be divided into s ≥ 2 subpopulations of sizes Nu1, . . . , Nus , where∑s

i=1 ui = 1. We will mainly think of these subpopulations as distinct geographical
sites, although other interpretations are possible (see Sect. 12). To begin with, we con-
sider a single polymorphic locus (referred to as a gene) with two alleles. Assuming
that each individual carries two copies of the gene, subpopulation i will consist of
2Nui genes at any generation t . Table 1 contains a list of the most important symbols
used in the paper.
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1060 O. Hössjer, N. Ryman

Table 1 Notation for selected quantities in the paper

Symbols Definitions

s Number of subpopulations

N Total census size

u = (ui ) Vector with relative sizes of all subpopulations i

Nui Local census size of subpopulation i

νl
t,ki = νl

ki Number of offspring in subpopulation i of l:th gene of subpopulation k and
generation t

M = (mki ) Matrix with migration rates between all pairs of subpopulations k and i

m′ Overall migration rate = proportion of offspring genes residing in
subpopulations different from that of parental gene

m For the island model, proportion of migrants from the whole population
(m = sm′/(s − 1))

ARNP Average relative neighbourhood proportion

v = (vk ) Vector of long term reproductivities of genes in all subpopulations k

r = (rk ) Vector of average nr of offspring of genes in all subpopulations k

B = (bik ) Backward matrix with probabilities that subpopulation i genes’ parents
originate from subpopulation k

γ = (γi ) Vector of equilibrium probabilities of distant ancestors to come from
various subpopulation i

F = ( fki ) Forward matrix with probabilities that offspring of subpopulation k genes
end up in subpopulation i

w = (wi ) Vector of weights of all subpopulations i (default canonical choice is γ )

WT = vec((wi w j ))
T Row vector of probabilities that a pair of genes of the total pop. belongs to

subpopulation i and j
W S = vec((1{i= j}wi ))

T Row vector of prob that a pair of genes within the same subpopulation
belongs to subpopulation i, j

Pt = (Pti ) Vector of frequencies of Allele 1 (biallelic case) in generation t in all
subpopulations i

Pw
t Overall frequency of Allele 1 in population when subpopulations are

weighted as w
εt = (εti ) Vector of random drift of Allele 1 frequency in all subpopulation i between

generations t − 1 and t
�(Pt ) = (�(Pt )i j ) Covariance matrix of genetic drift between generations t and t + 1
U = (Ui j,kl ) Coefficients in quadratic expansion of genetic drift covariance matrix

�(Pt )

�t = (�ti j ) Standardized genetic drift covariance matrix between generations t and
t + 1

� = (�i j ) Quasi equilibrium approximation of �t

V t = (Vti j ) Standardized spatial covariance matrix for allele frequency fluctuations in
generation t

V = (Vi j ) Quasi equilibrium approximation of V t

Nw
eV,t Variance effective size of total (global) population in generation t using

weight vector w
N

eq,w
eV Quasi equilibrium limit of Nw

eV,t

N
appr,w
eV Approximation of N

eq,w
eV

Nei Local effective size of subpopulation i

Ne Local effective size of each subpopulations when they are all equal
(Nei = Ne)
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Quasi equilibrium for subdivided populations 1061

Table 1 continued

Symbols Definitions

αi Dirichlet parameter of subpopulation i reflecting amount of variation in migrant
proportions

α Dirichlet parameter of each subpopulation when they are all equal (αi = α)

Ht = (Hti j ) Matrix with gene diversities of all pairs of subpopulations in generation t

Hw
T t Gene diversity of total population in generation t when subpopulations are

weighted as w
Hw

St Gene diversity within subpopulations in generation t when subpop. are weighted as w

h̄i j Predicted gene diversity of subpopulations i and j , for two distinct genes

h̄w
T Predicted gene diversity of the total population, for two distinct genes, using weights w

h̄w
S Predicted gene diversity of subpopulations, for two distinct genes, using weights w

Fw
ST,t Fixation index of population in generation t using weight vector w

F
eq,w
ST Quasi equilibrium limit of Fw

ST,t

F
appr,w
ST Approximation of F

eq,w
ST

f̄ w
ST Predicted fixation index for two distinct genes, using weights w

Gw
ST,t Coefficient of gene differentiation of population in generation t using weight vector w

G
eq,w
ST Quasi equilibrium limit of Gw

ST,t

G
appr,w
ST Approximation of G

eq,w
ST

n Number of loci (multilocus case)

x Order number of a specific locus

n(x) Number of alleles at locus x

qt = (qti j ) Matrix of probabilities that genes from subpop. i and j have not coalesced
in t generations

T = (Ti j ) Matrix of coalescence times for two distinct genes from all pairs of subpopulations i, j

We number the genes of subpopulation k in generation t as l = 1, . . . , 2Nuk .
In order to describe how these genes are transmitted to the next generation t + 1, we
introduce νl

t,ki = νl
ki as the number of copies a particular gene l of subpopulation k and

generation t passes on to subpopulation i in the next generation. The total number of
genes transmitted from k to i is then

∑2Nuk
l=1 νl

ki . Since we assume a constant number
of genes of subpopulation i at level 2Nui in generation t + 1, when summing the
contributions from all source populations k of the previous generation, we must have

s∑

k=1

2Nuk∑

l=1

νl
ki = 2Nui , i = 1, . . . , s. (1)

The migration rate mki between subpopulations k and i is defined as the average
number of copies each gene in subpopulation k passes on to i . We write this as

1

2Nuk

2Nuk∑

l=1

νl
ki = mki (1 + o(1)), (2)
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1062 O. Hössjer, N. Ryman

where o(1) is a remainder term that tends to zero as the population size grows.
If {νl

ki }2Nuk
l=1 are exchangeable random variables (Cannings 1974; Möhle 2010), the

expected values E(νl
ki ) are all the same for l = 1, . . . , 2Nui . It then follows from (2)

that

E(νl
ki ) = mki (1 + o(1)).

Hence, mki is essentially the expected number of copies that each gene of subpopula-
tion k passes on to i .

Combining (1) and (2), we find that the requirement of constant subpopulation sizes
amounts to assuming

s∑

k=1

ukmki = ui (3)

for all i = 1, . . . , s. This implies that u = (u1, . . . , us) is a left eigenvector of the
migration matrix M = (mki ) with eigenvalue 1. The corresponding right eigenvector
v = (v1, . . . , vs) with eigenvalue 1 contains the long term reproductive values. If these
are normalized so that

s∑

i=1

uivi = 1, (4)

vi can be interpreted as the average number of descendants of the genes of subpopu-
lation i at a fixed but large number of generations later, see for instance Fisher (1958)
and Caswell (2001).

Reversing time, the probability that the parent of a gene of subpopulation i originates
from subpopulation k is of order

bik = ukmki

ui
. (5)

Because of (3), it is easy to see that B = (bik) is the transition matrix of a Markov
chain with row sums 1. This Markov chain is assumed to be irreducible and aperiodic,
with an asymptotic distribution γ = (γ1, . . . , γs) that is the unique probability vector
satisfying γ = γ B. In general γ differs from u, although

γ = u (6)

holds for conservative migration models, when the number of immigrants to each
subpopulation equals the number of emigrants from it (Nagylaki 1980). It is easy to
see that

γi = uivi , i = 1, . . . , s, (7)
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Quasi equilibrium for subdivided populations 1063

since

s∑

i=1

(uivi )bik =
s∑

i=1

uivi
ukmki

ui
= uk

s∑

i=1

mkivi = ukvk

for k = 1, . . . , s, using (5) in the first equality and that v is a right eigenvector of M
with eigenvalue 1 in the fourth equality.

The global migration rate

m′ = 1 −
s∑

i=1

ui mii = 1 −
s∑

i=1

ui bii (8)

is defined as the fraction of offspring genes of the whole population in each generation
that do not remain in the same subpopulation as their parents, but rather migrate to
other subpopulations.

3 Effective population size, fixation index and quasi equilibrium

To start with, we assume that the gene is biallelic, with alleles 0 and 1, and let Pti

denote the fraction of one of the two alleles (say 1) in subpopulation i at generation t .
We let

Pw
t =

s∑

i=1

wi Pti

refer to the total frequency of allele 1 in the whole population in generation t when sub-
populations are assigned non-negative weights as determined by w = (w1, . . . , ws),
with

∑s
i=1 wi = 1. Apart from these restrictions, w is arbitrary. When w = u, we get

the usual definition of allele frequency, with subpopulations weighted proportionally
to their sizes and hence all genes in the population are given equal weights. When
w = γ , genes are weighted proportionally to their long term reproductive values. We
will refer to these weights as canonical and write

Pt = Pγ
t =

s∑

i=1

γi Pti = γ Pt , (9)

with the convention of dropping superscript w, for any quantity, whenever w = γ .
In order to describe the time dynamics of the allele frequencies, we notice that Pt+1,i

would equal
∑s

k=1 bik Ptk if individuals of subpopulation i received genes in exact
proportions bi1, . . . , bis from the subpopulations of the parental generation, and in
addition the allele frequencies of genetic material transmitted from subpopulation k to
i was identical to Ptk , the allele frequency of the parental subpopulation k. However, the
subpopulation proportions of parental origin as well as transmitted allele frequencies
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1064 O. Hössjer, N. Ryman

from the various subpopulations will vary randomly, and hence Pt+1,i will exhibit some
random fluctuation εt+1,i around

∑s
k=1 bik Ptk . This can be expressed as a recursion

Pt+1 = BPt + εt+1 (10)

for the vector Pt = (Pt1, . . . , Pts)
T of subpopulation allele frequencies, where T is the

Hermitian (conjugate transpose) operator of a matrix and εt+1 = (εt+1,1, . . . , εt+1,s)
T

is a random error vector, assumed to satisfy

E(εt+1|Pt ) = 0,

corresponding to a selectively neutral allele, with covariance matrix

Cov(εt+1|Pt ) = �(Pt ), (11)

the form of which will depend on the reproduction model. Hence Pt is a multivari-
ate autoregressive time series (Brockwell and Davis 1987) with some degree of het-
eroscedasticity, since �(Pt ) depends on Pt .

The two quantities of main interest are the variance effective size of the total (global)
population

Nw
eV,t = Pw

t (1 − Pw
t )

2E
(
(Pw

t+1 − Pw
t )2|Pw

t
)

w=γ= NeV,t , (12)

and a version

Fw
ST,t =

∑s
i=1 wi (Pti − Pw

t )2

Pw
t (1 − Pw

t )

w=γ= FST,t (13)

of the fixation index. The numerator of (13) is a variance that describes variation in
allele frequencies among subpopulations, when these are assigned weights wi , and
the denominator normalizes this variance to a number between 0 (identical allele
frequencies) and 1 (complete isolation). When subpopulations are weighted equally
(wi = 1/s), this gives the usual definition of the fixation index, see for instance
Wright (1951), equation 3.12.3 of Crow and Kimura (1970) and equation (12.13) of
Nei and Kumar (2000). More general weighting schemes are treated, for instance, by
Nei (1977).

The denominator of (12) is the variance of the change in the allele frequency of
the total populations from one generation (t) to the next (t + 1), when subpopulations
are assigned weights wi . For equal weights (wi = 1/s) this gives the usual definition
of the variance effective size, see for instance equation 7.6.3.25 of Crow and Kimura
(1970) or the introductory section of Waples (1989).

Ewens (1982) noted that the variance effective size is difficult to analyze for struc-
tured populations. The reason is that Nw

eV,t , and also Fw
ST,t , are functions of Pt , and

therefore exhibit some random variation. We will approach this difficulty by studying
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Table 2 Mathematical notation
Object Operation Definition

x = (xi )
T |x|1

∑
i |xi |

|x|∞ maxi |xi |
x0 x − γ x1 (when x is s × 1)

C = (Ci j ) |C|1
∑

i, j |Ci j |
|C|∞ maxi, j |Ci j |
‖C‖ maxi

∑
j |Ci j | = supx �=0 |Cx|∞/|x|∞

C0 C − 1γ (when C is s × s)

or Kronecker product of such matrices

ε = (εi )
T E(ε) (E(εi ))

T

Cov(ε) (Cov(εi , ε j ))

x = xN o(x) o(x)/x → 0 as N → ∞
O(x) O(x)/x stays bounded as N → ∞

the long run behaviour of the expected values of these two quantities, given that none
of the two alleles is fixed in all subpopulations. We write non-fixation as

Pt /∈ A = {0 = (0, . . . , 0), 1 = (1, . . . , 1)}, (14)

where A is the set of two absorbing states. Conditionally on (14), the distributions
of Nw

eV,t and Fw
ST,t will converge to quasi equilibrium distributions, and in particular

their expected values converge to limits

Feq,w

ST = lim
t→∞ Ec(Fw

ST,t ),

N eq,w

eV = lim
t→∞ Ec(Nw

eV,t ),
(15)

where Ec(Xt ) = E (Xt |Pt /∈ A) and index c is short for conditioning on non-fixation.
We refer to Feq,w

ST and N eq,w

eV as quasi equilibrium values of Fw
ST,t and Nw

eV,t , as
indicated by superscripts eq.

Nei et al. (1977) calculated Monte Carlo approximations of Feq,w

ST for the island
model (see their Table 2), when all subpopulations are assigned equal weights wi =
1/s. They concluded that Feq,w

ST is well approximated by

E
(
Fw

ST,t

)∗ =
∑s

i=1 wi E
(
(Pti − Pw

t )2
)

E
(
Pw

t (1 − Pw
t )

) , (16)

a quantity introduced by Nei (1975). In Sect. 6 we will define approximations of Feq,w

ST
and N eq,w

eV , closely related to (16) and

E
(
Nw

eV,t

)∗ = E
(
Pw

t (1 − Pw
t )

)

2E
(
E

(
(Pw

t+1 − Pw
t )2|Pw

t
)) (17)
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1066 O. Hössjer, N. Ryman

respectively. Formally, we say that Fappr,w
ST and N appr,w

eV approximate the quasi equi-
librium values in (15) with errors

∣
∣Feq,w

ST − Fappr,w
ST

∣
∣ = lim

t→∞
∣
∣Ec(Fw

ST,t ) − Fappr,w
ST

∣
∣ ,

∣
∣N eq,w

eV − N appr,w
eV

∣
∣ = lim

t→∞
∣
∣Ec(Nw

eV,t ) − N appr,w
eV

∣
∣ .

(18)

Equation (15) can be understood more generally in terms of the quasi equilibrium
distribution of Pt conditionally on non-fixation. Suppose for a moment that Pt can be
modeled (more detailed than in (10)) as a Markov chain with state space

{0, . . . , 2Nu1}(2Nu1)
−1 × · · · × {0, . . . , 2Nus}(2Nus)

−1.

This Markov chain has no asymptotic distribution, but rather two absorbing states A.
The quasi equilibrium distribution of Pt |Pt /∈ A is related to the left eigenvector of
the transition matrix corresponding to the largest non-unit eigenvalue, see for instance
Chapter 13 of Karlin (1966) or Chapter 1 of Ewens (2004) when s = 1. For a large
population, this can also be deduced from a series expansion of a diffusion approx-
imation of the unconditional distribution of Pt . The quasi equilibrium distribution is
proportional to the eigenfunction corresponding to the largest negative eigenvalue of
a Kolmogorov forward partial differential equation, see for instance Kimura (1955,
1964), Chapter 8 in Crow and Kimura (1970) or Section 5.2.2 in Nei (1975) when
s = 1.

Ethier and Nagylaki (1980) have studied diffusion approximations with two time
scales. Nagylaki (1980) applied this theory to structured populations (s > 1) with
strong migration, so that migration rates in M (or equivalently in B) are kept fixed while
the population size N → ∞. Then asymptotically, Pt behaves as a one-dimensional
diffusion with allele frequency Pt = Pγ

t in all subpopulations and hence the quasi
equilibrium behaviour of Pt is determined by that of Pt .

Let Ht = f (Pt ) be some genetic variable of interest. Then, conditionally on non-
fixation, we can generalize (15) and define the quasi equilibrium limit

H eq = lim
t→∞ Ec(Ht ). (19)

A possible choice is the gene diversity of the total (T ) population

Ht = Hw
T t = 2Pw

t (1 − Pw
t ), (20)

i.e. the probability that two genes have different alleles when drawn from the whole
population with replacement, given that the probabilities are w1, . . . , ws of choosing
the genes from subpopulations 1, . . . , s. When wi = ui , this would equal the het-
erozygosity of the total population under an idealized assumption of Hardy–Weinberg
equilibrium. The probability 1− Hw

T t that the two genes have the same allele is referred
to as the gene identity in the total population, see for instance Chapter 6 of Nei (1975)
for more details.
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Quasi equilibrium for subdivided populations 1067

Slatkin (1981, 1985) and Barton and Slatkin (1986) have studied the quasi equilib-
rium of two other (multiallelic) functions, the number of subpopulations where a (rare)
allele is present, and the average frequency of this allele among the subpopulations
where it is present.

For most choices of f , the convergence in (19) is extremely slow, unless the popu-
lation is very small, since the size of the largest non-unit eigenvalue of the transition
matrix for the Markov chain Pt , is 1 − O(N−1). However, Crow and Aoki (1984)
and Crow (2004) have noted that Fw

ST,t is an exceptionally stable function of Pt , and
the same is true for Nw

eV,t . The implication is that for migration rates m′ such that
Nm′ 
 1, both Ec(Fw

ST,t ) and Ec(Nw
eV,t ) will convergence more rapidly in (15) than

does Pt , and attain values close to their asymptotic limits. Indeed, we will show that
the rate of convergence is determined by the second largest eigenvalue of the backward
migration matrix B, which is not close to unity unless m′ is small. It is this fact that
motivates us to find explicit approximations Fappr,w

ST and N appr,w
eV of these limits, as

well as upper bounds for the errors in (18). Due to the rapid convergence of Ec(Fw
ST,t )

and Ec(Nw
eV,t ), the quasi equilibrium distribution of Pt will not enter into our formulas

for Fappr,w
ST and N appr,w

eV .

