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Pricing catastrophe risk in life (re)insurance
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(Accepted May 2012)

What is the catastrophe risk a life insurance company faces? What is the correct price of a catastrophe

cover? During a review of the current standard model, due to Strickler, we found that this model has

some serious shortcomings. We therefore present a new model for the pricing of catastrophe excess of

loss cover (Cat XL). The new model for annual claim cost C is based on a compound Poisson process

of catastrophe costs. To evaluate the distribution of the cost of each catastrophe, we use the Peaks

Over Threshold model for the total number of lost lives in each catastrophe and the beta binomial

model for the proportion of these corresponding to customers of the insurance company. To be able to

estimate the parameters of the model, international and Swedish data were collected and compiled,

listing accidents claiming at least twenty and four lives, respectively. Fitting the new model to data, we

find the fit to be good. Finally we give the price of a Cat XL contract and perform a sensitivity analysis

of how some of the parameters affect the expected value and standard deviation of the cost and thus

the price.

Keywords: catastrophe excess of loss; life reinsurance; catastrophe model; catastrophe data; Cat XL;

POT-model; Solvency II; internal models

1. Introduction

A catastrophic event, claiming many lives, can have a severe impact on a life insurance

company. In Solvency II, catastrophe risk is included in the calculation of the Solvency

Capital Requirements (SCR) either by a standard formula or by the use of an approved

internal model (Directive 2009/138/EC n.d.). Correctly assessing the catastrophe risk can

affect both SCR and the choice of reinsurance cover.

To protect itself from the consequences of a catastrophe, a life insurance company can

buy catastrophe excess of loss cover (Cat XL) from a reinsurer. A major question is how

one should price a contract giving such cover. The currently applied pricing model is due

to Strickler (1960). Strickler used data from the Statistical Bulletin of the Metropolitan

Life Insurance Company in New York who had supplied summaries of the accidents in

the USA which claimed five or more lives for the period 1946�1950.

The annual number of deaths for each million of population resulting from accidents

claiming m or more lives was approximated by the function

AðmÞ ¼ 8 � 1001=m � m�1=3 (1)
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From this equation, he derived an elegant pricing formula. Drawbacks with Strickler’s

model is that there is no statistical method to update A(m) in accordance to new data,

it assumes a constant deterministic rate of catastrophes and is limited to catastrophes

claiming at most 1500 lives. There have been some smaller adjustments proposed to

Stricklers model, see for example Harbitz (1992) and Alm (1990). These modifications

have however not addressed the main weaknesses of the model.
Taking into account the above mentioned shortcomings, a new model is suggested in

this paper.

2. A new model for life Cat XL pricing

We will present a model for catastrophes, how they will affect a life company and how to

use the model to price a Cat XL contract. It is a hierarchical model, which is easy to

implement in a statistical software package. Parameters can be estimated from real data.

The pricing of a Cat XL contract is the primary goal. The model is also suitable for

calculating the catastrophe risk exposure of a life company, hence it should be possible to

implement in an internal model for calculating SCR.

We will only model death claims, not disability claims. One reason for this is purely

practical, the authors’ total lack of disability data connected with catastrophic events.

Another is the experience of the reinsurance industry, which seems to be that in large

catastrophes, it is death claims that constitutes the main part of the total claim cost.

2.1. The catastrophe excess of loss contract

The catastrophe excess of loss (Cat XL) contract is defined as follows: If M or more

persons insured by the ceding company loose their lives as a result of a single event and if

the corresponding aggregate net retention (the part that is not ceded under another

reinsurance contract) payable by the ceding company exceeds the amount S, the excess

will be paid by the reinsurer, with the understanding that the maximum amount payable

by the reinsurer in respect of each such event does not exceed a specified amount L, this is

an L xs S Cat XL contract (A practical Guide to Reassurance n.d.).

How many deaths constitute a catastrophe? In the context of insurance, the cases where

at least three lives are lost in a single event are often considered to be catastrophic.