4 Orthogonal decomposition of allele frequency process

The properties of the vector valued time series (10) of allele frequencies are crucial
for our subsequent development. Since B has largest eigenvalue 1, this time series is
non-stationary, and therefore no equilibrium solution exists. However, as in Nagylaki
(1980), we decompose Pt into a sum

Pt = Pt 1 + P0
t (21)

of two parts Pt 1 and P0
t = Pt − Pt 1 = (P0

t1, . . . , P0
ts)

T that are orthogonal in a
sense specified in Appendix A. Analogously we decompose the error term of (10) as
εt = εt 1+ε0

t , with εt = ∑s
i=1 γiεti = γ εt and ε0

t = εt −εt 1. As shown in Appendix
A, the recursion formula (10) can be reformulated as

Pt+1 = Pt + εt+1,

P0
t+1 = B0P0

t + ε0
t+1, (22)

with B0 = (b0
ik) obtained by changing the largest eigenvalue λ1 = 1 of B from 1 to 0.

The first part of (22) describes the dynamics of the genetic drift of the allele fre-
quency of the whole population when using canonical weights (9). It has no systematic
drift, since

E(Pt+1|Pt ) = E(γ Pt+1|Pt ) = E (γ E(Pt+1|Pt )|Pt ) = E (γ BPt |Pt )

= E (γ Pt |Pt ) = E(Pt |Pt ) = Pt ,

and therefore {Pt } will behave as a non-stationary random walk. In contrast, {Pw
t } will

typically have some systematic drift when the weight vector w differs from γ .
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1068 O. Hössjer, N. Ryman

The second term of (21) is also non-stationary, and corresponds to local subpopu-
lation allele frequency fluctuations around Pt . Its dynamics is governed by the largest
eigenvalue of B0, which equals the second largest eigenvalue λ2 of B. Since B corre-
sponds to an irreducible and aperiodic Markov chain, |λ2| < 1, so that P0

t does not drift
away from zero. We will find below that a simple normalization by (Pt (1 − Pt ))

−1/2

makes P0
t close to a quasi stationary process, although Pt itself has not yet reached

quasi equilibrium. Hence it is crucial to distinguish between quasi equilibrium of Pt ,
with slow convergence, and quasi equilibrium of P0

t /
√

Pt (1 − Pt ), with a more rapid
convergence. It is the latter phenomenon that makes the convergence in (15) quite fast
and enables us to find a closed form procedure for computing N appr,w

eV and Fappr,w
ST

that doesn’t require the full quasi equilibrium distribution of Pt .
Interestingly, the decomposition (21) has some resemblance with cointegration of

time series in econometrics (Granger 1981; Engle and Granger 1987). In our case
there are s non-stationary time series Pti , one for each subpopulation. If they are
combined by means of a linear combination, the resulting cointegrated time series is
close to stationary provided the vector of weights is orthogonal to 1 and that the above
mentioned normalization (Pt (1 − Pt ))

−1/2 is applied.

5 Standardized genetic drift and spatial covariance matrices

It will be convenient to introduce the quadratic matrix Ht = (Hti j )
s
i, j=1 of gene

diversities

Hti j = Pti (1 − Pt j ) + Pt j (1 − Pti ) (23)

of all pairs of subpopulations i and j at time t , defined as the probability that two genes
have different alleles when chosen randomly with replacement from subpopulations
i and j . We notice for instance that the gene diversity

Hw
T t =

∑

i, j

wiw j Hti j = WT vec(Ht ) (24)

of the total population in (20) is a weighted average of all Hti j . In the last step of (24),
we introduced vec, the vectorization operator that converts a quadratic matrix of order
s into a column vector of length s2 by stacking the columns on top of each other, and
WT = vec((wiw j )i, j )

T , a row vector of length s2 containing probabilities of all pairs
of subpopulations when two genes are drawn from the Total population.

The following result reveals that the covariance matrix (21) is a quadratic func-
tion of the allele frequencies if and only if the gene diversities form a multivariate
autoregressive process:

Proposition 1 Suppose there exist constants Ui j,kl such that the entries of the covari-
ance matrix �(Pt ) in (11) satisfy

�(Pt )i j = 1

2

∑

1≤k,l≤s

Ui j,kl Htkl , (25)
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where Ui j,kl = Ui j,lk can be assumed, without loss of generality. Then (25) is equiva-
lent to the s2 gene diversities {Hti j ; 1 ≤ i, j ≤ s} forming a multivariate autoregres-
sive process, so that

E(Ht+1,i j |Pt ) =
∑

1≤k,l≤s

Ai j,kl Htkl (26)

for other constants Ai j,kl , related to Ui j,kl through

Ai j,kl = bikb jl − Ui j,kl . (27)

Moreover, (25) holds if and only if P → �(P) is a quadratic and symmetric function
of the allele frequency vector P, which vanishes at the boundary of fixation, i.e.

�(0) = 0,

�(P) = �(1 − P), for all P. (28)

In Sect. 11, it will be useful to rewrite (26) in matrix form as

E (vec(Ht+1)|Pt ) = Avec(Ht ), (29)

where A = (Ai j,kl; 1 ≤ i, j, k, l ≤ s) is a quadratic matrix of order s2, with i j short
hand notation for the row number ( j − 1)s + i , which equals the column number that
the vectorization operator assigns to the i, j :th element of a quadratic matrix of order
s. Similarly, the column number (l − 1)s + k of A is abbreviated as kl.

In the sequel, we will assume that (25) holds, and it is shown in Table 3 that all
reproduction scenarios of Sect. 7 satisfy this equation. Decomposition (21) can be
used to rewrite (25) in a more compact form

vec(�(Pt )) = U1Pt (1 − Pt ) − Uvec(P0
t (P

0
t )

T ) + (1 − 2Pt )Uvec(P0
t 1T ). (30)

where 1 and 1 are column vectors of lengths s2 and s. We will see below that an impli-
cation of (30) is that εt+1/

√
Pt (1 − Pt ) and P0

t /
√

Pt (1 − Pt ) will converge jointly

Table 3 Values of covariance
coefficients Ui j,kl in (30) for
Reproduction scenarios 1–3

Scenario Ui j,kl

1 1{k=l}
(

1{i= j}mki uk

2Nu2
i

+ u2
k mki mk j

ui u j

(
1

2Nek
− 1

2Nuk

))

2 1{k=l}
Cov(νl

ki ,ν
l
k j )uk

2Nui u j

3 1{k=l}
(

1{i= j}
(

b2
ik

2Nui
− bik (1−bik )

αi +1

)

+ bikb jk

(
1

2Nek
− 1

2Nuk

))

+ 1{k �=l}1{i= j}bikbil

(
1

2Nui
+ 1

αi +1

)
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to a quasi equilibrium distribution. The two most important quantities of this quasi
equilibrium distribution are the standardized genetic drift covariance matrix

�t = (�ti j ) = Ec(εt+1ε
T
t+1)|Pt )

Pt (1 − Pt )
(31)

and the standardized spatial covariance matrix

V t = (Vti j ) = Ec(P0
t (P

0
t )

T |Pt )

Pt (1 − Pt )
(32)

at time t . The word spatial is used since the diagonal entries Vtii of V t quantify how
much the allele frequencies vary in space, i.e. among subpopulations. Moreover, Vti j

is closely related to a conditional kinship coefficient between subpopulations i and j ,
see Hardy and Vekemans (1999) and Hössjer (2013).

For any index pair i and j , Vti j and �ti j are functions of Pt , and hence stochastic
processes whose quasi equilibrium behaviour is of fundamental importance in order to
understand the quasi equilibrium behaviour of Nw

eV,t and Fw
ST,t . We will approximate

Vti j and �ti j by Vi j and �i j for all pairs of subpopulations i, j . The corresponding
matrices V = (Vi j ) and � = (�i j ) are defined very generally, as a solution of the
linear system of equations

vec(�) = U1 − Uvec(V),

vec(V) = �vec(�) + G0vec(V),
(33)

with s(s + 1) unknown parameters in vec(�) and vec(V). The matrix � = (	i j,kl)

has elements

	i j,kl = 1{(k,l)=(i, j)} − γk1{ j=l} − γl1{i=k} + γkγl , (34)

and �vec(�) projects the covariance matrix �, so that global changes along 1, which
is common to all subpopulations, is removed, whereas variation among subpopulations
is retained. The other matrix G0 = B0 ⊗ B0 = (G0

i j,kl) is the Kronecker product of

B0 with itself, having elements

G0
i j,kl = b0

ikb0
jl . (35)

A crucial point is that (33) can be solved explicitly once all migration and reproduction
parameters of the model have been defined, since U, � and G0 are all functions of
them. In Sect. 6 it is explained in detail how (33) is used for computing N appr,w

eV and
Fappr,w

ST , and Appendix C motivates further how (33) is attained.
As discussed in Sects. 3 and 4, when migration is faster than genetic drift,

εt+1/
√

Pt (1 − Pt ) and P0
t /

√
Pt (1 − Pt ) will converge fast to a quasi equilibrium

distribution, whereas the convergence of Pt is slow. For this reason, � and V will not
involve the quasi equilibrium distribution of Pt . Some of the most important properties
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of these two matrices are summarized in the following two propositions, whose proofs
can be found in Appendix B (see Table 2 for vector and matrix norm notation):

Proposition 2 The solution of the system of equations (33), which approximates the
standardized genetic drift and spatial covariance matrices �t and Vt , can be written
as

vec(�) = U1 − U
∞∑

τ=0

(G0 − �U)τ�U1,

vec(V) =
∞∑

τ=0

(G0 − �U)τ�U1, (36)

provided that the series converges. The maximal standardized amount of local allele
frequency fluctuations,

|Vt |∞ = max
1≤i≤s

Ec
(
(P0

ti − Pt )
2|Pt

)

Pt (1 − Pt )
(37)

can be upper bounded, according to approximation (36), as

|V|∞ ≤ Mixtime‖�‖|U1|∞, (38)

where ‖�‖ ≤ 4 and

Mixtime =
∞∑

τ=0

‖(G − �U)τ‖.

The maximal amount of standardized genetic drift among all subpopulations,

|�t |∞ = max
1≤i≤s

Ec((ε
0
t+1,i )

2|Pt )

Pt (1 − Pt )
, (39)

can be upper bounded, according to approximation (36), as

|�|∞ ≤ (1 + ‖U‖Mixtime‖�‖) |U1|∞. (40)

Mixtime can be interpreted as an upper bound for the time it takes for the sub-
populations to mix. Intuitively, a higher migration rate m′ implies a lower Mixtime
and hence a smaller amount of allele frequency fluctuation among subpopulations, as
quantified by |V|∞.

The following proposition shows that Mixtime is strongly related to the second
largest eigenvalue λ2 of B:
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Proposition 3 It holds that

Mixtime ≤
∑∞

τ=0 ‖(B0)τ‖2

1 − ‖�‖‖U‖∑∞
τ=0 ‖(B0)τ‖2

. (41)

In addition, for each 0 < ε < 1 − |λ2| there exists a constant C = C(ε) such that

‖(B0)τ‖ ≤ C(|λ2| + ε)τ (42)

for all τ = 0, 1, . . ., so that

Mixtime ≤
C2

1−(|λ2|+ε)2

1 − ‖�‖‖U‖ C2

1−(|λ2|+ε)2

. (43)

It follows from Proposition 3 that the closer λ2 is to 1, the slower is the mixing rate
of subpopulations, and the larger is Mixtime.

In turns out that the accuracy of V and � as approximations of V t and �t depends
not only on Mixtime, but also on three remainder terms, the first of which is the s × 1
column vector

μt = (μti ) = Ec(P0|Pt )

Pt (1 − Pt )
. (44)

This term will vanish whenever allele frequencies and migration patterns between
subpopulations exhibit spatial symmetry, such as for the island and circular stepping
stone models treated in Sect. 8.1. The second remainder term, the s × s matrix ξ t , is
defined in the recursive equation (117) for the standardized spatial covariance matrix
V t . The third term ζ t is caused by ascertainment bias when conditioning on non-
fixation. It is also an s × s matrix, as defined in (119). With a slight abuse of notation
compared to (19), we then write

|μ|eq = lim
t→∞ Ec(|μt |∞), (45)

|ξ |eq = lim
t→∞ Ec(|ξ t |∞) (46)

and

|ζ |eq = lim
t→∞ Ec(|ζ t |∞) (47)

respectively, for the corresponding quasi equilibrium limits of the max norms of all
three remainder terms. This enables us to formulate the following result, which is
proved in Appendix C.

Theorem 1 The asymptotic quasi equilibrium size of the approximation errors �Vt =
Vt − V and ��t = �t − � of the standardized genetic drift and spatial covariance
matrices, have upper bounds
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|�V|eq := lim
t→∞ Ec(|�Vt |∞)

≤ Mixtime
(‖�‖(|ζ |eq + ‖U‖|μ|eq) + |ξ |eq) (48)

and

|��|eq := lim
t→∞ Ec(|��t |∞) ≤ (|ζ |eq + ‖U‖|μ|eq)

+‖U‖Mixtime
(‖�‖(|ζ |eq + ‖U‖|μ|eq) + |ξ |eq) (49)

respectively.

6 Defining and computing approximations of Neq,w
eV and Feq,w

ST

We can use the matrices � and V in (33) to compute approximations

N appr,w
eV = 1 − (w − γ )V(w − γ )T

2
(
w(B − I)V(B − I)T wT + w�wT

)
w=γ= N appr

eV = 1

2γ�γ T
, (50)

and

Fappr,w
ST =

∑s
i=1 wi Vii − (w − γ )V(w − γ )T

1 − (w − γ )V(w − γ )T

w=γ= Fappr
ST =

s∑

i=1

γi Vii (51)

of the quasi equilibrium effective population size and fixation index, with I the identity
matrix of order s.

It follows from Lemma 1 in Appendix E that E(Fw
ST,t )

∗ and E(Nw
eV,t )

∗ in (16) and
(17) are closely related to (50) and (51), with V t and �t instead of V and �.

The accuracy of (50) and (51), in the sense of (18), will be established in Sect. 9 in
a multilocus setup. Here, we will rather discuss the interpretation and computation of
(50)–(51).

We notice that both N appr,w
eV and Fappr,w

ST depend on the subpopulation weights wi ,
and they simplify substantially when the canonical weights (9) are used. This agrees
well with Waples and Yokota (2007), who concluded, by means of simulations, that
the variance effective population size for age-structured models is much more stable
for these weights.

Since � and V are symmetric matrices, there is a redundancy of parameters in (33).
For this reason, we will rewrite this equation as

vech(�) = Uh1h − Uhvech(V),

vech(V) = �hvech(�) + (G0)hvech(V), (52)

where vech is the half vectorization operator, that converts the diagonal and subdiag-
onal elements of a quadratic matrix of order s to a column vector of length s(s +1)/2.
Moreover, 1h is a column vector of s(s + 1)/2 ones, and for any matrix U = (Ui j,kl)
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of order s2, Uh = (U h
i j,kl; 1 ≤ j ≤ i ≤ s, 1 ≤ l ≤ k ≤ s) is a quadratic matrix of

order s(s + 1)/2 obtained when changing from vec to vech format. Its elements are
defined as

U h
i j,kl =

{
Ui j,kk, 1 ≤ j ≤ i ≤ s, k = l,
Ui j,kl + Ui j,lk 1 ≤ j ≤ i ≤ s, l < k.

Based on (52), we get the following algorithm for computing N appr,w
eV and Fappr,w

ST :

1. Specify the total population size N , weight vector w and spatial structure, i.e.
number of subpopulations s and migration matrix M.

2. Make sure that M is a migration matrix by computing u as the left eigenvector of
M corresponding to the largest eigenvalue λ1, normalized so that

∑s
i=1 ui = 1. If

λ1 �= 1, replace M by M/λ1 (cf. (3)).
3. Compute the transition matrix B of the backward Markov chain from (5).
4. Evaluate the equilibrium distribution γ of B and compute � from (34).
5. Evaluate B0 from the Jordan decomposition of B, as shown in Appendix A (cf.

(106)) and then compute G0 from (35).
6. Select reproduction scenario, compute �(Pt ) and find U from (25).
7. Find � and V by solving (52).
8. Evaluate N appr,w

eV and Fappr,w
ST from (50) and (51).

The only input parameters of this algorithm are the population size N , the weight
vector w, the number of subpopulations s and the migration matrix M of step 1 and
then the reproduction scenario parameters of step 6.

In the following two sections, we will illustrate the usefulness of (50) and (51) for
several reproduction and migration models.

7 Reproduction scenarios

We will consider three reproduction scenarios. The first and third one of these gener-
alize those considered by Hössjer et al. (2013) for the island model.

Reproduction scenario 1 (Fertilization precedes migration) In order to describe
reproduction from generation t to t + 1, we assume that an infinitely large gamete
pool is formed for each subpopulation of generation t . Only a subset of Nek ≤ Nuk

breeders in subpopulation k contribute with the same (large) number of gametes to the
gamete pool. Here Nek represents the local effective size of subpopulation k. Gamete
formation is followed by fertilization, when the gametes within each pool pair up and
form offspring, which finally migrate to various subpopulations. Mathematically, we
describe allele frequency change from one generation to the next by means of the three
step procedure

P̃tk |Ptk ∼ Hyp(2Nuk, 2Nek, Ptk)/(2Nek), gamete formation,

P∗
tki |P̃tk ∼ Bin(2Nukmki , P̃tk)/(2Nukmki ), fertilization,

Pt+1,i =
s∑

k=1

bik P∗
tki , migration,

(53)
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where P̃tk is the allele frequency of gamete pool k of generation t , obtained by drawing
genes of the breeders according to a hypergeometric distribution. In the second step
P∗

tki is the allele frequency of the Nukmki offspring that are formed in subpopulation
k and then migrate to subpopulation i . This is achieved by drawing 2Nukmki genes
binomially from gamete pool k. Notice that the offspring of various subpopulations
migrate in exact proportions, so that i receives exactly a fraction bik of its genes from
subpopulation k.

It is shown in Appendix D that the genetic drift covariance matrix of this reproduc-
tion scenario has entries

�(Pt )i j = 1{i= j}
s∑

k=1

mki uk

2Nu2
i

Ptk(1 − Ptk)

+
s∑

k=1

u2
kmki mkj

ui u j

(
1

2Nek
− 1

2Nuk

)

Ptk(1 − Ptk), (54)

a special case of (25), with Ui j,kl as in Table 3. ��

Reproduction scenario 2 (Exact migration proportions) We can generalize repro-
duction scenario 1, still requiring that (2) holds exactly, so that 2Nukmki copies of
genes of subpopulation k end up in subpopulation i in the next generation. However,
we will not specify in detail how this is achieved in terms of breeders and gamete
pools, and therefore replace (53) by the more general

P∗
tki |Ptk =

2Nuk Ptk∑

l=1

νl
ki/(2Nukmki ),

Pt+1,i =
s∑

k=1

bik P∗
tki .

(55)

In the first part, the allele frequency P∗
tki of the migrant genes from subpopulation

k to i is determined by the total number of copies νl
ki of the 2Nuk Ptk genes l that

have the specified allele. Without loss of generality we can assume that these genes
are numbered as l = 1, . . . , 2Nuk Ptk , if {νl

k = (νl
k1, . . . , ν

l
ks)}2Nuk

l=1 is a collection of
exchangeable random vectors for each subpopulation k.

It turns out that the only further properties of νl
ki needed for computing the genetic

drift covariance matrix �(Pt ) is independence of {νl
k}2Nuk

l=1 for different k and the
covariances Cov(νl

ki , ν
l
k j ), which do not depend on l because of the exchangeability

assumption. Indeed, it is shown in Appendix D that the entries of �(Pt ) are

�(Pt )i j =
s∑

k=1

Cov(νl
ki , ν

l
k j )uk

2Nui u j
Ptk(1 − Ptk). (56)
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This equation is of form (25), with Ui j,kl as in Table 3. We notice in particular that
(54) is a special case of (56), with

Cov(νl
ki , ν

l
k j ) ∼ 1{i= j}mki + mki mkj

(
Nuk

Nek
− 1

)

.

��
Reproduction scenario 3 (Migration precedes fertilization) For pollination of
plants, it is of interest to reverse the order of migration and reproduction, so that
gametes rather than individuals migrate. We then divide the reproduction cycle into
three steps;

P̃tk |Pkt ∼ Hyp(2Nuk, 2Nek, Pkt )/(2Nek), gamete formation,

P̌ti =
s∑

k=1

Bik P̃tk, migration,

Pt+1,i |P̌ti ∼ Bin(2Nui , P̌ti )/(2Nui ), fertilization,

(57)

where P̃tk is the allele frequency of gamete pool k, as before. Then gametes mix, so
that P̌ti is the allele frequency of gamete pool i after migration, and Bik the fraction
of its alleles that originates from gamete pool k, so that

∑s
k=1 Bik = 1. Finally,

reproduction in subpopulation i occurs by drawing 2Nui genes binomially from post-
migration gamete pool i .

When Bik = bik the gamete pools mix in exact proportions. More generally, we
can allow for random mixing, where the rows

(Bi1, . . . , Bis) ∼ Dir (αi (bi1, . . . , bis)) (58)

have independent Dirichlet distributions for i = 1, . . . , s, so that E(Bik) = bik and

Cov(Bik, Bil) =
{

bik(1 − bik)/(αi + 1), k = l,
−bikbil/(αi + 1), k �= l.

(59)

The parameter αi ≥ 0 quantifies the amount of random variability of the mixing
proportions when the contents of gamete pools from various subpopulations k migrate
to subpopulation i . When αi = 0, all parents of subpopulation i are selected from
the same randomly chosen subpopulation, with probabilities bik , whereas αi = ∞
gives exact mixing proportions Bik = bik . The latter reproduction scheme has been
studied by Nagylaki (1980) when Nek = Nuk , but with additional steps of selection
and mutation added. See also Sampson (2006) for a related reproduction scenario in
which subpopulation sizes are allowed to vary rapidly as well.

Notice that this model is not a special case of exact migration proportions, since
the remainder term of (2) is not zero, although it is asymptotically negligible when
N and αi are both large. However, exact mixing proportions alone (αi = ∞) are not
sufficient for a vanishing remainder term in (2).
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It is shown in Appendix D that the genetic drift covariance matrix has entries

�(Pt )i j = 1{i= j}
2Nui

(BPt )i (1 − (BPt )i )

+
s∑

k=1

bikb jk

(
1

2Nek
− 1

2Nuk

)

Ptk(1 − Ptk)

+ 1{i= j}
αi + 1

s∑

k=1

bik (Ptk − (BPt )i )
2

+O

(
1

N (1 + min{αi })
)

, (60)

where the remainder term is asymptotically negligible when min(α1, . . . , αs) → ∞
as N → ∞. It can be shown that (60) agrees with (25), with Ui j,kl as in Table 3. ��

8 Spatial structures

The reproductive fitness of subpopulation k is defined as the average number of off-
spring

rk =
s∑

i=1

mki

of its members in the next generation. Since it only involves the subpopulation it is a
purely demographic parameter, not reflecting genetic differences among subpopula-
tions. It should not be confused with vk in (4), another demographic parameter that
quantifies average number descendants many generations ahead.

It follows from (3) that the average reproductive fitness of all populations, weighted
according to their sizes, is

s∑

k=1

ukrk =
s∑

k=1

uk

s∑

i=1

mki =
s∑

i=1

s∑

k=1

ukmki =
s∑

i=1

ui = 1, (61)

as a consequence of the constant total population size.

8.1 Conservative migration

Conservative migration (6) is equivalent to all subpopulations being equally produc-
tive. Indeed, if rk does not depend on k, it follows from (61) that rk = 1, so that the row
sums of M are 1. But then v = (1, . . . , 1) is a right eigenvector of M, and therefore
(7) implies (6), or equivalently, that u is a left eigenvector of B with eigenvalue 1,
When subpopulations are weighted proportionally to their census sizes, i.e. w = u, it
therefore follows from (50) and (51) that
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N appr
eV = 1

2u�uT
(62)

and

Fappr
ST =

s∑

i=1

ui Vii . (63)

We can simplify (62) and (63) further for reproduction scenario 1, if all local
effective sizes equal the local census sizes (Nek = Nuk). After some computations, it
then follows from upper part of (33), (54) and Table 3 that

�i i = 1

2Nui

(

1 −
s∑

k=1

bik Vkk

)

.

Inserting this expression into (62) and using (6), we obtain an approximation

N appr
eV = 1

2
∑

i=1 u2
i �i i

= N

1 − ∑s
k=1 uk Vkk

= N

1 − Fappr
ST

(64)

of the variance effective size of the total population. This well known formula was orig-
inally derived by Wright (1951) for the island model. Wang and Caballero (1999, eqn.
15) showed the validity of (64) more generally when fertilization precedes migration.

For reproduction scenario 3, it is shown in Appendix D that a similar calculation
when Nek = Nuk yields

N appr
eV = N

1 − ∑s
i=1 ui (BVBT )i i + ∑s

i=1
2Nu2

i
1+αi

(∑s
k=1 bik Vkk − (BVBT )i i

) . (65)

However, neither (64) nor (65) hold when Nek �= Nuk , since then � is no longer
diagonal.

Spatial structure 1 (Island model) The most well known population genetic model
with spatial structure is the island model (Wright 1943; Maruyama 1970b). All sub-
populations (or islands) have equal size, uk = 1/s, and migration is symmetric, so
that a fraction m of the offspring select island uniformly (including its present island),
and the remaining fraction 1 − m of offspring never migrate. This corresponds to

M = B = (1 − m)I + m

s
11T . (66)

It is seen in Appendix D that the second largest eigenvalue of this matrix is λ2 =
1 − m = 1 − m′/(1 − 1/s), cf. Table 4, so that a smaller migration rate implies that
λ2 is closer to 1.

In general it is not possible to find explicit expressions for N appr
eV and Fappr

ST . However,
due its symmetry, the island model is an exception, as we now illustrate for reproduction
scenarios 1 and 3:

123

Author's personal copy



Quasi equilibrium for subdivided populations 1079

Table 4 Values of the total migration rate m′ and Average Relative Neighbourhood Proportion (ARNP)
for the island and various stepping stone models

Model m′ ARNP

Island m(s − 1)/s 1

Torus stepping stone m (4 − 1{|s1|=2}−1{|s2|=2})/(s − 1)

Rectangular stepping stone m(1 − 0.5(s−1
1 + s−1

2 )) (4 − 2(s−1
1 + s−1

2 ))/(s − 1)

Circular stepping stone m 2/s

Linear stepping stone m(s − 1)/s min(1, 2/(s − 1))

Genetic reservoir (s − 1) (u1r1(γ + δ) + usrsβ) u11{β>0} + (1 − u1)
(
u11{γ>0}

+ 2us1{δ>0}
)
/(1 − us )

We first consider reproduction scenario 1 with a constant local effective population
size Nek = Ne for all islands. It is shown in Appendix D that (50) and (51) then
simplify to

N appr
eV = s Ne

1 − Fappr
ST

(67)

and

Fappr
ST = 1

s
s−1 2Ñ

(
1 − (1 − m)2

) + 1
(68)

respectively, with

1

Ñ
= (1 − m)2

Ne
+ 2m − m2

N/s

a weighted harmonic average of Ne and N/s. Formula (68) was derived in Hössjer
et al. (2013) by other methods, exploiting that FST,t can be well approximated by
a univariate autoregressive time series for the island model. Related expressions for
Feq

ST can also be found in Wright (1943), Nei (1975), Takahata (1983), Crow and Aoki
(1984), Takahata and Nei (1984) and Ryman and Leimar (2008).

For reproduction scenario 3, with the local effective population sizes Nek = Ne and
the Dirichlet parameters αk = α is the same for all subpopulations k, the corresponding
formulas

N appr
eV = s Ne

1 − Fappr
ST +

(
Ne

N/s + 2Ne
α+1

) (
1 − (1 − m)2

)
Fappr

ST

(69)

and

Fappr
ST = 1

( s
s−1 − 1

α+1 )2Ñ
(
1 − (1 − m)2

) + Ñ
Ne

(1 − m)2
(70)
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are valid when α is large or Ne = N/s. Formula (69) is, to the best of our knowledge,
new, and (70) extends a formula of Hössjer et al. (2013) to α �= 0. A smaller α

implies that the proportion of migrants that each subpopulation receives from the other
subpopulations, varies more. As a consequence, N appr

eV decreases and Fappr
ST increases.

��

Spatial structure 2 (Stepping stone models) In natural populations, migration is
often restricted to neighbouring subpopulations. Kimura (1953) proposed a class
of stepping stone models that reflect this behaviour. Its first mathematical treat-
ment appeared in Kimura and Weiss (1964) and Weiss and Kimura (1965) and
a more recent one in Durrett (2008). When s ≥ 3, the one-dimensional cir-
cular version of the stepping stone model has all subpopulations distributed on
a circle with

mki =
⎧
⎨

⎩

1 − m, i = k,

m/2, i = k + 1 or k − 1 modulo s,
0, otherwise.

(71)

When s = 2, the nonzero offdiagonal elements are instead m12 = m21 = m, since
k + 1 = k − 1 modulo 2. Maruyama (1970a) considered the eigenvalue effective
population size N eq

eE when either m → 0 or N → ∞. Based on his asymptotic results,
Wang and Caballero (1999) suggested the approximation

N appr
eE = s Ne + s2

2mπ2 , (72)

for all values of m, when Nek = Ne = N/s and s is an even integer.
A linear stepping stone model can be defined when s ≥ 3 that differs from

(71) in that no direct communication occurs between the end populations 1 and
s, i.e. m1s = ms1 = 0. All other off-diagonal elements of M are given by (71),
whereas the diagonal elements satisfy m11 = mss = 1 − m/2 and mii = 1 − m for
2 ≤ i ≤ s − 1.

A two-dimensional stepping stone model has s = s1s2 subpopulations {i =
(i1, i2); 1 ≤ i1 ≤ s1, 1 ≤ i2 ≤ s2} positioned on a rectangular grid, with s1 ≥ 2
and s2 ≥ 2. In order to avoid edge effects we identify islands along the left edge as
neighbours to those along the right edge, provided their second coordinates agree.
Similarly, we identify islands along the bottom and top edges as neighbours whenever
their first coordinates agree. Consequently, the islands can be thought of as uniformly
positioned along a torus with migration intensities

m(k1,k2),(i1,i2) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − m, (i1, i2) = (k1, k2),

m/4, i2 = k2 and i1 = k1 + 1 or k1 − 1 modulo s1,

m/4, i1 = k1 and i2 = k2 + 1 or k2 − 1 modulo s2,

0, otherwise,

(73)
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when s1 ≥ 3 and s2 ≥ 3. When s1 and/or s2 equals 2, the off-diagonal entries
m(k1,k2),(i1,i2) are added for those (i1, i2) that correspond to the same subpopulation
in (73).

When s1 ≥ 3 and s2 ≥ 3, a rectangular version without edge effects is defined by
putting those off-diagonal elements in M to zero that correspond to transitions between
opposite edges. Hence, the diagonal elements are 1 − m for interior subpopulations,
1 − 3m/4 along edges and 1 − m/2 at corners.

It is easily verified that B = M and u = γ = 1T /s for all four stepping stone
models. ��

8.2 Varying reproductive fitness

In general the single generation reproductive fitness rk varies between subpopulations.
The migration matrix may then be expressed as

M = RF,

with R = diag(r1, . . . , rs) a diagonal matrix of fitness coefficients, F = ( fki )
s
k,i=1

the transition matrix of a forward Markov chain and fki the probability that a copy
of a subpopulation k gene that is passed on to the next generation ends up in subpop-
ulation i .

Spatial structure 3 (Demographic reservoir) Suppose s ≥ 2 and that one subpopu-
lation s acts as a demographic reservoir (or source population) for the other subpop-
ulations 1, . . . , s − 1. The reservoir is located in the center of a circle and the other
subpopulations symmetrically along its perimeter. We assume that the reproductive
fitness coefficients r1 = · · · = rs−1 and sizes u1 = · · · = us−1 of the perimeter
populations are identical, where

0 < r1 < 1 < rs (74)

quantifies how much more productive the reservoir is compared to the other subpop-
ulations. Since the relative subpopulation sizes ui sum to one, it follows from (61)
that

u1 = 1

s − 1

rs − 1

rs − r1
and us = 1 − r1

rs − r1
.

When s ≥ 4, the entries of the forward transition matrix are specified as

fki =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β, k = s, i = 1, . . . , s − 1,

1 − (s − 1)β, k = i = s,
γ, k = 1, . . . , s − 1, i = s,
δ/2, k = 1, . . . , s − 1, i = k − 1 or k + 1 modulo s − 1,

1 − γ − δ, k = i = 1, . . . , s − 1,

0, otherwise.
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When s = 3, the migration rates for i = k − 1 and i = k + 1 modulo s − 1 are
added together, since they correspond to the same subpopulation i . When s = 2, we
put δ = 0. The perimeter islands act as a circular stepping stone model with internal
probability δ that any gene migrates to a neighbouring perimeter island. However,
there is also communication with the reservoir and the other two parameters γ and β

control the degree of gene flow between the reservoir and the perimeter populations
respectively. It turns out that in order for (3) to hold, β and γ must be related as

(s − 1)usrsβ = us(rs − 1) + (s − 1)u1r1γ,

where the left hand side is the total migration rate from the reservoir to the perimeter,
the first term on the right hand side is the migration rate from the reservoir needed to
keep its population size constant in absence of immigration, and the last term is the
total migration rate from the perimeter to the reservoir.

Hence there are four parameters; r1, rs , δ and γ that can be varied in this
model subject to constraints (74), 0 ≤ δ ≤ 1 and 0 < γ ≤ min(1 − δ, (1 −
r1)/(r1(rs − 1))). Given δ, the upper bound on γ gives the maximal possible
gene flow between the reservoir and perimeter, and it assures that all diagonal ele-
ments of F are non-negative. Because of (74), we have non-conservative migration
u �= γ . ��

9 Multilocus and multiallelic extension

Assume there are n genetic markers, with the x :th marker having alleles a =
1, . . . , n(x) for x = 1, . . . , n. This generalizes the one locus, biallelic scenario n = 1
and n(1) = 2 treated so far.

Let Pti (x, a) refer to the frequency of allele a at marker x in subpopulation i and let
Pw

t (x, a) = ∑s
i=1 wi Pti (x, a) denote the frequency of the same allele in the whole

population when subpopulations are weighted according to w.
We argued in Sect. 3 that for most functions Ht of allele frequencies at a single

locus, the convergence in (19) towards the equilibrium expected value is very slow.
If Ht = f

({Pti (x, a)}i,x,a
)

is instead a function of allele frequencies at several loci,
the convergence in (19) is usually faster, at least if the loci are in linkage equilibrium.
On the other hand, we motivated in Sect. 5 that when Ht equals the fixation index or
the variance effective population size, the convergence in (19) is faster in spite of the
fact that these are single locus functions, with a limit well approximated by quantities
that do not include the quasi equilibrium distribution of the allele frequencies. In this
section, we will show that the same is true for the multilocus extensions of the fixation
index and variance effective size.