Therefore, M is typically chosen between three and five. The retention S in a Cat XL

contract is often chosen to be at least twice the retention the cedent has in its individual

life surplus contract. The choice of M and S ultimately depends on the cedent’s attitude to

risk.

2.2. The approach

We approach the problem of determining the price of a Cat XL contract in the following

manner: We use the peaks over thresholds (POT) model, see Rootzén and Tajvidi (1995),
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to describe the flow of catastrophes. Then we model the cost that each catastrophe will

inflict on a given Cat XL contract.

This breaks the problem into four parts:

(1) To describe the number of catastrophes K�K(T) that happen during a contract

period of length T.

(2) To give the number Xk of deaths from the kth catastrophe.

(3) To derive the number Yk of claims resulting from the Xk deaths.

(4) To asses the cost Zk of the Yk claims from the kth catastrophe.

Our goal is to calculate the expected value, variance and distribution of C(T), which is the

total claim cost on the Cat XL contract during its duration T. Usually T is one year,

so sometimes we will drop the index T for convenience with the understanding that the

contract duration T is assumed to be one. We express the total cost due to catastrophes

during the contract period as

CðTÞ ¼ C ¼
XK

k¼1

Zk (2)

Next we will specify how to model each part.

2.3. The peaks over thresholds model

The POT model can be used to study tail behaviour, events exceeding a certain threshold.

Given a sequence of random variables X1, X2. . .XK and a threshold level m, only

Xk:Xk]m are considered. We can think of the sequence as all accidents during T years,

where X 0
j denotes the death toll in accident j and that we are only interested in accidents

claiming at least m lives, discarding X 0
j if X 0

j Bm and putting XkðjÞ ¼ X 0
j if X 0

j � m, where

kðjÞ ¼ jfi; 1 
 i 
 j;X 0
i � mgj is the catastrophe number that accident j corresponds to.

The POT model assumes that the number Km of Xk is Poisson distributed and that the

exceedances Xk�m are independent and identically Pareto distributed.

To justify the use of the POT model, the threshold parameter m must be large enough

so that the exceedances are in the tail of the distribution. What constitutes large enough

cannot be known a priori, one must look at data and use for example quantile-quantile

plots (QQ-plots) to decide a level of m that is consistent with the model.

In the case were we study the distribution of lost lives in deadly accidents, it is known

that the far majority of such events are single accidents, that is, claiming one life. Using

the (perhaps outdated) formula (1) gives at hand that 97% of victims were in accidents

claiming one or two lives. It is therefore reasonable to believe that the POT model can

work in the life catastrophe setting with an m as low as three or four. This would be handy,

since as mentioned above, the Cat XL parameter M is often chosen to be three to five.

Since the number of deaths is a discrete random variable, it could be argued that it is

logical to use the discrete counterpart of the Pareto distribution, the Zeta distribution.

E. Ekheden & O. Hössjer354

D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
0:

55
 1

2 
Ja

nu
ar

y 
20

15
 



However, for practical purposes (e.g. parameter estimation with standard software), the

generalised Pareto distribution works more smoothly.

2.4. Catastrophe rate

According to the POT model, the number of catastrophes claiming at least m lives is a

Poisson process with intensity km per T years. Let Km denote the number of catastrophes

claiming at least m lives during T years.

We assume

(I) KmðTÞ ¼ Km ~ PoðkmTÞ.

We can view km ¼ k1 PrðX 0
i � mÞ as the intensity of a thinned Poisson process (Resnick

(1992)) with a thinning mechanism that retains accidents with at least m lost lives.

2.5. Number of deaths

First, let X 0 denote the death toll in an arbitrary accident. Let

PmðnÞ ¼ PrðX 0 ¼ njX 0 � mÞ and FmðnÞ ¼ PrðX 0 
 njX 0 � mÞ.
Since our interest is ‘catastrophes’, accidents where several persons have died, we are

really interested in the tail distribution of P1. This motivates the use of the POT model.

We assume, given a threshold m (thus only studying accidents claiming at least m lives),

(II) X1, X2. . .XK are independent, identically distributed (i.i.d) as X�Fm.