For the variance effective population size, we generalize a multilocus and multial-
lelic expression suggested by Jorde and Ryman (2007) for a single panmictic popula-
tion (s = 1). The idea is to sum separately over loci and alleles in the numerator and
denominator, so that

Nw
eV,t =

∑n
x=1

∑n(x)
a=1 Pw

t (x, a)(1 − Pw
t (x, a))

∑n
x=1

∑n(x)
a=1 2E

((
Pw

t+1(x, a) − Pw
t (x, a)

)2 |Pw
t (x, a)

) . (75)
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The extension of Fw
ST,t to multilocus and multialleles is a bit more involved. The gene

diversity in generation t can be written as

Hw
T t = 1

n

n∑

x=1

⎛

⎝1 −
n(x)∑

a=1

Pw
t (x, a)2

⎞

⎠ = 1

n

n∑

x=1

n(x)∑

a=1

Pw
t (x, a)(1 − Pw

t (x, a)), (76)

which generalizes (20) to multiple loci and alleles. On the other hand, the gene diversity
within subpopulations in generation t , is

Hw
St =

s∑

i=1

wi
1

n

n∑

x=1

⎛

⎝1 −
n(x)∑

a=1

Pti (x, a)2

⎞

⎠ . (77)

We then introduce the coefficient of gene differentiation for weight vector w and time
t as

Gw
ST,t = Hw

T t − Hw
St

Hw
T t

=
∑n

x=1
∑n(x)

a=1

∑s
i=1 wi (Pti (x, a) − Pw

t (x, a))2

∑n(x)
x=1 Pw

t (x, a)(1 − Pw
t (x, a))

. (78)

When subpopulations are weighted equally (wi = 1/s), the first equality of (78) gives
the original definition of the coefficient of gene differentiation due to Nei (1973). It
can be shown that the second equality of (78) implies that Gw

ST,t is a weighted average
of fixation indeces Fw

ST,t (x, a) (cf. (13)) for all loci x and alleles a. The weights are
proportional to Pw

t (x, a)(1 − Pw
t (x, a)), so that alleles close to extinction or fixation

have less influence. In the unweighted case wi = 1/s, this has been discussed by
several authors, for instance Nei (1975), Wright (1978, Chapter 3) and Chakraborty
and Leimar (1987).

We will now use Theorem 1 in order to investigate how accurate the approximations
of the quasi equilibrium values of (75) and (78) are. In order to simplify the proof (see
Appendix E), we only consider biallelic markers.

Theorem 2 Assume n biallelic markers (n(x) ≡ 2) in linkage (gametic) equilibrium,
so that allele transmission is independent across loci. Let N eq,w

eV be the quasi equi-
librium limit, defined in the lower equation of (15), based on (75), and analogously
put

Geq,w

ST = lim
t→∞ Ec(G

w
ST,t ).

Define N appr,w
eV as in (50) and Gappr,w

ST by the same formula as for Fappr,w
ST in (51). Then

there exist constants C ′
1, . . . , C ′

9 such that

∣
∣Geq,w

ST − Gappr,w
ST

∣
∣ ≤ C ′

1|�V|eq + C ′
2|μ|eq + C ′

3

n
. (79)
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and

∣
∣N eq,w

eV − N appr,w
eV

∣
∣ ≤ C ′

4|�V|eq + C ′
5|��|eq + C ′

6|μ|eq

+ C ′
7|ς |eq + C ′

8|ζ |eq + C ′
9

n
, (80)

with |μ|eq and |ζ |eq as defined in (45) and (47), |ς |eq another ascertainment bias term
defined in (140) and (148), and upper bounds for |�V|eq and |��|eq are provided in
Theorem 1.

Combining Theorems 1 and 2, we notice that the accuracy of the quasi equilibrium
approximations (79) and (80) are upper bounded by a linear combination of |ξ |eq in
(46), |μ|eq, |ς |eq, |ζ |eq and n−1. Moreover, if follows from the proof in Appendix E
that C ′

2, C ′
4, C ′

6 and C ′
7 all vanish for the canonical weighting scheme w = γ . The

impact of the ascertainment error terms |ς |eq and |ζ |eq should be small, since loci
close to fixation of one allele are downweighted.

10 Numerical results

We will illustrate how the approximate quasi equilibrium values (50) and (51) depend
on various parameters, including the total migration rate m′. However, it is also impor-
tant to know whether migration in one step from each subpopulation is local (reaches
neighbouring subpopulations only) or global (reaches all other subpopulations). This
can either be assessed using migration conversion factors between the island and other
spatial models, see for instance Malécot (1946), Kimura and Weiss (1964) and Crow
and Aoki (1982, 1984) . We will use a somewhat different approach, and define the
one step neighborhood Nk = {i; i �= k, mki > 0} of each subpopulation k as well as
the Average Relative Neighbourhood Proportion

ARNP =
s∑

k=1

uk

∑
i∈Nk

ui

1 − uk
,

which should not be confused with the neighborhood size N S of Wright (1946),
developed for continuous spatial isolation by distance models. Provided migration
rates to neighbouring subpopulations are of the same order, a larger ARNP indicates
more global migration whenever it takes place. Table 4 lists values of m′ and ARNP
for the models introduced in Sect. 8. Among the island and stepping stone models, it
can be seen that the island model has the most global and the linear stepping stone
model the most local migration, with the other stepping stone models in between.

In Fig. 1 we display N appr
eV and Fappr

ST as functions of the migration rate m′ in (8), the
local census size Nuk and the number of subpopulations s for the island and various
stepping stone models when fertilization precedes migration. In general, the larger
ARNP is, the smaller are N appr

eV and Fappr
ST . However, N appr

eV varies very little between
the linear stepping stone model (with smallest ARNP) and the island model (with
largest ARNP). The fixation index Fappr

ST varies somewhat more, at least in relative
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terms. See also Figs. 1 and 2 of Crow and Aoki (1984) for similar conclusions how
approximations of the fixation index depends on s1 and s2 for the torus stepping stone
model. We also notice that although N appr

eV and Fappr
ST vary somewhat with Nuk when

the local effective size Ne is kept fixed, this dependence is very small for N appr
eV (see

also Hössjer et al. 2013).
When migration precedes fertilization, the impact of the Dirichlet parameter αi = α

in (58) is quite dramatic. Even though subpopulation sizes are kept fixed, a smaller
α implies a larger variability of the proportions of migrants from the various sub-
population in the parental generation. It is seen in Fig. 2 that this implies a substan-
tially decreased N appr

eV , as well as an increased Fappr
ST . As in Fig. 1 we also conclude

that the migration structure (island or stepping stone) has less effect on N appr
eV and

Fappr
ST .
In Fig. 3, we compare N appr

eV with the approximation N appr
eE of the eigen-

value effective population size in (72), for the circular stepping stone model. The
agreement is quite good, although for small migration rates N appr

eE is somewhat
larger.

Fig. 1 Plots of variance effective population size N
appr
eV (left) and fixation index F

appr
ST (right) when fertil-

ization precedes migration for the island model (solid), circular (dashed), linear (squares) and torus (dotted
and circles) stepping stone models. Upper The migration rate m′ in (8) is varied, while the number of sub-
populations s = 9 (arranged as a s1×s2 = 3×3 grid for the torus model), the total population size N = 450,
the relative subpopulation sizes uk = 1/9 and the local effective population sizes Ne = N/9 = 50 are
kept fixed. Middle Local census size Nuk = N/9 is varied, while s = 9, m′ = 0.4 and Ne = 50. Lower s
is varied, while N = 50s, uk = 1/s, m′ = 0.4 and Ne = Nuk = 50. For the torus stepping stone model
(circles), the upper circles correspond to s1 = 2, . . . , 8 and s2 = 2, the middle circles to s1 = 3, 4, 5 and
s2 = 3, and the lower right circle to s1 = s2 = 4
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Fig. 2 Plots of N
appr
eV (left) and F

appr
ST (right) as functions of m′ when migration precedes fertilization with

Dirichlet parameters αk = α (cf. (58)). For all curves s = 9, N = 450, uk = 1/9 and Ne = N/9 = 50.
Upper plots for the island model with α = 1 (dotted), α = 10 (dash-dotted), α = 100 (dashed) and α = ∞
(solid), which corresponds to fixed migrant proportions, as in Wright (1951). Lower plots, with α = 10,
for the island (dash-dotted) and circular stepping stone models (solid)

The results of Sect. 5 (see Propositions 2, 3 and Theorem 1) reveal that a larger
1 − |λ2| implies a smaller Mixtime, a smaller amount of allele fluctuations among
subpopulations and hence a more accurate quasi equilibrium approximation. In Fig. 4
it is shown that 1 − |λ2| is proportional to the migration rate m′ for the island and
several stepping stone models. The proportionality constant varies quite a lot between
models, so that a larger ARNP implies a faster convergence rate to quasi equilibrium
of P0

t /
√

Pt (1 − Pt ).
Figure 5 shows plots of N appr,u

eV and Fappr,u
ST for the demographic reservoir model,

where we have indicated the subpopulation weights w = u, since in this case they
differ from the default choice w = γ . We notice that N appr,u

eV and Fappr,u
ST are both very

sensitive to varying reproductive fitness among subpopulations. The larger the fitness
rs of the reservoir, the smaller are N appr,u

eV and Fappr,u
ST . For instance, when rs = 20,

the reservoir occupies us = 4.76% of the total population. Still, almost all genes are
inherited from the reservoir, so that N appr,u

eV approximately equals the census size Nus

of the reservoir. On the other hand, the migration rate δ between the perimeter islands
and the migration rate γ from the perimeter to the reservoir effect N appr,u

eV and Fappr,u
ST

very little.
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Fig. 3 Plots of variance and eigenvalue effective population sizes N
appr
eV (dots) and N

appr
eE (solid lines,

cf. (72)), as functions of the migration rate m′ for the circular stepping stone model. The plots are on a
log–log scale and the number of subpopulations is s = 16 (upper), s = 8 (middle) and s = 4 (lower).
Fertilization precedes migration, with population size N = 50s. For all subpopulations k, uk = 1/s and
Ne = Nuk = 50

Fig. 4 Plots of 1 − |λ2| as function of the migration rate m′ for a number of models with s = 9, N = 450,
uk = 1/9, Ne = N/9 = 50 and different Average Relative Neighbourhood Proportions (ARNP): The island
model (dash-dotted, ARNP = 1), the torus stepping stone model (dotted, ARNP = 1/2), the rectangular
stepping stone model (circles, ARNP = 1/3), the circular stepping stone model (solid, ARNP = 1/4) and
the linear stepping stone model (squares, ARNP = 2/9). For the two-dimensional (rectangular and torus)
stepping stone models s1 = s2 = 3
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Fig. 5 Plots, for the demographic reservoir model, of N
appr,u
eV (left), F

appr,u
ST (middle) and relative sizes

(right) u1 = . . . = us−1 for the s − 1 perimeter populations (dotted) and us for the reservoir population
(solid), when fertilization precedes migration, s = 9, N = 450 and Nek = Nuk for k = 1, . . . , 9. Upper
The fitness rs and r1 = · · · = rs−1 = 1/rs of the reservoir and perimeter populations are varied, whereas
δ = 0.2 and γ = 0 are kept fixed. Middle migration from perimeter to reservoir, 0 ≤ γ ≤ 0.8, is varied,
whereas r1 = 0.5, rs = 2 and δ = 0.2 are kept fixed. Lower migration rate between perimeter populations,
0 ≤ δ ≤ 1, is varied, whereas r1 = 0.5, rs = 2 and γ = 0 are kept fixed

11 Coalescent based criteria

11.1 Nucleotide diversity effective size

In this section, we compare N appr
eV = N appr,γ

eV with the nucleotide diversity effective
size

Neπ = E(T )

2
, (81)

where T is the number of generations back to the most recent common ancestor of
two different genes chosen randomly from the population, the so called coalescence
time. Formula (81) implies that Neπ is the size of a Wright–Fisher population with the
same heterozygosity as the studied population at a site with small (o(N−1)) mutation
probability, see Section 4.4 of Durrett (2008).

We will extend a formula due to Slatkin (1991) for computing E(T ) within our
general framework of structured populations with arbitrary migration matrices and
subpopulation weights. Define qti j as the probability that two different and randomly
chosen genes from subpopulations i and j have not found their most recent common
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ancestor within t generations. We collect all these probabilities into a quadratic matrix
qt = (qti j ) of order s and show in Appendix F:

Proposition 4 The matrices qt satisfy q0 = 1 and

vec(qt+1) = Dvec(qt ), t = 0, 1, 2, . . . (82)

where D = (Di j,kl) a quadratic matrix of order s2, related to the matrix A = (Ai j,kl)

in (27) as

Ai j,kl =
(

1 − 1
2Nui

){i= j}

(
1 − 1

2Nuk

){k=l} Di j,kl . (83)

Recursion (82) is equivalent to equation (3) of Slatkin (1991), and it differs from
the gene diversity recursion (29) only by replacing the matrix A with D. Whereas the
elements of A are derived by drawing two genes without replacement, those of D are
found by drawing them with replacement. In Proposition 7 of Appendix F, we derive
a very explicit expression of Di j,kl in terms of the backward probabilities bik and b jl

that two genes from subpopulations i and j have their parents in k and l, and the
coalescence probability

pi jk = σi jk(N )

2Nuk
+ o(N−1) (84)

that the two parents are the same given that k = l. The quantity σi jk(N ) in the
numerator of (84) is a coalescence rate, i.e. a coalescence probability standardized by
the size of the parental subpopulation.

Let Ti j denote the coalescence time of two genes sampled from subpopulations i
and j . It follows from (82) that

E(Ti j ) =
∞∑

τ=0

qτ i j

=
∞∑

τ=0

∑

k,l

D(τ )
i j,klq0kl

=
∞∑

τ=0

∑

k,l

D(τ )
i j,kl ,

where D(τ )
i j,kl are the elements of Dτ . With T = (Ti j ) a quadratic matrix of order s that

contains all coalescence times Ti j , we can rewrite the last equation as

vec (E(T)) =
∞∑

τ=0

Dτ 1 = (I − D)−11, (85)
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with I the identity matrix of order s2 and 1 a column vector of length s2. This corre-
sponds to equation (5) of Slatkin (1991).

Suppose two different genes are drawn randomly, by selecting subpopulations inde-
pendently with probabilities wi , and let T be their coalescence time. Then

E(T ) =
s∑

i, j=1

wiw j E(Ti j ) = WT E(T), (86)

with WT the same vector of weights for pairs of subpopulations as defined below (24).
Combining (81), (85) and (86), we find that

Neπ = Nw
eπ = WT (I − D)−11

2
. (87)

The following result gives the asymptotic relation between the nucleotide diversity
and variance effective population sizes (see Appendix F for a proof):

Theorem 3 Suppose reproduction scenario 2 or 3 (with αi ≡ ∞) is used and strong
migration, i.e. that N → ∞, while the backward migration matrix B is kept fixed.
Suppose further that the coalescence rates σi jk(N ) in (84) converge to limits σi jk as
N → ∞. Then, regardless of the choice of subpopulation weights w, it holds that

Nw
eπ = N

C
+ o(N ) as N → ∞, (88)

with

C =
s∑

i, j,k=1

u−1
k γiγ j bikb jkσi jk . (89)

Moreover, if w = γ , it holds that

N appr
eV = N appr,γ

eV = N

C
+ o(N ) as N → ∞, (90)

with the same constant C as in (89).

An important special case is a generalized Wright–Fisher model, i.e. a population in
which each subpopulation behaves locally as a Wright–Fisher model before migration.
This corresponds to reproduction scenario 3 with Nek = Nuk and αi ≡ ∞, and it
follows from Appendix F that σi jk = 1. Since γ is a left eigenvector of B with
eigenvalue 1, this leads to

C =
s∑

i, j,k=1

u−1
k γiγ j bikb jk =

s∑

k=1

u−1
k γ 2

k . (91)
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Inserting (91) into (88), we get an expression for Neπ due to Nagylaki (1982, 1998).
For the models treated in this paper σi jk only depends on the parental subpopulation
k, whereas for age-structured models, it will also depend on the subpopulations i and
j of the offspring (Hössjer 2011).

We see from Theorem 3 that the nucleotide diversity effective size is robust towards
choice of subpopulation weights w. This is much in contrast to the variance effective
size, which depends on the subpopulations weights, even asymptotically. It is only for
the canonical weights w = γ that N appr,w

eV is asymptotically equivalent to Neπ . The
reason is that N appr,γ

eV quantifies the long term genetic changes (see the discussion),
and for large populations Neπ does the same. The coalescence effective size is related
to, but more stringent than Neπ , requiring that the whole ancestral tree of an arbitrary
but finite number of genes converges to Kingman’s coalescent (Kingman 1982) as
the population size grows. Hössjer (2011) proved that the coalescence effective size
equals (88)–(89), which is not surprising, since it quantifies long term genetic changes
in the population (Sjödin et al. 2005).

11.2 Fixation index

For a single biallelic locus we can rewrite the fixation index (13) as

Fw
ST,t = Hw

T t − Hw
St

Hw
T t

, (92)

with Hw
T t the gene diversity of the total population defined in (24) (or more generally

(76)), and

Hw
St =

s∑

i=1

wi Htii , (93)

the corresponding gene diversity within subpopulations, a special case of (77).
Both (92) and (93) are defined in terms of drawing two genes with replacement. If

instead of (23) we draw two distinct genes from subpopulation i and j and generation
t , the probability that they have different alleles,

H̄ti j =
{

Pti (1 − Pt j ) + Pt j (1 − Pti ), i �= j,
2Pti (1 − Pti )/(1 − (2Nui )

−1), i = j,
(94)

is denoted with a bar, to signify sampling without replacement. This yields a modified
version

F̄w
ST,t = H̄w

T t − H̄w
St

H̄w
T t

(95)

123

Author's personal copy



1092 O. Hössjer, N. Ryman

of the fixation index (92), where H̄w
St and H̄w

T t are the gene diversities of the total
population and subpopulations, defined as in (24) and (93), but with H̄ti j in place of
Hti j .

Slatkin (1991) investigated a time independent gene diversity h̄i j , within the frame-
work of an infinite alleles model (Kimura 1971), where mutations occur with a prob-
ability μ > 0 per gene and generation, and each new mutation creates a new allele.
If two genes are picked randomly without replacement, they are not IBS if the tree
with their most recent common ancestor as root and 2Ti j edges, contains at least one
mutation, with a probability

h̄i j = 1 − E
(
(1 − μ)2Ti j

)
≈ 2μE(Ti j ) (96)

if μ is small. The gene diversities in (96) can easily be estimated from genetic data
using the expected number of (selectively neutral) segregating sites between DNA
sequences from subpopulations i and j (Durrett 2008, Chapter 1). The corresponding
gene diversities

h̄w
S =

s∑

i=1

wi h̄i i ≈ 2μW S E(T),

h̄w
T =

s∑

i, j=1

wiw j h̄i j ≈ 2μWT E(T),

(97)

of the total population and subpopulations are defined analogously to (24) and (93),

with WT defined below (24), and W S = vec
(
(wi 1{i= j})s

i, j=1

)T
a weight vector for

pairs of genes belonging to the same Subpopulation. Nagylaki (1982, 1998) analyzed
properties of h̄w

T for the canonical weights w = γ .
Combining (85), (96) and (97), we follow Slatkin (1991) and define the fixation

index

f̄ w
ST := h̄w

T − h̄w
S

h̄w
T

≈ (WT − W S)(I − D)−11
WT (I − D)−11

, (98)

where the approximation is exact in the limit of vanishingly small mutation rates.
Wilkinson-Herbots (1998) derived expressions for f̄ w

ST that are valid for general struc-
tured models, without taking the μ → 0 limit in (98), using either uniform (wi = 1/s)
or population size (wi = ui ) weights.

In analogy with (96)–(98), we define quantities hi j , hw
T and hw

S by drawing two
genes with replacement. The corresponding fixation index satisfies

f w
ST := hw

T − hw
S

hw
T

≈ (WT − W S)(I − A)−11
WT (I − A)−11

, (99)
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using that the matrices of non-coalescence probabilities and expected coalescence
times for two genes drawn without replacement, satisfy recursions similar to (82) and
(85), with A in place of D.

We found in Sect. 6 that Fappr,w
ST is closely related to E(Fw

ST,t )
∗. On the other hand,

we prove in Proposition 8 in Appendix F that f w
ST is a weighted average of E0(Fw

ST,t )
∗

for varying t , with weights corresponding to a distribution of t with mean O(N ).
The quantity E0(Fw

ST,t )
∗ is a prediction of Fw

ST,t , given information from the founder
generation that all subpopulations have the same allele frequency. We therefore expect
E0(Fw

ST,t )
∗ to be slightly smaller than E(Fw

ST,t )
∗ for small t , before Fw

ST,t has attained

quasi equilibrium, and the time required for this is O
(
(1 − λ2)

−1
)
. The conclusion is

that Fappr,w
ST and f w

ST should be close for strong migration, when N (1−λ2) 
 1. This
was confirmed by Hössjer (2013) for models with translationally invariant migration
(e.g. island and circular stepping stone models), for which wi = γi = 1/s. The
following result holds more generally for canonical weights w = γ :

Theorem 4 Assume strong migration, i.e. that N → ∞ while the migration matrices
M and B are kept fixed. If also U = B ⊗ B − A = O(N−1), the fixation index in (99)
satisfies

fST = f γ
ST = (WS − WT )(I − G0)−1U1 + o(N−1), (100)

for the canonical weighting scheme w = γ , and Fappr
ST = Fappr,γ

ST has the same
asymptotic expansion. On the other hand, the fixation index (98) has an expansion

f̄ST = f̄ γ
ST = (WS − WT )(I − G0)−1Ū1 + o(N−1), (101)

that is asymptotically equivalent to a version F̄appr
ST = F̄appr,γ

ST of Fappr
ST in (51), for

which V is modified in (36) so that Ū = B ⊗ B − D replaces U.

We conjecture that Theorem 4 does not hold for non-canonical weighting schemes,
since the denominator of (99) is asymptotically independent of weights (cf. Theorem
3), and therefore the elements of WT and W S will enter linearly in f w

ST , in the limit
of large populations. On the other hand, it can be seen from (51) that Fappr,w

ST is a
non-linear function of the elements of WT and W S , even asymptotically.

It turns out that fST is always a bit larger than f̄ST , although the difference O(N−1)

is small for large populations, see Proposition 9 in Appendix F for details. Indeed, if
two genes that are drawn from subpopulation i , the probability that they have different
alleles is decreased by replacing the first before drawing the second, so that hii < h̄i i

for all i and hence hT − hS > h̄T − h̄S . whenever at least two subpopulations have
positive weights.

12 Discussion

We have developed a general methodology for computing the fixation index, the coef-
ficient of gene differentiation and the variance effective size for a large class of pop-
ulations exhibiting substructure. Conditioning on that no allele becomes fixed in the
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population, we decompose the vector valued time series of subpopulation allele fre-
quencies into two parts corresponding to genetic drift of the whole population and
genetic differentiation among subpopulations respectively. The latter turns out to be
approximately in quasi equilibrium modulo a simple standardization. As a result,
approximate quasi equilibrium values of the fixation index and variance effective pop-
ulation size are derived, with greatly simplified formulas when alleles are weighted
proportionally to their subpopulations’ long term reproductive values. We also per-
form a detailed comparison between the quasi equilibrium approach and one based on
coalescence probabilities and vanishingly small mutation rates.

The numerical illustrations reveal that a few parameters seem to characterize the
variance effective size and fixation index quite well, such as number of subpopula-
tions, the reproductive fitness pattern r of subpopulations, random variation of migra-
tion proportions, overall migration rate m′, local effective size and average relative
neighbourhood proportion (ARNP).

We regard alleles as neutral indicators of genetic drift and subpopulation structure,
and as such they are only of interest before fixation. Once a mutation at a given locus
has occurred, we ignore the possibility of new mutations at the same locus, before
quasi equilibrium of P0

t /
√

Pt (1 − Pt ) is attained. We motivated in Sects. 5 and 10 that
this occurs at a rate proportional to m′, with a proportionality constant depending on
how local migration is, as quantified by ARNP. The conclusion is that the mutation
rate has to be of smaller order than m′. Since mutation rates are thought to be of the
order of 10−4–10−3 for highly polymorphic markers such as microsatellites and 10−7–
10−6 for allozymes and single nucleotide polymorphisms (Waples and Gaggiotti 2006;
Allendorf and Luikart 2007), this puts very mild restrictions on the overall migration
rate. For instance, for fish genetic data, the median fixation index was estimated to low
values; 0.02, 0.081 and 0.144 by Ward et al. (1994) for a number of marine, anadromous
and freshwater populations. This indicates that the migration rates are considerably
higher than the abovementioned mutation rates, making the quasi equilibrium approach
feasible.

A number of extensions are possible. Firstly, subpopulations can be interpreted
more broadly as referring not only to geographical sites, but also age classes, social or
ethnic groups of combinations thereof, see for instance Nordborg and Krone (2002),
Sagitov and Jagers (2005), Hössjer (2011) and references therein. If generations are
non-overlapping, t is not defined as generations, but more generally as points in time,
and the number of copies of a gene that are passed on to the next time point should
be interpreted broadly, including the possibility that the individual carrying the gene
survives to the next generation.

Secondly, the assumption (1) of constant subpopulation sizes could be dropped,
allowing local as well as census sizes to fluctuate in time. For instance, Whitlock and
Barton (1997) and Nunney (1999) derive inbreeding effective population sizes and
Sampson (2006) coalescence effective sizes under such assumptions. In our setting of
a variance effective population size, one could allow Nt = (Nt1, . . . , Nts), the vector
of subpopulation sizes at time t , to satisfy a recursion

Nt+1 = Nt Mt (102)
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where Mt is a stochastic Leslie matrix with E(Mt ) = M involving demographic,
genetic as well as environmental effects, see Engen et al. (2005a, b). In Olsson et al.
(2013) we derive approximate quasi equilibrium formulas for the variance effective
size when the population satisfies (102) for an age structured model. In particular,
we investigate the impact of the subpopulation weight vector w for time lags of dif-
ferent size (not necessarily one time step), and achieve good concordance with the
simulation results of Waples and Yokota (2007). The main finding is that the vari-
ance effective size is much less dependent on the choice of weights for large time
lags, corresponding to the long term genetic drift of the population. In particular, this
long term drift is predicted from the variance effective size regardless of the time lag
when the canonical weights w = γ are used. This is consistent with the fast migration
results of Nagylaki (1980). On the other hand, for conservation biology applications,
the transient behaviour of the allele frequency drift is sometimes of more interest for
short term protection of populations (Allendorf and Ryman 2002). In Olsson et al.
(2013) we demonstrate that this transient behaviour is captured when subpopulations
are weighted proportionally to sizes, w = u, but not when the canonical weights
w = γ are used.

Thirdly, Step 7 of the numerical algorithm in Sect. 6 involves solving the linear
system (52) of equations with s(s + 1) unknown variables, which is computationally
feasible only for small s.

In Hössjer (2013) a faster algorithm based on Fourier transforms is defined when
migration is spatially invariant between subpopulations, as for the circular and torus
stepping stone models.

Fourthly, the standardized spatial covariance matrix V is interesting in its own right.
For instance, it enables approximate quasi equilibrium autocorrelations

ρi j = Vi j
√

Vii Vj j
(103)

to be computed analytically between all pairs of subpopulations i and j . Sokal et al.
(1997) and Hardy and Vekemans (1999, 2002) discuss the use of Moran’s spatial
autocorrelation function I for fitting genetic models to data. It is shown in Hössjer
(2013) that (103) is closely related to E(I |Pt ), thereby being less sensitive to various
sources of noise than I itself, as discussed by Slatkin and Arter (1991). It is also
possible to use V for other measures of subpopulation differentiation that for instance
quantify the genetic differentiation between two groups of subpopulations.

Fifthly, whereas we analyzed approximations of a prediction E(Fw
ST,t )

∗ of the
fixation index Fw

ST,t , and argued that this approach is reasonable for multiple loci, it
is also of interest to analyze the distribution of Fw

ST,t . Rottenstreich et al. (2007) and
Leviyang (2011) have employed coalescence methods for this purpose, as in Sect. 11.
In more detail, they consider a scenario when the number of subpopulations s and the
local census effective size tend to infinity, dividing the coalescent tree into scattering
and collecting phases (Wakeley 1999). This work has been focused on island and two-
dimensional stepping stone models, and it would be of interest to study more general
migration schemes.
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Sixthly, Wakeley and Takahashi (2004) have studied diffusion approximations with
two time scales (Ethier and Nagylaki 1980) for the allele frequency process of an
island model with a large number of subpopulations s. Due to the spatial symmetry
of the island model, it suffices to study the frequency spectrum of a biallelic marker
in all subpopulations. This can be viewed as a condensed representation of the allele
frequency vector Pt . Similarly as in (21), the frequency spectrum can be divided into
a slowly varying part, the allele frequency of the whole population, and a more rapidly
varying part, fluctuations of the spectrum around the asymptotic limit. It would be of
interest to extend these results to more general migration patterns.
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Appendix A: Orthogonal decomposition of allele frequency process

Jordan canonical form of B and motivation of (22). Let B = Q�Q−1 be the Jordan
canonical form of B, with

� =
⎛

⎜
⎝

�1 . . . 0
...

. . .
...

0 . . . �r

⎞

⎟
⎠

a block diagonal matrix containing the (possibly complex-valued) eigenvalues of B
along the diagonal. For each l = 1, . . . , r , the square matrix

�l =

⎛

⎜
⎜
⎜
⎝

λl 1 0 . . .

0 λl 1 0 . . .

0 0 λl 1 0 . . .
...

. . .
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎠

(104)

occupies rows and columns jl−1 +1, . . . , jl of �, with diagonal entries equal to λl , all
entries along the superdiagonal equal to 1 and all other entries of �l equal 0. Hence
λl is an eigenvalue of B which appears jl − jl−1 times along the diagonal of �l , with
0 = j0 < j1 < · · · < jr = s. In particular, � is diagonal when all eigenvalues of B
are distinct and r = s. Then the rows of Q−1 contain the left eigenvectors of B and
the columns q1, . . . , qs of Q the right eigenvectors. See for instance Cox and Miller
(1965).

Regardless of whether � is diagonal or not, since B is a transition matrix of a
Markov chain, q1 = 1 is a right eigenvector with eigenvalue λ1 = 1. By the assumed
irreducibility and aperiodicity of this Markov chain, it follows from the Perron Frobe-
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nius Theorem that |λl | < 1 for l = 2, . . . , r , and without loss of generality, we may
assume |λ2| ≥ |λ3| ≥ · · · ≥ |λr | ≥ 0.

Introduce the inner product

(x, y) =
s∑

i=1

γi x̄i yi (105)

for possibly complex-valued column vectors x = (xi ) and y = (yi ) of length s, with
x̄i the complex conjugate of xi . Then, we have the following result:

Proposition 5 The columns q2, . . . , qs of Q are all orthogonal to q1 = 1 with respect
to inner product (105), i.e.

(1, q j ) = 0, j = 2, . . . , s.

Proof We have that

(1, q j ) =
s∑

i=1

γ j q j

= 〈γ , q j 〉,

where 〈x, y〉 = ∑s
j=1 x j y j is the standard inner product. The result follows since γ

is the first row of Q−1 and q j row number j (with j ≥ 2) of Q. ��
Define �0 = diag(0,�2, . . . ,�s) as the block diagonal matrix obtained by replac-

ing �1 = λ1 = 1 in � by 0 (or any other with modulus less or equal to |λ2|), and
put

B0 = Q�0Q−1. (106)

It then follows that B0 has largest eigenvalue |λ2| < 1, and it enters into the time
dynamics of the allele frequency process as follows:

Proposition 6 The recursive autoregressive equation (10) for Pt can be decomposed
into one genetic drift term for the overall allele frequency of the whole population,
and one recursion part for the allele frequency fluctuations among subpopulations, as

Pt+1 = Pt + εt+1,

P0
t+1 = BP0

t + ε0
t+1 = B0P0

t + ε0
t+1, (107)

with ε0
t+1 as defined in (22).

Proof The upper part of (107) follows immediately from (10), since

Pt+1 = (1, Pt+1) = (1, BPt + εt+1) = Pt + εt+1.
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Define, for any vector x = (x1, ..., xs), x0 = x−(1, x)1. Then, since (x+y)0 = x0+y0,
we have that

P0
t+1 = (BPt + εt+1)

0 = (BPt )
0 + ε0

t+1 = BP0
t + ε0

t+1 = B0P0
t + ε0

t+1. (108)

The third equality of (108) follows since

(BPt )
0 =

(
B(Pt 1 + P0

t )
)0

=
(

Pt 1 + BP0
t

)0

= Pt 10 + (BP0
t )

0

= 0 + BP0
t

= BP0
t ,

where in the second last step we used that since P0
t is a linear combination of q2, . . . , qs ,

so is BP0
t , and hence orthogonal to 1 by Proposition 5, so that (BP0

t )
0 = BP0

t .
The fourth equality of (108) follows since Q−1P0

t is a linear combination of
e2, . . . , es , where ei = (0, . . . , 0, 1, 0, . . . , 0)T has 1 in position i and zeros else-
where. Hence �Q−1P0

t = �0Q−1P0
t and BP0

t = B0P0
t . ��

Appendix B: Proofs from Sect. 5

Proof of Proposition 1 We notice that

E(Ht+1,i j |Pt ) = E
(
Pt+1,i (1 − Pt+1, j ) + Pt+1, j (1 − Pt+1,i )|Pt

)

= E(Pt+1,i |Pt )
(
1 − E(Pt+1, j |Pt )

)

+E(Pt+1, j |Pt )
(
1 − E(Pt+1,i |Pt )

) − 2Cov(Pt+1,i , Pt+1, j |Pt )

= (BPt )i
(
1 − (BPt ) j

) + (BPt ) j (1 − (BPt )i ) − 2�(Pt )i j

=
s∑

k,l=1

bikb jl (Ptk(1 − Ptl) + (1 − Ptk)Ptl) − 2�(Pt )i j ,

from which it easily follows that the two recursions in (25) and (26) are equivalent,
with Ai j,kl and Ui j,kl related as in (27).

Next we will show that (25) and (28) are equivalent. Clearly (25) implies (28), so
it remains to establish the reverse implication. Hence we assume that (28) is satisfied
and we want to show that (25) holds for a unique square matrix U = (Ui j,kl) of order
s2 with Ui j,kl = Ui j,lk . Indeed, since �(P) is a quadratic function of P with �(0) = 0,
there is a unique such matrix U and a unique set of coefficients ci j,k satisfying
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�(P)i j =
∑

k

ci j,k Pk −
∑

k,l

Ui j,kl Pk Pl (109)

for all i, j . On the other hand, according to lower part of (28),

�(1 − P)i j =
∑

k

ci j,k(1 − Pk) −
∑

k,l

Ui j,kl(1 − Pk)(1 − Pl) (110)

should agree with (109). The quadratic terms of (109) and (110) are clearly identical,
but in order for the linear and constant terms to agree as well,

ci j,k =
∑

l

Ui j,kl (111)

must hold for all k (recall that Ui j,kl = Ui j,lk). On the other hand, we can add and
subtract linear terms in (109) according to

�(P)i j = 1

2

∑

k,l

Ui j,kl (Pk(1 − Pl) + Pl(1 − Pk)) +
∑

k

(ci j,k − di j,k)Pk, (112)

where

di j,k =
∑

l

Ui j,kl

for all k. But di j,k = ci j,k according to (111), so that the second sum in (112) vanishes,
and the proposition is proved. ��
Proof of Proposition 2 First of all, since

∑∞
τ=0(G

0 − �U)τ is assumed to converge,
it can be seen by insertion that (36) provides a solution to (33).

In order to prove (37), we get from the Cauchy–Schwarz inequality

|Vt,i j | ≤ √
Vt,i i Vt, j j ≤ max(Vt,i i , Vt, j j ),

for all pairs i, j . This implies

|V t |∞ = max
1≤i, j≤s

|Vt,i j | = max
1≤i≤s

Vt,i i = max
1≤i≤s

Ec
(
(P0

ti − Pt )
2|Pt

)

Pt (1 − Pt )
.

We then use the definitions of | · |∞ and ‖ · ‖ in Table 2, the triangle inequality and
the matrix norm inequality ‖(G − �U)τ�‖ ≤ ‖(G − �U)τ‖‖�‖ in order to prove
(38), since

|V|∞ = |vec(V)|∞
=

∣
∣
∣
∣
∣

∞∑

τ=0

(G0 − �U)τ�U1

∣
∣
∣
∣
∣
∞
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≤
∞∑

τ=0

∣
∣
∣(G0 − �U)τ�U1

∣
∣
∣∞

≤
∞∑

τ=0

‖(G0 − �U)τ‖‖�‖|U1|∞
= Mixtime‖�‖|U1|∞.