(III) X ¼ roundð ~XÞ, where round(x) is the integer closest to x.

(IV) ~X �GPDðm � 1
2
;rm; nmÞ, that is, ~X has a generalised Pareto distribution (GPD)

which has cumulative distribution function

Gðm�1
2
;r;nÞðxÞ ¼ 1 � ½1 þ nðx � m þ 1

2
Þ=r��1=n

where m 2 <, x � m � 1
2

and s�0.

Thus, X 2 fm;m þ 1;m þ 2 . . .g and ~X 2 <. We say that X has a discrete generalised

Pareto distribution (DGPD), X �DGPDðm;r; nÞ where s�sm and j�jm.

If ~X ~ GPD m � 1

2
;r; n

� �
then

E½ ~X � ¼ m � 1

2
þ r

1 � n
ðnB1Þ

Varð ~XÞ ¼ r2

ð1 � nÞ2ð1 � 2nÞ
ðnB1=2Þ

The Pareto distribution can have a heavy tail, if j]1/2 the variance does not exist, and if

j]1 the same holds for the expected value.

By the definition of X and the fact that G has a decreasing density function, we find that

EðXÞ � Eð ~XÞ

but the larger m is, the closer the first moment of X it to that of ~X , provided it exists.
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2.6. Number of claims

What is the number Y 0 of claims that will hit a life insurer given a catastrophe with a

death toll of X? We want to investigate the properties of the random variable Y 0. It is clear

that 0 
 Y 0 
 X .

Define the market penetration q for a given life insurance company as

q ¼ Number of sold policies

Size of total population

We assume

(V) E½Y 0jX � ¼ qX

The expected number of claims is proportional to the market penetration q. The more

policies sold by the insurer, the likelier a claim.

We expect to see some dependence among lives for small catastrophes (think e.g. of

traffic accidents), but for very large catastrophes the number of claims should be close to

the expected value, that is

Y 0

X
� q for X >> 1: (3)

A distribution that would reflect the above mentioned properties is the Beta-binomial.

We assume

(VI) Y 0jX ; p�BinðX ; pÞ;

(VII) pjX ~ BetaðdðXÞq; dðXÞð1 � qÞÞ; 0BdðXÞB1:

Taken together (VI) to (VII) imply that Y 0jX �fBetabinðX ; q; dðX ÞÞ. Since EðpjX Þ ¼ q,

we have in particular that (V) holds.

For every catastrophe, a p 2 ½0; 1� is drawn from a beta distribution with mean q. This p

is the probability that a life in this catastrophe was insured by the cedent, and hence Y 0

the total number of insured lives lost is Bin(X,p).

How does d(X) affect the distribution? By Equation (3) and the discussion above, we

find that the two limits for d(X) are

lim dðXÞ ! 1 ) Y 0jX ~ BinðX ; qÞ
lim dðXÞ ! 0 ) PrðY 0 ¼ 0jXÞ ¼ 1 � q;PrðY 0 ¼ X jXÞ ¼ q

correspond to two extremes, independence and total dependence between lives.

Hence d(X) should be chosen so that d(X)0� as X0� and that d(X) is small for

small X.

We assume

(VIII) dðXÞ ¼ h � logðXÞ; h 2 <þ.

The choice of log(X) in (VIII) is made to get a certain degree of dependence for smaller

catastrophes and a slow growth towards independence for the really large catastrophes.
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This is because even large catastrophes, for example, involving airplanes and ferries, tend

to exhibit a large dependence among lost lives.

We notice that the variance

VarðY 0jXÞ ¼ qð1 � qÞ X þ XðX � 1Þ=ðdðXÞ þ 1Þð Þ;

is a decreasing function of d(X), with VarðY 0jXÞ ¼ Xqð1 � qÞ for complete independence

(d(X)��) and VarðY 0jX Þ ¼ X 2qð1 � qÞ for complete dependence (d(X)�0).

Remember that the Cat XL contract states that at least M insured persons have to die

in order to be a valid catastrophe claim.