We also have that

‖�‖ = max
i, j

∑

1≤k,l≤s

|	i j,kl |

≤ max
i, j

∑

1≤k,l≤s

|1{(k,l)=(i, j)} − γk1{ j=l} − γl1{i=k} + γkγl |

≤ max
i, j

⎛

⎝1 + 2
∑

k

γk +
s∑

k,l=1

γkγl

⎞

⎠

= 4.

Finally, (39)–(40) are proved in the same way as (37)–(38). ��
Proof of Proposition 3 In order to prove (41), we introduce for each pair of integers
τ, α with 0 ≤ α ≤ τ the set Nτα = {n = (n0, n1, . . . , nα+1)} of

(
τ
α

)
sequences n such

that 0 = n0 < n1 < · · · < nα < nα+1 = τ + 1. Then

(G0 − �U)τ =
τ∑

α=0

(−1)α
∑

n∈Nτα

(
α+1∏

i=1

(U{i>1}(G0)ni −ni−1−1�{i<α+1})
)

, (113)

where the terms in Nτα correspond to all possible ways of picking α terms �U and
τ − α terms G0. Taking the matrix norm of (113) and multiplying by U from the left
and � from the right, it follows from matrix norm inequalities that

‖U‖‖(G0 − �U)τ‖‖�‖

≤
τ∑

α=0

∑

n∈Nτα

‖U‖
∥
∥
∥
∥
∥

α+1∏

i=1

(U{i>1}(G0)ni −ni−1−1�{i<α+1})
∥
∥
∥
∥
∥

‖�‖

≤
τ∑

α=0

∑

n∈Nτα

‖U‖
α+1∏

i=1

(
‖U{i>1}(G0)ni −ni−1−1�{i<α+1}‖

)
‖�‖

≤
τ∑

α=0

∑

n∈Nτα

‖U‖
α+1∏

i=1

(
‖U‖{i>1}‖(G0)ni −ni−1−1‖‖�{i<α+1}‖

)
‖�‖

=
τ∑

α=0

∑

n∈Nτα

α+1∏

i=1

(‖U‖‖(G0)ni −ni−1−1‖‖�‖). (114)
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Summing (114) over τ , then changing the order of summation between α and τ , and
finally substituting mi = ni − ni−1 − 1, we find that

‖�‖‖U‖Mixtime = ‖U‖
∞∑

τ=0

‖(G0 − �U)τ‖‖�‖

≤
∞∑

τ=0

τ∑

α=0

∑

n∈Nτα

α+1∏

i=1

(
‖U‖‖(G0)ni −ni−1−1‖‖�‖

)

=
∞∑

α=0

∞∑

τ=α

∑

n∈Nτα

α+1∏

i=1

(
‖U‖‖(G0)ni −ni−1−1‖‖�‖

)

=
∞∑

α=0

∞∑

m1=0

· · ·
∞∑

mα+1=0

α+1∏

i=1

(
‖U‖‖(G0)mi ‖‖�‖

)

=
∞∑

α=0

α+1∏

i=1

(

‖U‖
∞∑

m=0

‖(G0)m‖‖�‖
)

=
∞∑

α=0

(

‖U‖
∞∑

m=0

‖(G0)m‖‖�‖
)α+1

= ‖�‖‖U‖
∞∑

m=0

‖(G0)m‖/(1 − ‖�‖‖U‖
∞∑

m=0

‖(G0)m‖). (115)

It can be seen that (G0)τ vec(V) = vec((B0)τ V((B0)T )τ ), by induction with respect
to τ . Writing (G0)τ = (G0(τ )

i j,kl) and (B0)τ = (b0(τ )
ik ), this yields

G0(τ )
i j,kl = b0(τ )

ik b0(τ )
jl ,

and

‖(G0)τ‖ = max
i, j

∑

k,l

|G0(τ )
i j,kl |

= max
i, j

s∑

k,l=1

|b0(τ )
ik ||b0(τ )

jl |

= max
i

∑

k

|b0(τ )
ik | · max

j

∑

l

|b0(τ )
jl |

= ‖(B0)τ‖2. (116)

Formula (41) then follows from (115) to (116). In order to verify (42), we use (106)
and the Jordan decomposition (104) to deduce

(B0)τ = Qdiag(0,�τ
2, . . . ,�τ

r )Q−1,
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where the middle matrix on the right hand side is block diagonal, with ‖�τ
l ‖ =

O(τ jl− jl−1−1|λl |τ ) as τ → ∞, and jl − jl−1 the order of the square matrix �l , see
Cox and Miller (1965) for details. In particular, this implies that ‖�τ

l ‖ converges to
zero at a faster rate than (|λ2| + ε)τ as τ → ∞ for any 0 < ε < 1 − |λ2|. Then (42)
follows, since

‖(B0)τ‖ ≤ ‖Q‖
(

max
2≤l≤r

‖�τ
l ‖

)

‖Q−1‖.

Finally, (43) is a simple consequence of (41) and (42), since

∞∑

τ=0

‖(B0)τ‖2 ≤ C2
∞∑

τ=0

(|λ2| + ε)2τ

= C2

1 − (|λ2| + ε)2 .

��

Appendix C: Proof of Theorem 1

We start by showing that vec(V t ) and vec(�t ) satisfy a similar system of equations
as (33). To this end, since ε0

t = (I − 1γ )εt , the lower part of (22) implies a recursion

V t+1 = Ec
(
ε0

t+1(ε
0
t+1)

T |Pt
)

Pt (1 − Pt )
+

Ec

(
B0P0

t

(
B0P0

t

)T |Pt

)

Pt (1 − Pt )
+ ξ t+1

= (I − 1γ )�t (I − 1γ )T + B0V t (B0)T + ξ t+1, (117)

where ξ t+1 is a remainder term that is nonzero since we conditioned on Pt rather than
Pt+1 and divided by Pt (1 − Pt ) rather than Pt+1(1 − Pt+1) on the right hand side of
(117). Any departure of Ec(ε

0
t+1|Pt ) from E(ε0

t+1|Pt ) = 0 implies, in addition, that
a cross covariance term is added to ξ t+1.

In vec format we may rewrite (117) as

vec(V t+1) = �vec(�t ) + G0vec(V t ) + vec(ξ t+1), (118)

with � and G0 matrices defined by �vec(�t ) = vec((I − 1γ )�t (I − 1γ )T )) and
G0vec(V t ) = vec(B0V t (B0)T ) respectively. Hence their entries are as in (34) and
(35).
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For the standardized genetic drift covariance matrix, we first expand (31) as

�t = Ec
(
Ec(εt+1ε

T
t+1|Pt )|Pt

)

Pt (1 − Pt )

= Ec
(
E(εt+1ε

T
t+1|Pt )|Pt

)

Pt (1 − Pt )
+ ζ t

= Ec(�(Pt 1 + P0
t )|Pt )

Pt (1 − Pt )
+ ζ t , (119)

where the remainder term ζ t occurs when replacing the inner expectation E by Ec.
Then we expand �(Pt 1+P0

t ) as in (30) and take expectation conditionally on Pt , and
switch index from t to t + 1, to deduce that

vec(�t+1) = U1 − Uvec(V t+1) + Ut+1μt+1 + vec(ζ t+1)

= U1 − Uvec(V t+1) + ηt+1. (120)

where Ut = (Uti j,k) is an s2 × s matrix, whose elements are defined as Uti j,k =
(1 − 2Pt )

∑
l Ui j,kl , so that the last term on the right hand side of (30) can be written

as Ut P0
t . The last term on the right hand side of (120) is defined by

ηt = Utμt + vec(ζ t )

with μt as in (44).
Now (118) and (120) define a system of equations which only differs from (33)

in that the remainder terms vec(ξ t+1) and ηt+1 have been added. For simplicity of
notation, we write ξ̃ t = vec(ξ t ) = vec(ξt,i j ; 1 ≤ i, j ≤ s), a column vector of length
s2. Combining and (118) and (120), we get

(
vec(�t+1)

vec(V t+1)

)

= T
(

vec(�t )

vec(V t )

)

+
(

U1
0

)

+
(

ηt+1 − Uξ̃ t+1

ξ̃ t+1

)

, (121)

where

T =
(

0 −U
0 I

) (
I 0
� G0

)

.

On the other hand, it follows from (33) that
(

vec(�)

vec(V)

)

= T
(

vec(�)

vec(V)

)

+
(

U1
0

)

. (122)

Taking the difference of (121) and (122), we find that

δt =
(

vec(��t )

vec(�V t )

)

,

satisfies
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δt+1 = Tδt +
(

ηt+1 − Uξ̃ t+1

ξ̃ t+1

)

�⇒ δt =
∞∑

τ=0

Tτ

(
ηt−τ − Uξ̃ t−τ

ξ̃ t−τ

)

, (123)

provided that the series converges. It can be shown by induction with respect to τ that

Tτ =
(−U(G0 − �U)τ−1� −U(G0 − �U)τ−1G0

(G0 − �U)τ−1� (G0 − �U)τ−1G0

)

for all τ ≥ 1. Inserting this formula into (123), one obtains

δt =
(−ηt

0

)

+
(−U

I

) ∞∑

τ=0

(G0 − �U)τ
(
�ηt−τ−1 + ξ̃ t−τ

)
. (124)

Since ξ̃ t contains the same elements as ξ t , we have that |ξ̃ t |∞ = |ξ t |∞, and moreover,
|ηt |∞ ≤ |ζ t |∞ + ‖Ut‖|μt |∞. Hence it follows, by taking the | · |∞-norm of the upper
and lower part of (124), that

|��t |∞ ≤ |ζ t |∞+‖Ut‖|μt |∞
+‖U‖

∞∑

τ=0

‖(G0−�U)τ‖ (‖�‖(|ζ t |∞+‖Ut−τ−1‖|μt−τ−1|∞)+|ξ t−τ |∞
)

(125)

and

|�V t |∞ ≤
∞∑

τ=0

‖(G0 − �U)τ‖ (‖�‖(|ζ t |∞ + ‖Ut−τ−1‖|μt−τ−1|∞) + |ξ t−τ |∞
)
.

(126)

Since

∑

k

|Uti j,k | ≤
∑

k

∣
∣
∣
∣
∣

∑

l

Ui j,kl

∣
∣
∣
∣
∣
≤

∑

kl

|Ui j,kl |,

if follows that ‖Ut‖ ≤ ‖U‖. Hence we may replace ‖Ut‖ and ‖Ut−τ−1‖ in
(125)–(126) by their upper bounds ‖U‖, take conditional expectation Ec on both
sides of these two inequalities, and finally letting t → ∞, thereby obtaining (48)
and (49). ��

Appendix D: Verifying formulas for �(Pt) and Nappr
eV for various reproduction

and migration models.

We will start by verifying (30) (and hence also (120)) separately for reproduction
scenarios 1, 2 and 3.
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Quasi equilibrium for subdivided populations 1105

Reproduction scenario 1. For this reproduction scenario, we write

P∗
tki = Ptk + (P̃tk − Ptk) + (P∗

tki − P̃tk).

It follows from (10) and (53) that

εt+1,i =
s∑

k=1

bik(P̃tk − Ptk) +
s∑

k=1

bik(P∗
tki − P̃tk).

We further have that

Var(P̃tk − Ptk |Pt ) =
(

1

2Nek
− 1

2Nuk

)

Ptk(1 − Ptk)(1 + o(1)) (127)

and

Var(P∗
tki − P̃tk |Pt ) = Ptk(1 − Ptk)

2Nukmki
(1 + o(1)).

Combining the last three displayed expressions, we arrive at (54). ��
Reproduction scenario 2. Write

εt+1,i =
s∑

k=1

bik(P∗
tki − Ptk), (128)

introduce Cki j = Cov(νl
ki , ν

l
k j ) and C̃ki j = Cov(νl

ki , ν
l ′
k j ) when l �= l ′. Because

of the assumed exchangeability of {νl
k}2Nuk

l=1 , Cki j and C̃ki j do not depend on l and
(l, l ′) respectively. Since (2) holds exactly, with remainder term o(1) equal to zero, the
variance of the left hand side must be zero, and this implies C̃ki j = −Cki j/(2Nuk −1).
Therefore, it follows from (55) that

Cov(P∗
tki , P∗

tk j |Pt ) = 2Nuk PtkCki j + 2Nuk Ptk(2Nuk Ptk − 1)C̃ki j

(2Nuk)2mki mkj

∼ Cki j

mki mkj

Ptk(1 − Ptk)

2Nuk
.

Combining this with (128), we arrive at

�(Pt )i j =
s∑

k=1

bikb jk
Cki j

2Nukmki mkj
Ptk(1 − Ptk),

which is equivalent to (56). ��
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Reproduction scenario 3. In order to verify (120), we first notice from (10) and (57)
that

εt+1,i = (Pt+1,i − P̌ti ) +
s∑

k=1

bik(P̃tk − Ptk) +
s∑

k=1

(Bik − bik)Ptk + rem, (129)

with rem = ∑s
k=1(Bik − bik)(P̃tk − Ptk) a remainder term that vanishes when Nek =

Nuk for all k and which is otherwise asymptotically negligible when αi → ∞ as
N → ∞. It follows from (57) and (59) that

Var(Pt+1,i − P̌ti |Pt ) ∼ (BPt )i (1 − (BPt )i )

2Nui
(1 + o(1)),

and

Var

(
s∑

k=1

(Bik − bik)Ptk |Pt

)

= 1

αi + 1

s∑

k=1

P2
tkbik − 1

αi + 1

s∑

k,l=1

Ptk Ptlbikbil

= 1

αi + 1

s∑

k=1

(Ptk − (BPt )i )
2 bik .

In conjunction with (127) and (129), this proves (60). ��
Verifying (65). The reproduction scenario 3 expression for � is obtained by combining
the upper equation of (33) with the relevant entries for Ui j,kl in Table 3. When Nek =
Nuk for k = 1, . . . , s, all non-diagonal (i �= j) terms vanish and then the denominator
of (62) can be written as

2u�uT = 2
∑

i, j,k,l

ui u jUi j,kl − 2
∑

i, j

ui u j

∑

k,l

Ui j,kl Vkl

= 2
∑

i,k,l

u2
i Uii,kl − 2

∑

i

u2
i

∑

k,l

Uii,kl Vkl

= 1

N

(

1 −
∑

i

ui (BVBT )i i

)

+ 2
∑

i

u2
i

αi + 1

(
∑

k

bik Vkk − (BVBT )i i

)

,

which yields (65). ��
Deriving explicit expressions of N appr

eV and Fappr
ST for the island model. Since γ = u

for the island model, we can apply (62) and (63), with u = 1T /s, to deduce

N appr
eV = 1

21T �1/s2
(130)

and

Fappr
ST = 1

s
tr(V). (131)
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We will start by giving a more explicit expression for V . It follows from (66) that
Bq = (1 − m)q for any vector q with (q, 1) = 0. Hence λ2 = · · · = λs = 1 − m. In
this case it is particularly convenient to put λ0

1 = 1 − m in the definition of B0, since
then, according to (106), B0 = (1 − m)I. The lower part of (33) can be written as
V = B0V(B0)T + �̃, where �̃ = (I − 1γ )�(I − γ )T . We can repeatedly apply this
equation to deduce that

V =
∞∑

r=0

(1 − m)2r �̃ = �̃

1 − (1 − m)2 ,

and hence (131) can be rewritten as

(
1 − (1 − m)2

)
Fappr

ST = 1

s
tr(�̃) = 1

s

(

tr(�) − 1

s
1T �1

)

. (132)

Therefore, in view of (130) and (132), it remains to find �.
For reproduction scenario 1, it can be deduced from (120) that (54) simplifies to

�i j =
(

1

2Ne
− 1

2N/s

) (
2m − m2

s
+ (1 − m)21{i= j}

)

+ 1{i= j}
2N/s

−
(

1

2Ne
− 1

2N/s

) (
m2

s2 tr(V)+ Vii +Vj j

2

(
2

m

s
(1 − m)+1{i= j}(1 − m)2

))

−1{i= j}
2N/s

(m

s
tr(V) + (1 − m)Vii

)

for the island model, so that

2

s2 1T �1 = 1

s Ne

(

1 − 1

s
tr(V)

)

= 1

s Ne
(1 − Fappr

ST ) (133)

and

1

s
tr(�̃) = s − 1

s

1

2Ñ
(1 − Fappr

ST ). (134)

Combining (130) and (133) we arrive at (67), and inserting (134) into (132) and solving
for Fappr

ST we arrive at (68).
For reproduction scenario 3, a similar simplification of (60) leads to

2

s2 1T �1 = 1

s Ne
−

(
1

Ne
− 1 − (1 − m)2

N/s

)
1

s2 tr(V) + 2
(
1 − (1 − m)2

)

α + 1

1

s2 tr(V)

= 1

s Ne
−

(
1

Ne
− 1 − (1 − m)2

N/s

)
1

s
Fappr

ST + 2
(
1 − (1 − m)2

)

α + 1

1

s
Fappr

ST .