Let Y 0
k�Beta binðXk; q; dðXkÞÞ be the number of insured lives lost in the kth

catastrophe, and put

Yk ¼ Y 0
k; if Y 0

k � M;
0; if Y 0

kBM:

�
(4)

Hence, Yk is the number of dead in a valid catastrophe claim.

It is worth to note that the beta distribution is known to be used in non-life catastrophe

modelling in a similar manner, see for instance Woo (1999), where the percentage of

damage done to a building due to a natural peril (storm, flood, earthquake) is modelled as

being beta distributed.

2.7. Distribution of claims

What is the size of a claim Zk? Denote the individual claims in the kth catastrophe by Zki.

We will use standardised amounts so that E(Zki)�1. We have to consider S and L, the

retention and maximal liability of the Cat XL contract. If Z0
k ¼

PYk

i¼1 Zki is the actual

claim amount from the Yk insured lives lost in catastrophe k, we set

Zk ¼
0; if Z0

kBS

Z0
k � S; if S 
 Z0

kBS þ L

L; if S þ L � Z0
k

8<
:

With modern information technology, it is often possible to get hold of all the individual

risk sums of the life portfolio. In that case the empirical distribution of Zki can be used in

numerical calculations.

In the case where the Cat XL covers a group life policy where all assureds’ sum are the

same, there is no randomness so that Zki�1 and Z0
k equals the number of lives lost, Yk.

Otherwise it is often a good approximation to assume that a single claim is

exponentially distributed with mean value 1, that is, PrðZ0
k 
 zjYk ¼ 1Þ ¼ 1 � e�z.

Assuming independence between individual claims, this gives a gamma distribution

G(Yk,1) for the total cost Z0
k of Yk claims.

2.8. Total annual claim

Now we are ready to address the question, what the total cost C in Equation (2) is. We

have assumed (I), that catastrophes arrive according to a Poisson flow. If, in addition,
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claim amounts Zk are independent and identically distributed, it follows that T0C(T) is a

marked Poisson process. As stated above, we will mainly consider C�C(1), the cost

during the fixed time horizon T�1.

As we have seen, C will depend on the contract parameters M, S and L as well as model

parameters kM ;rM ; nM ; q; h and the choice of claim distribution function.

Thus, for a given set of parameters, we can use Monte Carlo simulations to compute

expected value, variance and even the distribution of C. Given these properties of C, we

can set the price of the Cat XL contract.

3. Catastrophe data

To be able to set the correct technical price on an insurance, a theoretical model is not

enough, one also needs statistical data in order to estimate the parameters of the model.

An insurance company can rely on its own claim experience for estimation in most cases.

However, since catastrophic events are almost rare by definition, even for a reinsurer with

a large Cat XL portfolio, the use of claim experience as the only source for pricing the

contracts would be unsatisfactory.

To be able to estimate the parameters of this model, two data sets were collected and

compiled.

Swiss Re’s yearly publication, ‘sigma, � Natural catastrophes and man-made disasters’

(Swiss Re (1983�1991, 1994�1999, 2002�2004)), lists catastrophic events from all over the

world that have ‘at least 20 dead or missing’. Complete data sets were available from the

years 1983�1991, 1994�1999 and 2002�2004. Only data from those years were compiled.

Some well-known catastrophes (and a lot of unknown) such as 9/11 2001 are therefore

missing. Data were sorted after continent and region, as well as the cause of the disaster.

Only events that fit the standard Cat XL contracts 72-hour rule were taken into account.

Therefore, long lasting ‘conditions’ such as heat waves, cold spells and floods were

excluded, even if they took many lives. Acts of war and military accidents are not

accounted for since they are excluded from the insurance contracts. In total, there were

3055 observations from this source. For population data, see U.S. Census Bureau (2004).

The Swedish Rescue Services Agency (Räddningsverket) keeps a record over Swedish

accidents claiming at least four lives. Data from 1970�2004, a total of 189 observations,

were used in this data set.

The international data set has many observations but the quality varies with different

regions of the world. The numbers from Western Europe and North America are probably

the most accurate. For example, regimes in the non-free world have a reputation of trying

to cover the true extent of catastrophes. Getting accurate data can be hard in some

circumstances, the frequent occurrences of ‘50’, ‘100’ and ‘200’ in data from some regions,

see for example Figure 2, suggest that some of the observations are mere estimates.

Another drawback with the international data is the fact that it only contains data from

20 dead and upward. The Swedish data is much better in this regard, ranging from four

and above. The size of the data set is however limited and one can question which

conclusions that can be drawn from it about circumstances in other countries.
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3.1. Catastrophe intensity

We can check the validity of the Poisson assumption for each region by comparing the

sample mean k̂m and sample variance of the yearly number of accidents.

The sample mean is

k̂m ¼ Km

T

and the sample variance is

dVarðk̂20Þ ¼
1

T � 1

XT

t¼1

Km;t � k̂m


 �2

where T is number of years we have observed, and Km,t is the number of catastrophes

claiming at least m lives during the tth year.

Sample mean, sample mean normalised with the number of inhabitants and sample

variance from the international data set during the periods 1983�1991 and 1994�2004

respectively, are shown in Tables 1 and 2. Sample mean and sample variance from the

Swedish data are given in Table 3.

For most regions and the Swedish data, the mean and the variance are fairly close to

each other, in accordance with the Poisson assumption. But for some regions such as

South East Asia (SEA) and South Asia the variance is larger than twice the mean,

showing an overdispersion. This suggests that an improved model could be built by

incorporating more clustering of catastrophes, for example, by allowing for a time varying

and/or stochastic claim intensity.

Table 1. Annual incidence rates k̂20 of catastrophes for various regions.

Average number per year Per 100 million inhabitants

Region 1983�1991 1994�2004 1983�1991 1994�2004

South America (SAM) 18.9 14.8 6.8 4.5

North America (NAM) 6.3 5.3 2.3 1.8

Caribbean (CAR) 2.1 3.7 5.7 8.8

Central America (CAM) 6.1 4.9 5.7 3.7

Western Europe (WEU) 8.9 5.9 2.4 1.5

Eastern Europe (EEU) 5.0 1.7 4.2 1.4

Former Soviet (SUN) 3.4 10.1 1.2 3.5

South Asia (SAS) 40.6 41.3 3.9 3.2

South East Asia (SEA) 18.4 16.6 4.3 3.2

Middle East (MIE) 6.6 12.6 3.4 4.9

Far East (FAE) 7.4 3.0 3.9 1.5

Central Asia (CAS) 17.1 26.4 1.5 2.1

Oceania (OCE) 1.0 0.8 3.9 2.6

Northern Africa (NAF) 2.6 6.6 2.3 4.6

Middle Africa (MAF) 12.7 22.3 2.9 3.8

South Africa (SAF) 2.9 3.7 7.5 8.2
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3.2. Cat size

Is the DGPD a good model for the number of lost lives in a catastrophe? The available

data were used to estimate the parameters of the DGPD with the maximum likelihood

(ML) method, see for example Pawitan (2001). All estimates are obtained by using the

statistical software R and the package POT. Estimates are given in Table 4.

Since n̂ > 1=2 for all regions, the variance does not exist, this indicates a heavy tail of

the distribution, that is, according to this model, very large catastrophes can be expected.

For some regions, n̂ > 1, the tail is so heavy that not even the expected value exists!

We use QQ-plots to determine whether the DGDP fits the data. Plots for

North America and SEA are presented in Figures 1 and 2. The dashed lines indicate

95% confidence intervals. We conclude that the fit is good.

The ML estimates for the Swedish data are r̂4 ¼ 1:37ð0:16Þ and n̂4 ¼ 0:66ð0:010Þ, with

estimated standard deviations in brackets. Looking at the corresponding QQ-plot,

Figure 3, we find that the fit is good and the use of the POT model with m�4 seems

justified, although the tail seems to be a bit underestimated. It should be noted that the

two largest catastrophes, the ferry Estonia and the tsunami, are extreme in the modern

Swedish history. They would have been the largest catastrophes even if we had data from

the whole twentieth century. In light of this fact, we conclude that the DGPD gives a good

fit for the Swedish data. Given the good fit for m�4, it would have been interesting to try

with m�3, but the lack of data unfortunately makes this impossible.