(135)
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1108 O. Hössjer, N. Ryman

and

1

s
tr(�̃) = s − 1

s

(
1

2Ñ
− (1 − m)2

2Ne

1

s
tr(V) + 1 − (1 − m)2

α + 1

1

s
tr(V)

)

= s − 1

s

(
1

2Ñ
− (1 − m)2

2Ne
Fappr

ST + 1 − (1 − m)2

α + 1
Fappr

ST

)

. (136)

Inserting (135) into (130) we arrive at (69), and plugging (136) into (132) and solving
for Fappr

ST we arrive at (70). ��

Appendix E: Proof of Theorem 2

In order to prove Theorem 2, we first need two lemmas, which we state for a single
biallelic locus:

Lemma 1 In the one locus biallelic definitions (12) and (13) of Nw
eV,t = Y/X and

Fw
ST,t = Z/Y , the conditional expected values of the numerators and denominators

equal

Ec(Y |Pt ) = Ec
(
Pw

t (1 − Pw
t )|Pt

)

=
(

1 − (w − γ )Vt (w − γ )T + (1 − 2Pt )(w − γ )μt

)
Pt (1 − Pt )

= (1 − tr(CY Vt ) + cY μt )Pt (1 − Pt ), (137)

Ec(Z |Pt ) = Ec

(
s∑

i=1

wi (Pti − Pw
t )2|Pt

)

=
(

s∑

i=1

wi Vti i − (w − γ )Vt (w − γ )T

)

Pt (1 − Pt )

= tr(CZ Vt )Pt (1 − Pt ) (138)

and

Ec(X |Pt ) = 2Ec

(
E((Pw

t+1 − Pw
t )2|Pw

t )|Pt

)

= 2
(

w(B − I)(Vt − ς t )(B − I)T wT + w(�t − ζ t )w
T
)

Pt (1 − Pt )

= (
tr

(
CX (Vt − ς t )

) + tr
(
C′

X (�t − ζ t )
))

Pt (1 − Pt ) (139)

respectively, where CY = (w−γ )T (w−γ ), cY = (1−2Pt )(w−γ ), CZ = diag(w)−
wT w, CX = 2(B − I)T (w − γ )T (w − γ )(B − I), C′

X = 2wT w, μt and ζ t are the
remainder terms defined in (44) and (119), and ς t another remainder term defined
below, in (140).
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Proof We only prove the first parts of (137)–(139), and leave the second part to the
reader. Starting with (137), we find that

Ec
(
Pw

t (1 − Pw
t )|Pt

)

= Pt (1 − Pt ) − Ec

(
(Pw

t − Pt )
2|Pt

)
+ (1 − 2Pt )Ec

(
Pw

t − Pt |Pt
)

= Pt (1 − Pt ) − Ec

(
((w − γ )P0

t )
2|Pt

)
+ (1 − 2Pt )Ec

(
(w − γ )P0

t |Pt

)

= Pt (1 − Pt )
(

1 − (w − γ )V t (w − γ )T + (1 − 2Pt )(w − γ )μt

)
,

where in the second equality we used Pw
t − Pt = (w − γ )Pt = (w − γ )P0

t . For (139)
we use (21) and (B − I)1 = 0 to deduce

Pw
t+1 = wPt+1

= wBPt + wεt+1

= Pw
t + w(B − I)Pt + wεt+1

= Pw
t + w(B − I)P0

t + wεt+1.

We introduce the ascertainment bias term

ς t = Ec
(
Ec

(
P0

t (P
0
t )

T |Pw
t , Pt

) |Pt
) − Ec

(
E

(
P0

t (P
0
t )

T |Pw
t , Pt

) |Pt
)

Pt (1 − Pt )
, (140)

which quantifies the effect of replacing the inner expectation E of P0
t (P

0
t )

T by Ec.
Then we can write

Ec

(
E

(
(Pw

t+1 − Pw
t )2|Pw

t

)
|Pt

)

= Ec

(
E

(
(Pw

t+1 − Pw
t )2|Pw

t , Pt

)
|Pt

)

= w(B − I)Ec

(
E

(
P0

t (P
0
t )

T |Pw
t , Pt

)
|Pt

)
(B − I)T wT

+wEc

(
E

(
εt+1ε

T
t+1|Pw

t , Pt

)
|Pt

)
wT

= w(B − I)Ec

(
P0

t (P
0
t )

T |Pt

)
(B − I)T wT − w(B − I)ς t (B − I)T wT Pt (1 − Pt )

+wEc

(
εt+1ε

T
t+1|Pt

)
wT − wζ t w

T Pt (1 − Pt )

= Pt (1 − Pt )
(

w(B − I)(V t − ς t )(B − I)T wT + w(�t − ζ t )w
T
)

.

In order to verify (138), we first write

Pt − Pw
t 1 = (I − 1w)Pt = (I − 1w)P0

t ,

which leads to
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Ec

(
(Pti − Pw

t )2|Pt

)
= Pt (1 − Pt )

(
(I − 1w)V t (I − 1w)T

)

i i
,

and then (138) follows since

s∑

i=1

wi

(
(I − 1w)V t (I − 1w)T

)

i i
=

s∑

i=1

wi V ti i − (w − γ )V t (w − γ )T .

��
Lemma 2 Let c be a 1 × s vector, C an s × s matrix, and define

ε = c(P0
t − μt Pt (1 − Pt )) + tr

(
C(P0

t (P
0
t )

T − Vt Pt (1 − Pt ))
)

.

Then

Ec(ε
2|Pt ) ≤ 2|c|21|Vt |∞ Pt (1 − Pt ) + 2|C|21κt , (141)

with

κt = max
1≤i≤s

Ec((P0
ti )

4|Pt ).

Proof Put c = (c1, . . . , cs) and C = (Ci j )
s
i, j=1. For simplicity, we omit conditioning

on Pt in the notation, writing Ec(·) = Ec(·|Pt ). Then

Ec(ε
2) ≤ 2Ec

⎛

⎝

(
∑

i

ci (P0
ti − μti Pt (1 − Pt ))

)2
⎞

⎠ + 2Ec

⎛

⎜
⎝

⎛

⎝
∑

i j

C ji P0
ti P0

t j

⎞

⎠

2
⎞

⎟
⎠

≤ 2Ec

⎛

⎝

(
∑

i

ci P0
ti

)2
⎞

⎠ + 2Ec

⎛

⎜
⎝

⎛

⎝
∑

i j

C ji P0
ti P0

t j

⎞

⎠

2
⎞

⎟
⎠

≤ 2
∑

i, j

|ci ||c j |Ec(|P0
ti P0

t j |) + 2
∑

i jkl

|C ji ||Clk ||Ec(

∣
∣
∣P0

ti P0
t j P0

tk P0
tl)

∣
∣
∣)

≤
∑

i, j

|ci ||c j |(Ec((P0
ti )

2) + Ec((P0
t j )

2)

+ 0.5
∑

i jkl

|C ji ||Clk |(Ec(P0
ti )

4 + Ec(P0
t j )

4 + Ec(P0
tk)

4 + Ec(P0
tl)

4)

≤ 2
∑

i, j

|ci ||c j ||V t |∞ Pt (1 − Pt ) + 2
∑

i jkl

|C ji ||Clk |κt ,

using the Cauchy Schwarz Inequality in the fourth step. The last term is identical to
the right hand side of (141). ��
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Proof of Theorem 2 When all loci are biallelic (n(x) ≡ 2), formulas (75) and (78)
simplify to

Gw
ST,t = Z/Y,

Nw
eV,t = Y/X,

respectively, where

X = 2
n∑

x=1

E
((

Pw
t+1(x) − Pw

t (x)
)2 |Pw

t (x)
)

,

Y =
n∑

x=1

Pw
t (x)(1 − Pw

t (x)),

Z =
n∑

x=1

tr
(

CZ P0
t (x)P0

t (x)T
)

are multilocus extensions of the corresponding numerators and denominators X , Y , Z
of Lemma 1, where also CZ is defined. We assume that Pti (x) is the value of the overall
allele frequency Pti (x, a) of some (arbitrary) of the two alleles a = 1, 2 at locus x
and subpopulation i = 1, . . . , s, Pt (x) = ∑s

i=1 γi Pti (x), P0
ti (x) = Pti (x) − Pt (x)

and P0
t (x) = (P0

ti (x); i = 1, . . . , s)T .
It will be convenient to condition on the allele frequency spectrum Pt =

{Pt (x); x = 1, . . . , n}, writing

Gw
ST,t = (Z̄ + εZ )/(Ȳ + εY ),

Nw
eV,t = (Ȳ + εY )/(X̄ + εX ),

(142)

where

X̄ = Ec(X |Pt )

=
∑

x

Pt (x)(1 − Pt (x))
(
tr

(
CX (V t (x) − ς t (x))

) + tr
(
C′

X (�t (x) − ζ t (x))
))

,

Ȳ = Ec(Y |Pt ) =
∑

x

Pt (x)(1 − Pt (x))
(
1 − tr (CY V t (x)) + cY (x)μt

)
,

Z̄ = Ec(Z |Pt ) =
∑

x

Pt (x)(1 − Pt (x))tr(CZ V t (x)),

can be deduced from Lemma 1, using the same definitions of CX , C′
X and CY as there.

Moreover, V t (x), �t (x), cY (x) = (1 − 2Pt (x))(w − γ ), μt (x), ζ t (x) and ς t (x) are
the values of V t , �t , cY , μt , ζ t and ς t at locus x . The remaining three quantities of
(142) are the residual terms

εX = 2
∑

x

E
((

Pw
t+1(x) − Pw

t (x)
)2 |Pw

t (x)
)

−2
∑

x

Ec

(
E

((
Pw

t+1(x) − Pw
t (x)

)2 |Pw
t (x)

)
|Pt (x)

)
,
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1112 O. Hössjer, N. Ryman

εY =
∑

x

cY (x)(P0
t (x, a) − μt Pt (x)(1 − Pt (x))), (143)

−
∑

x

tr
(

CY (P0
t (x)(P0

t (x))T − V t (x)Pt (x)(1 − Pt (x)))
)

,

εZ =
∑

x

tr
(

CZ (P0
t (x)(P0

t (x))T − V t (x)Pt (x)(1 − Pt (x)))
)

.

It follows from the definitions of Gappr,w
ST and N appr,w

eV in (51) and (50) that we can
write

Gappr,w
ST = Z appr/Y appr,

N appr,w
eV = Y appr/X appr (144)

with

X appr =
∑

x

Pt (x)(1 − Pt (x))
(
tr (CX V) + tr

(
C′

X�
))

,

Y appr =
∑

x

Pt (x)(1 − Pt (x)) (1 − tr (CY V)) ,

Z appr =
∑

x

Pt (x)(1 − Pt (x))tr(CZ V).

Taking the difference of (142) and (144), we find that

Gw
ST,t − Gappr,w

ST = Z̄

Ȳ
− Z appr

Y appr + Z̄ + εZ

Ȳ + εY
− Z̄

Ȳ

≈ Z̄

Ȳ
− Z appr

Y appr + 1

Ȳ
εZ − Z̄

Ȳ 2
εY − 1

Ȳ 2
εY εZ + Z̄

Ȳ 3
ε2

Y , (145)

where in the last step we made a second order Taylor expansion. The first term on the
right hand side of (145) can be further approximated as

Z̄

Ȳ
− Z appr

Y appr = 1

Ȳ
(Z̄ − Z appr) − Z appr

Ȳ Y appr
(Ȳ − Y appr)

≈ 1

Y appr (Z̄ − Z appr) − Z appr

(Y appr)2 (Ȳ − Y appr)

≈ 2

H eq
T (1 − tr (CY V))

· 1

n
(Z̄ − Z appr) (146)

− 2tr(CZ V )

H eq
T (1 − tr (CY V ))2 · 1

n
(Ȳ − Y appr)

:= C1

n
(Z̄ − Z appr) − C2

n
(Ȳ − Y appr),
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Quasi equilibrium for subdivided populations 1113

where in the second step we replaced Ȳ and Z̄ by Y appr and Z appr, in the third step we
approximated the gene diversity

HT t = Hγ
T t = 2

n

∑

x

Pt (x)(1 − Pt (x)) ≈ H eq
T ,

in (76) by its quasi equilibrium limit (20), which is accurate, by a Law of Large
Numbers argument, for large n. In the last step of (147) we introduced the constants
C1 and C2 in order to simplify notation.

By the definition of εY and εZ we have Ec(εY |Pt ) = Ec(εZ |Pt ) = 0, and, since
Ȳ and Z̄ are both functions of Pt , it follows that the first two terms of the last line of
(145) have zero mean. Since all loci are in linkage equilibrium, the terms on the right
hand sides of all three equations in (143) are independent for different x . By Lemma
2 it then follows, after some computations, that

|Ec

(

− 1

Ȳ 2
εY εZ + Z̄

Ȳ 3
ε2

Y

)

| ≤ C ′
3

n
(147)

for some constant C ′
3, independently of n. Combining (145), (147) and (147), using

Pt (x)(1 − Pt (x)) ≤ 1/4, |tr(CY (V t (x) − V)| ≤ |CY |1|V t (x) − V|∞ and analogous
estimates for all x = 1, . . . , n, we find that

|Ec(G
w
ST,t ) − Gappr,w

ST | ≤ C1

n
Ec|Z̄ − Z appr| + C2

n
Ec|Ȳ − Y appr| + C ′

3

n

≤ C1|C Z |1 + C2|CY |1
4n

∑

x

Ec(|V t (x) − V|∞)

+C2|w − γ |1
4n

∑

x

Ec(|μt (x)|∞) + C ′
3

n
.

Then we use |CZ |1 ≤ 2 and |CY |1 ≤ |w − γ |21 and let t → ∞, in order to deduce that

lim
t→∞ |Ec(G

w
ST,t )−Gappr,w

ST | ≤ 2C1 + C2|w − γ |21
4

|�V|eq+ C2|w − γ |1
4

|μ|eq+ C ′
3

n

=: C ′
1|�V|eq + C ′

2|μ|eq + C ′
3

n
,

since, for instance, the limit limt→∞ Ec(|V t (x) − V|∞) = |�V|eq in (48) exists for
all x . As similar analysis shows that

lim
t→∞ |Ec(Nw

eV,t ) − N appr,w
eV | ≤ C3

n
lim

t→∞ Ec|Ȳ − Y appr|

+C4

n
lim

t→∞ Ec|X̄ − X appr| + C ′
9

n

≤ C3|CY |1 + C4|CX |1
4

|�V|eq + C4|C′
X |1

4
|��|eq + C3|w − γ |1

4
|μ|eq
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1114 O. Hössjer, N. Ryman

+C4|CX |1
4

|ς |eq + C4|C′
X |1

4
|ζ |eq + C ′

9

n

≤ C3|w − γ |21 + 4C4|w − γ |21
4

|�V|eq + 2C4

4
|��|eq + C3|w − γ |1

4
|μ|eq

+4C4|w − γ |21
4

|ς |eq + 2C4

4
|ζ |eq + C ′

9

n

=: C ′
4|�V|eq + C ′

5|��|eq + C ′
6|μ|eq + C ′

7|ς |eq + C ′
8|ζ |eq + C ′

9

n
,

where

|ς |eq = lim
t→∞ Ec(|ς t |∞) (148)

is an asymptotic upper bound for the remainder terms ς t (x), defined in the same way
as (45)–(47), and

C3 = 2/
(
H eq

T (tr(CX V) + tr(C′
X�))

)
,

C4 = 2 (1 − tr(CY V)) /
(

H eq
T (tr(CX V) + tr(C′

X�))2
)

.

��

Appendix F: Details from Sect. 11

Proof of Proposition 4 Let Qi j,kl denote the probability that two different genes from
subpopulations i and j have their parents in subpopulations k and l respectively, and
let pi jk be the coalescence probability defined in (84).

It is possible to compute qt+1,i j by conditioning on the parental subpopulation k and
l one generation back in time, and then look at the ancestry of the parents t generations
back in time. Since coalescence can only appear when k = l, we find that

qt+1,i j =
∑

k,l

Qi j,kl(1 − pi jk)
{k=l}qt,kl .

This equals the recursion in (82), with

Di j,kl = Qi j,kl(1 − pi jk)
{k=l}. (149)

On the other hand, we can rewrite the gene diversity recursion (26) as

E(Ht+1,i j |Pt ) =
(

1 − 1

2Nui

){i= j} ∑

k,l

Qi j,kl(1 − pi jk)
{k=l} Htkl

(
1 − 1

2Nuk

){k=l} ,

since (1 − 1/(2Nui ))
{i= j} is the probability that two genes, drawn with replace-

ment from subpopulations i and j in generation t + 1 are different, and Htkl/(1 −
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Quasi equilibrium for subdivided populations 1115

1/(2Nuk))
{k=l} is the probability that two different genes from subpopulations k and

l in generation t have different alleles. Hence we see from (26) that

Ai j,kl =
(

1 − 1
2Nui

){i= j}

(
1 − 1

2Nuk

){k=l} Qi j,kl(1 − pi jk)
{k=l},

from which (83) follows. ��
We will derive explicit expressions of the matrix elements Di j,kl in Proposition 4.

To this end, one could either calculate the coefficients Ui j,kl of the covariance matrix
expansion (25), and then use Propositions 1 and 4 in order to find Di j,kl . Alternatively,
one may employ coalescence probabilities and obtain the elements of D directly from
(82). We use this latter approach in order to prove the following:

Proposition 7 Asymptotically, for large populations and reproduction scenario 2, the
elements of D have the form

Di j,kl = bik

⎛

⎝
bil − 1{k=l}

2Nui

1 − 1
2Nui

⎞

⎠

{i= j}
b{i �= j}

jl

(
1 − pi jk

){k=l} + o(N−1), (150)

where pi jk is the coalescence probability (84) that two genes from subpopulations i
and j , that have their parents in k, have the same parent, and

σi jk(N ) = 1

mki mkj
·
{

E
(
νl

ki (ν
l
ki − 1)

)
, i = j,

E
(
νl

kiν
l
k j

)
, i �= j.

(151)

For reproduction scenario 3 with αi ≡ ∞, it holds that

Di j,kl = bikb jl
(
1 − pi jk

){k=l} + o(N−1), (152)

with coalescence probability pi jk = 1/(2Nek), so that σi jk(N ) in (84) equals

σi jk(N ) = Nuk

Nek
. (153)

Nagylaki (2000) has derived a recursion that generalizes (152) when Nek = Nuk

for probabilities that concern not only the time when but also the subpopulation where
coalescence of two genes from subpopulations i and j occurs. The constant σi jk(N )

was defined in Hössjer (2011). As mentioned in Sect 11.1, it can be interpreted as the
coalescence rate of a pair of lines from subpopulations i and j , when both of these
migrate backwards to k.