Table 2. Catastrophe intensities k̂20 and dVarðk̂20Þ.

1983�1991 1994�2004

Region Mean Var Var/mean Mean Var Var/mean

SAM 18.9 48.9 2.59 14.8 17.2 1.16

NAM 6.3 10.3 1.62 5.3 8.0 1.5

CAR 2.1 2.9 1.36 3.7 4.5 1.23

CAM 6.1 10.1 1.65 4.9 5.6 1.15

WEU 8.9 9.4 1.05 5.9 13.9 2.35

EEU 5.0 12.8 2.55 1.7 1.0 0.6

SUN 3.4 6.5 1.9 10.1 9.9 0.98

SAS 40.6 314.0 7.74 41.3 161.5 3.91

SEA 18.4 150.8 8.17 16.6 35 2.12

MIE 6.6 15.8 2.41 12.6 33.5 2.67

FAE 7.4 4.3 0.57 3.0 3.3 1.08

CAS 17.1 93.4 5.46 26.4 25.3 0.96

OCE 1.0 0.5 0.5 0.8 0.7 0.89

NAF 2.6 2.3 0.89 6.6 3.5 0.54

MAF 12.7 54.8 4.32 22.3 90.3 4.04

SAF 2.9 3.4 1.16 3.7 8.3 2.25

Table 3. Swedish catastrophe intensity k̂4 and dVarðk̂4Þ.

Year Mean Var Var/mean

1970�1979 6.1 7.66 1.26

1980�1989 6.6 9.38 1.42

1990�1999 3.8 4.18 1.1

2000�2004 4.8 1.7 0.35

1990�2004 4.13 3.41 0.82
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3.3. Distribution of insured lives

There is no available data for the distribution of insured lives Y 0
kjXk in catastrophes. What we

can do is to let u vary between two extremes, having either abinomially distributed number of

insureds from the company of interest in each catastrophe (u��), or all/no claims with

probabilities q and 1�q, respectively (u�0) and see how different u values affects the

distribution of lost lives, as will be further discussed in the following section.

Table 4. Estimated parameters for the DGPDð20;r20; n20Þ model. Standard errors are in brackets.

Region r̂20 (std err r̂20) n̂20 (std err n̂20)

SAM 15.5 (1.7) 0.83 (0.10)

NAM 17.2 (3.1) 0.68 (0.17)

CAR 18.4 (4.8) 0.98 (0.26)

CAM 13.2 (2.6) 0.98 (0.20)

WEU 14.8 (2.6) 0.84 (0.17)

EEU 13.6 (3.1) 0.63 (0.21)

SUN 20.2 (3.3) 0.79 (0.15)

SAS 20.2 (1.4) 1.00 (0.07)

SEA 19.8 (2.4) 1.15 (0.12)

MIE 18.3 (2.9) 1.38 (0.18)

FAE 17.9 (3.9) 1.12 (0.22)

CAS 20.6 (2.0) 0.76 (0.09)

OCE 17.1 (8.0) 1.13 (0.49)

NAF 15.7 (3.4) 1.02 (0.22)

MAF 25.6 (2.7) 0.66 (0.10)

SAF 10.0 (2.2) 0.61 (0.20)

Figure 1. Empirical probabilities, fitted discrete generalised Pareto distribution (DGPD) and quantile-quantile

plot NAM, at least 20 dead.

Catastrophe risk in life (re)insurance 361

D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
0:

55
 1

2 
Ja

nu
ar

y 
20

15
 



4. Pricing

4.1. The pricing principle for a Cat XL contract

In non-proportional reinsurance, it is often not possible to acquire a portfolio with a large

number of independent contracts. The dependence between contracts is an important

reason why insurers want and need reinsurance. A reinsurance portfolio can be subject to

major fluctuations, that is, there is a lot of systematic risk involved. This in turn requires

more regulatory capital. Apart from the expected claims, the pure premium, the reinsurer

Figure 2. Empirical probabilities, fitted discrete generalised Pareto distribution (DGPD) and quantile-quantile

plot SEA, at least 20 dead.

Figure 3. Empirical probabilities, fitted discrete generalised Pareto distribution (DGPD) and quantile-quantile

plot SWE, at least four dead.
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will charge for its capital costs and, therefore, typically adds a percentage of the standard

deviation to the pure premium. This gives the pricing formula

P ¼ E½C� þ a � SDðCÞ; (5)

where typically a 2 ½0:1; 0:5�.
Our model gives us the possibility to use an even more sophisticated pricing since

we will in fact get hold of the complete distribution of C. This gives the possibility to use,

for example, the quantiles of C in the pricing or in the determination of contract

parameters.

Prices of Cat-contracts are often related to the maximal liability of the reinsurer. They

are given as a ‘rate on line’ (RoL) P � L%. Here we would like to cite Bostrom and

Cirkovic (2008, p. 177), who expressed another important pricing principle:

There is a saying in catastrophe reinsurance that ‘‘nothing is less than 1 on line’’,

meaning that the vagaries of life are such that you should never price high-level risk at

less than a chance of a total loss once in a hundred years (1%).

4.2. The rating factors and the total claim cost

As we have seen, there are many parameters that affect the price P of a Cat XL contract.

The model presented in this paper includes the catastrophe rate k, the distribution of

catastrophes determined by (s,j), the market penetration q, the dependence parameter h,

the contract parameters M,S and L, and the extent a to which we take the standard

deviation of the claim cost C into account. This gives the price

P ¼ Pðk;r; n; q; h;M;S;L; aÞ where

(1) l,s and j are to be estimated from data.

(2) q is determined by the size of the ceding company.

(3) M, S and L are determined by the Cat XL contract.

(4) a is determined by the reinsurer’s risk appetite.

(5) u is tricky in the sense that we lack data to estimate u. We can however do a sensitivity

analysis to see how it affects P, see below.

With as many variables and truncations in different steps, an analytical formula for P is

not to be expected. The model is however well suited for simulation studies by means of

parametric bootstrap (Efron & Tibshirani (1993)). We start by estimating the model

parameters and then run numerical simulations from the so estimated distributions to

simulate the distribution of the total claim cost C. With the distribution of C known it is

easy to determine a price P according to ones risk preferences.

4.3. A numerical example

A Swedish insurance company reinsures its portfolio of 900,000 policies. Sweden has a

population of 9 million people, this yields q�0.1. The other parameter values are,

according to our previous findings, k̂ ¼ 4:13, (Table 3), r̂ ¼ 1:37; n̂ ¼ 0:66 (see Section 3.2).
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We assume that u�0.1 and that the sum insured is 1 million Swedish Krona (MSEK) for

each policyholder. The contract parameters are set to M�4, S�5 MSEK, L�100 MSEK

which is a realistic choice for a Cat XL contract. To determine the price we simulate claims

for 100,000 years and find that E [C ]�1.08 MSEK and SD(C )�5.41 MSEK. Assuming

a�0.20, Equation (5) gives the price P�2.16 MSEK corresponding to a rate on line of

P/100�2.16%.

We find that the probability of a claim is 0.15 per year. In Figure 4, we present the

conditional claim distribution CNC�0 and the corresponding size biased distribution of

the cost. With a density proportional to x � fCðxÞ, where fC is the density of C, we can see

which claims that actually will cost the most. It is the relatively small claims that will cost

the most due to their frequency. Claims ranging from 0 to 5 correspond to 25% of the

total claims, those from 0 to 14 correspond to 50%. However, the large claims, limited in

size by L�100, contribute with 9% of the expected claim cost, even if the risk of such an

event is just one in a thousand years.