Proof of Proposition 7 In order to establish (150) and (152), we will use (149), and
hence we need to find expressions for Qi j,kl and pi jk . Starting with reproduction
scenario 2, we have
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1116 O. Hössjer, N. Ryman

Qi j,kl =
⎧
⎨

⎩

bikb jl , i �= j,
2Nui bik(2Nui bik − 1)/(2Nui (2Nui − 1)), i = j, k = l,
2Nui bik · 2Nui bil/(2Nui (2Nui − 1)), i = j, k �= l,

(154)

since the two genes are drawn without replacement, and an exact fraction bik of the
parents of the offspring genes of subpopulation i originate from subpopulation k, and
similarly, an exact fraction b jl of the genes in j to have their parent in l. We can rewrite
(154) more compactly as

Qi j,kl = bik

⎛

⎝
bil − 1{k=l}

2Nui

1 − 1
2Nui

⎞

⎠

{i= j}
b{i �= j}

jl .

It follows for instance from Hössjer (2011) that the coalescence probability pi jk has
the form (84), and this completes the proof of (150).

For reproduction scenario 3 with αi ≡ ∞, we simply have

Qi j,kl = bikb jl ,

since the parental subpopulations are drawn independently for two genes of subpopu-
lations i and j , from the probability distributions corresponding to rows i and j of B.
Moreover, the coalescence probability is 1/(2Nek), since this is the probability that
the two parents in k originate from the same gene of a breeder, and this completes the
proof of (152). ��
Proof of Theorem 3 We will use (87) in order to prove (88). By Perron–Frobenius’
Theorem, there exists a unique largest eigenvalue λ of D, with corresponding left and
right eigenvectors l = (li j ) and r = (ri j ), which can be normalized so that

∑

i j

li j = 1,

∑

i j

li j ri j = 1.

By a Jordan decomposition of D, it follows that

Dτ = λτ rl + o(λτ ) as τ → ∞.

Our asymptotic analysis N → ∞ is equivalent to letting the perturbation parameter

ε = 1

2N

tend to zero. In order to highlight the dependence of D = D(ε) on ε, we Taylor expand
its elements around ε = 0, as

Di j,kl = Di j,kl(ε) = bikb jl + Ḋi j,klε + o(ε).
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Quasi equilibrium for subdivided populations 1117

It follows from (150) that Ḋ = (Ḋi j,kl) has elements

Ḋi j,kl = −1{k=l}u−1
k bikb jlσi jk + 1{i= j}u−1

i bik(bil − 1{k=l})

for reproduction scenario 2 and

Ḋi j,kl = −1{k=l}u−1
k bikb jlσi jk

for reproduction scenario 3 with αi ≡ ∞. Clearly, D(0) = B ⊗ B is the Kronecker
product of B with itself for either reproduction scenario. It has largest eigenvalue
λ(0) = 1, since B is the transition matrix of an irreducible Markov chain, with a
unique largest eigenvalue 1. Moreover, the form of the left and right eigenvectors
l = l(ε) and r = r(ε) can be deduced from the left and right eigenvectors of B when
ε = 0, as

li j (0) = γiγ j ,

ri j (0) = 1.

It follows from perturbation theory of matrices (see for instance Nagylaki (1980) and
Van der AA et al. 2007), that

λ(ε) = 1 + λ̇ε + o(ε) as ε → 0,

where

λ̇ = l(0)Ḋr(0)

= −
∑

i jk

γiγ j u
−1
k bikb jlσi jk +

∑

ikl

γ 2
i u−1

i bik(bil − 1{k=l})

= −C +
∑

i

γ 2
i u−1

i (1 − 1)

= −C,

for reproduction scenario 2, with C as defined in (89). A similar (but simpler) analysis
shows that λ̇ = −C for reproduction scenario 3 with αi ≡ ∞. In view of (87), this
implies

Neπ = 1

2
WT (I − D)−11

= 1

2
WT

( ∞∑

τ=0

Dτ

)

1

= 1

2
WT

( ∞∑

τ=0

(
λτ rl + o(λτ )

)
)

1
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1118 O. Hössjer, N. Ryman

= 1

2

∞∑

τ=0

(
(WT rl1)λτ + o(λτ )

)

= 1

2

∞∑

τ=0

(
WT (1 + o(1))λτ + o(λτ )

)
(155)

= 1

2

∞∑

τ=0

(
λτ + o(λτ )

)

= 1

2(1 − λ)
(1 + o(1))

= 1

2Cε
(1 + o(1))

= N

C
(1 + o(1))

as ε → 0, or equivalently, as N → ∞, thereby proving (88). In the fifth equality
of (156) we used that r = r(ε) = 1 + o(1) as ε → 0, and in the sixth equality
WT 1 = ∑

i, j wiw j = 1, regardless of the choice of weight vector w.

We now turn to the proof of (90). It follows from Table 3 that ‖U‖ = O(N−1) for
both reproduction scenarios 2 and 3 (with αi ≡ ∞). Invoking the upper part of (33)
and (38), we deduce that

vec(�) = U1
(

1 + O(N−1Mixtime)
)

= U1
(

1 + O(N−1
)

,

where the last step follows from Proposition 3 and the fact that the migration rates are
kept fixed. Inserting the last expression into (50), we find that

N appr
eV = N

C ′ + o(N ), (156)

where

C ′ = 2N
s∑

i, j=1

γiγ j (U1)i j . (157)

It thus remains to verify, for both reproduction scenarios, that C ′ = C . Starting with
reproduction scenario 2, we find from Table 3 that

(U1)i j =
s∑

k,l=1

Ui j,kl =
s∑

k=1

Cki j uk

2Nui u j
, (158)

with Cki j = Cov(νl
ki , ν

l
k j ). By the assumptions of the theorem, the quantities σi jk(N )

in (151) will converge as N → ∞. Since the migration rates in M are fixed, it follows
that the covariances Cki j = Cki j (N ) will converge as well. With a slight abuse of

123

Author's personal copy



Quasi equilibrium for subdivided populations 1119

notation, we write Cki j also for the asymptotic N → ∞ limits. Inserting (158) into
(157), we find that

C ′ =
s∑

i, j,k=1

γiγ j
Cki j uk

ui u j
.

On the other hand, it follows from the definition of σi jk in (151), that each covariance
term Cki j can be rewritten as

Cki j = σi jkmki mkj − mki mkj + mki 1{i= j}. (159)

Inserting (159) into (157), it follows, after some computations, that

C ′ =
∑

i jk

γiγ j u
−1
k bikb jk

(
σki j − 1 + m−1

ki 1{i= j}
)

=
∑

i jk

γiγ j u
−1
k bikb jkσki j −

∑

i jk

γiγ j u
−1
k bikb jk +

∑

ik

γ 2
i u−1

k m−1
ki b2

ik

= C −
∑

k

u−1
k γ 2

k +
∑

i

u−1
i γ 2

i ,

= C,

and in view of (156), this proves (90).
For reproduction scenario 3 with αi ≡ ∞, it follows from Table 3 that

(U1)i j =
s∑

k,l=1

Ui j,kl =
s∑

k=1

bikb jk

(
1

2Nek
− 1

2Nuk

)

+ 1{i= j}
2Nui

.

Insertion of this expression into (157) leads to

C ′ = 2N
s∑

i, j,k=1

γiγ j bikb jk

(
1

2Nek
− 1

2Nuk

)

+ 2N
s∑

i=1

γ 2
i

2Nui

= 2N
s∑

k=1

γ 2
k

(
1

2Nek
− 1

2Nuk

)

+ 2N
s∑

i=1

γ 2
i

2Nui

=
s∑

k=1

u−1
k γ 2

k · 2Nuk

2Nek
(160)

=
s∑

k=1

u−1
k γ 2

k σk

= C,

where σk = σi jk is defined in (153). The last step of (160) follows easily by adding a
term σk on both sides of Eq. (91). ��
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1120 O. Hössjer, N. Ryman

Given two random variables X and Y , we put E0(Y/X)∗ = E0(Y )/E0(X), where
E0(X) = E(X |P0 = P01), a prediction of Y/X given that the allele frequencies of
the founder generation are the same in all subpopulations. The following proposition
shows that f̄ w

ST and f w
ST are weighted averages over t of E0(F̄w

ST,t )
∗ and E0(Fw

ST,t )
∗

respectively:

Proposition 8 The matrix H̄t = (H̄ti j )
s
i, j=1 of gene diversities, defined for a pair of

distinct genes, satisfies

E0
(
vec(H̄t )

) = 2P0(1 − P0)Dt
(

1 + O(N−1)
)

, (161)

and the fixation index in (98) is a weighted average

f̄ w
ST =

∞∑

t=0

ω̄t E0
(
F̄w

ST,t

)∗ + O(N−1) =
∞∑

t=0

ω̄t
E0

(
H̄w

T t − H̄w
St

)

E0
(
H̄w

T t

) + O(N−1),

(162)

of predictions E0

(
F̄w

ST,t

)∗
of the fixation index (95) over different time horizons t ,

with weights

ω̄t = WT Dt 1
∑∞

τ=0 WT Dτ 1
.

Analogously, the matrix Ht = (Hti j )
s
i, j=1 of gene diversities, when the pair of genes

is drawn with replacement, satisfies

E0 (vec(Ht )) = 2P0(1 − P0)At 1, (163)

and the fixation index (99) is a weighted average

f w
ST =

∞∑

t=0

ωt E0
(
Fw

ST,t

)∗ =
∞∑

t=0

ωt
E0

(
Hw

T t − Hw
St

)

E0
(
Hw

T t

) , (164)

with weights

ωt = WT At 1
∑∞

τ=0 WT Aτ 1
. (165)

It is implicit from the proof of Theorem 3 that the weights (165) correspond to a
probability distribution with mean O(N ), as discussed in Subsection 11.2.

Proof of Proposition 8 By means of an expansion (I − D)−1 = ∑∞
t=0 Dt , it is clear

that (98) can be rewritten as

f̄ w
ST =

∞∑

t=0

ω̄t
(WT − W S)Dt 1

WT Dt 1
, (166)
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given an assumption that the μ → 0 approximation in (98) is exact. On the other hand,
as in the proof of (82), it follows that we get a gene diversity recursion

E
(
vec(H̄t+1)|Pt

) = Dvec(H̄t ) (167)

instead of (29) when two genes are drawn without replacement. We prove (161) by
repeated use of (167). This yields

E0(vec(H̄t )) = E(vec(H̄t )|P0 = P01)

= Dt vec(H̄0)

= 2P0(1 − P0)Dt (1 + O(N−1)),

applying (94) with t = 0 in the last step. Invoking the definitions of H̄w
T t and H̄w

St into
(161), this yields

E0
(
H̄w

T t − H̄w
T t

) = 2P0(1 − P0)(WT − W S)Dt 1 + O(N−1),

E0
(
H̄w

T t

) = 2P0(1 − P0)WT Dt 1
(

1 + O(N−1)
)

,

where the last step follows as in the proof of Theorem 3 (see in particular (156)), since

WT Dt
(

1 + O(N−1)
)

= λt WT rl(1 + O(N−1)) + o(λt )

= λt WT r(1 + O(N−1)) + o(λt )

= λt (1 + O(N−1)) + o(λt )

= WT Dt 1
(

1 + O(N−1)
)

.

Hence it follows that

E0
(
F̄w

ST,t

) = (WT − W S)Dt 1 + O(N−1)

WT Dt 1
(
1 + O(N−1)

) = (WT − W S)Dt 1
WT Dt 1

+ O(N−1).

By inserting the last equation into (166) we arrive at (162).
Equations (163) and (164) are derived analogously, although the proof is simpler.

The reason is that the O(N−1) remainder terms vanish, since vec(H0) = 2P0(1−P0)1
holds exactly when P0 = P01. ��
Proof of Theorem 4 It will be convenient to rewrite (27) as

A = B ⊗ B − U = G − U, (168)

where G = (Gi j,kl) has elements Gi j,kl = bikb jl . The Jordan decomposition of B in
Appendix A implies that B0Bt−1 = Bt−1B0 = (B0)t for any non-negative integer t .
Since G0 = B0 ⊗ B0 and G = B ⊗ B, it is easy to see that this implies

G0Gt−1 = Gt−1G0 = (G0)t . (169)
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A similar calculation as in the proof of Theorem 3 (see in particular (156)) yields

∞∑

t=0

(G − U)t 1 = (1 − λ)−11 + o
(
(1 − λ)−1

)
, (170)

where λ is the unique largest eigenvalue of G − U. We will also make use of the fact
that

(WT − W S)G = (WT − W S)G0 = −W SG0, (171)

which follows since w = γ and

WT G = vec ((γ B) ⊗ (γ B))T

= vec(γ ⊗ γ )T

= WT ,

W SG = W S ((1γ ) ⊗ (1γ )) + W S

(
(1γ ) ⊗ B0

)
+ W S(B0 ⊗ (1γ )) + W SG0

= WT + 0 + 0 + W SG0

= WT + W SG0,

with 1 a column vector of length s, and

WT G0 = vec
(
(γ B0) ⊗ (γ B0)

)T

= vec (0 ⊗ 0)T

= 0.

Based on these preliminaries, we can rewrite the numerator of (99) as

(WT − W S) (I − (G − U))−1 1 = (WT − W S)

∞∑

t=0

(G − U)t 1

= (W S − WT )

∞∑

t=0

(

−Gt +
t−1∑

τ=0

Gτ U(G − U)t−τ−1

)

1

= (W S − WT )

∞∑

t=0

t−1∑

τ=0

(G0)τ U(G − U)t−τ−11

= (W S − WT )

∞∑

τ=0

(G0)τ U
∞∑

α=0

(G − U)α1

= (1 − λ)−1(W S − WT )(I − G0)−1U1 + o
(
‖U‖(1 − λ)−1

)
,
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using (169), (171) and the fact that (W S − WT )Gt 1 = (W S − WT )1 = 0 in the third
step, a change of variables α = t − τ − 1 in the fourth step and (170) in the fifth step.
Formula (170) also implies that the denominator of (99) equals

WT (I − (G − U))−1 1 = (1 − λ)−1 + o
(
(1 − λ)−1

)
.

In view of (168), we obtain formula (100) by taking the ratio of the last two displayed
equations. In order to prove that Fappr

ST equals the right hand side of (100) as well, it
follows, by the definition of � in (34), that

(W S�)kl =
s∑

i, j=1

γi 1{i= j}	i j,kl

=
s∑

i=1

γi	i i,kl

=
s∑

i=1

γi
(
1{(i,i)=(k,l)} − γk1{i=l} − γl1{i=k} + γkγl

)

= γk1{k=l} − γkγl

= (W S − WT )kl ,

which we can rewrite in vector format, as

W S� = W S − WT . (172)

A similar calculation shows that

(G0�)i j,kl =
s∑

m,n=1

(G0)i j,mn	mn,kl

=
s∑

m,n=1

b0
imb0

jn

(
1{(m,n)=(k,l)} − γk1{m=l} − γl1{n=k} + γkγl

)

= b0
ikb0

jl − γkb0
il

s∑

n=1

b0
jn − γlb

0
jk

s∑

m=1

b0
im + γkγl

s∑

m=1

b0
im

s∑

n=1

b0
jn

= b0
ikb0

jl

= G0
i j,kl ,

which we rewrite as

G0� = G0. (173)
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This yields

Fappr,γ
ST =

s∑

i=1

γi Vii

= W Svec(V)

= W S

∞∑

τ=0

(G0 − �U)τ�U1

= W S

∞∑

τ=0

(G0)τ�U1 + O(‖U‖2)

= (W S − WT )

∞∑

τ=0

(G0)τ U1 + O(N−2)

= (W S − WT )
(

I − G0
)−1

U1 + O(N−2),

where in the first step we used the definition (51) of Fappr,γ
ST , in the third step the

expansion (36) of vec(V) and in the fifth step the assumption ‖U‖ = O(N−1), (172),
(173) and the second part of (171).

Finally, formula (101) is proved in the same way as (100), replacing U by Ū =
B ⊗ B − D everywhere. ��

In order to compare the sizes of the fixation indeces when genes are drawn with
and without replacement, we formulate the following result:

Proposition 9 The fixation index in (99) can be written as

f w
ST = h̄w

T − h̄w
S + ∑s

i=1
wi −w2

i
2Nui

h̄ii

h̄w
T − ∑s

i=1
w2

i
2Nui

h̄ii

. (174)

In particular, for a strong migration limit where N → ∞ while the migration rates in
M are kept fixed, it holds that

f w
ST = f̄ w

ST +
s∑

i=1

wi − w2
i

2Nui
+ o(N−1)

wi =ui =1/s= f̄ w
ST + s − 1

2N
+ o(N−1). (175)

In order to illustrate this result, consider the island model under panmixia (m = 1),
for which it is well known that f̄ST = 0 for the canonical and uniform weighting
scheme wi = 1/s, reflecting the fact that subpopulations on the average are iden-
tical. However, even under panmixia, there will still be small differences between
subpopulations. It is shown in Hössjer (2013) (see also Latter and Sved 1981) that
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the replacement version fST of the fixation index captures this, in terms of a nonzero
value fST = (s −1)/(2N )+o(N−1). It also follows from Hössjer et al. (2013) or (68)
that the replacement version of the quasi equilibrium approximation of the fixation
index satisfies Fappr

ST = (s − 1)/(2N ) under panmixia.

Proof of Proposition 9 We have that

hw
i j =

(

1 − 1

2Nui

){i= j}
h̄w

i j ,

since the probability is (1 − 1/(2Nui ))
{i= j} that two genes are not the same when

drawn with replacement, and given this, they are different by state with probability
h̄w

i j , as defined in (96). It then follows from (97), and the analogous definitions of hw
S

and hw
T in terms of hw

i j , that

hw
S = h̄w

S −
s∑

i=1

wi

2Nui
h̄ii ,

hw
T = h̄w

T −
s∑

i=1

w2
i

2Nui
h̄ii .

By inserting these two equations into (99), we arrive at (174).
When migration rates are fixed and N → ∞, we have h̄i j = h̄w

T (1 + O(N−1)) for
all i, j , and hence (174) implies

f w
ST = f̄ w

ST + h̄w
T

∑s
i=1

wi −w2
i

2Nui
+ O(N−2)

h̄w
T

(
1 + O(N−1)

) ,

which can be simplified to (175). ��
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