4.4. Sensitivity analysis for the Cat XL contract

4.4.1. The effect of catastrophe intensity l

How does C depend on l? According to Equation (2), we have C ¼
PK

k¼1 Zk: Let

E½Z� ¼ m;VarðZÞ ¼ j2. Then Equation (2) and (I) imply

E½C� ¼ m � E½K � ¼ m � k

Figure 4. Histogram, claim distribution and claim cost distribution.
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Thus E [C ] is linear in l. What about Var(C)? Using a well-known conditioning formula

for the variance we find

VarðCÞ ¼ VarðE½CjK �Þ þ E½VarðCjKÞ�
¼ VarðmKÞ þ E½j2K �
¼ m2k þ j2k

¼ ðm2 þ j2Þk

so that Var(C) is also linear in l.

4.4.2. The effect of q and u

Recall from Section 2.6 that in this model E½Y 0jX � ¼ q � X , hence E[C] is approximately

linear in q due to the truncation in Equation (4). Considering the binomial distribution

and that q typically is small, Var(C) is also approximately linear in q.

In Section 2.6, we also saw that a small u implies large dependence and a large u
implies more of independence. The expected number of insured lives lost, E½Y 0�, does

not depend on u. However, the expected number of lost lives hitting the Cat XL

contract, E[Y], will depend on u due to the truncation in Equation (4). Computing E[C]

and SD(C) as functions of u (with the other parameters as in Section 4.3), see Figure 5,

reveal that they are decreasing in u, going from u�10 to u�0.1 triples E[C] and

increases SD(C) by a factor of 1.8, a significant effect. Ones belief about the

dependence among the insured life will therefore heavily influence ones view on the

catastrophe risk.

Figure 5. E [C ] and SD(C ) as functions of u.
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5. Conclusion

In this paper, we have provided a new model for assessing life catastrophe risk, especially

pricing catastrophe excess of loss (Cat XL) contracts in life reinsurance, but also for Solvency

II purposes.

We first studied Strickler’s well-known model for pricing. Although Strickler’s model

has its merits, it is inflexible � there is no statistically motivated way how to estimate the

model parameters � and to some extent unrealistic, for example, the deterministic

catastrophe rate. Some modifications of the model have made it more up to date but still

not corrected these basic problems.

To get a statistically satisfying way of pricing a Cat XL contract, we construct a new

model in the following way. In Equation (2), we express the total cost due to catastrophes

during a contract period as C ¼
PK

k¼1 Zk where K is the number of catastrophes assumed

to be Poisson distributed and Zk is the cost inflicted on the Cat XL contract by the kth

catastrophe. To obtain Zk we start with Xk, the number of lost lives in the kth catastrophe

is assumed to have a generalised Pareto distribution. The number of insured lives lost, Yk,

is assumed to follow a truncated Beta-binomial distribution conditional on Xk in order to

reflect the possible dependence among lost insured lives. The loss in the kth catastrophe,

Zk, is the sum of the insured for each of the Yk lost lives minus the retention stated in the

Cat XL contract. The sum insured for each life can have a, possibly truncated,

exponential distribution or be deterministic in case of a group policy.

In order to use the model for actuarial purposes, we need data for parameter

estimation. We work with two data sets, one international with catastrophes claiming at

least 20 lives and a Swedish data set with data from accidents claiming at least four lives.

With those data sets, we were able to estimate parameters for both catastrophe intensity

and size. Comparing the fitted model with the catastrophe data, we found the fit to be

good. For a more detailed review of the data sets, see Ekheden (2008).

The modular structure of the model would make it possible to extend it to take

disability claims into account. But this would require collection of data not at hand for

the moment.

By using the estimated parameters together with the parameters defining a Cat XL

contract, we can now calculate its price. We do it by running computer simulations

(a parametric bootstrap) to find the claim distribution of the contract. We also conduct a

sensitivity analysis, varying some of the parameters and observe how they affect the

expected value and standard deviation of the claim distribution. We find that the

assumption of to which degree insured lives are dependent in catastrophic events has a

significant effect on the risk and hence the price of a Cat XL contract.
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