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a b s t r a c t

The variance effective population size for age structured populations is generally hard to estimate and the
temporal method often gives biased estimates. Here, we give an explicit expression for a correction factor
which, combined with estimates from the temporal method, yield approximately unbiased estimates.
The calculation of the correction factor requires knowledge of the age specific offspring distribution and
survival probabilities aswell as possible correlation between survival and reproductive success. In order to
relax these requirements, we show that only first order moments of these distributions need to be known
if the time between samples is large, or individuals from all age classes which reproduce are sampled. A
very explicit approximate expression for the asymptotic coefficient of standard deviation of the estimator
is derived, and it can be used to construct confidence intervals and optimalways ofweighting information
fromdifferentmarkers. The asymptotic coefficient of standard deviation can also be used to design studies
and we show that in order to maximize the precision for a given sample size, individuals from older age
classes should be sampled since their expected variance of allele frequency change is higher and easier
to estimate. However, for populations with fluctuating age class sizes, the accuracy of the method is
reducedwhen samples are taken fromolder age classeswith high demographic variation.We also present
a method for simultaneous estimation of the variance effective and census population size.

© 2015 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In population genetics, it is necessary to be able to summarize
the population with some key concepts. By imposing different
assumptions, analysis of complex population systems can be
manageable and comparisons of various populations as well as
population scenarios can be made. However, the degree of realism
of the assumptions varies, and for real populations they might be
violated to some extent. Hence, it is important to study the effect
of the assumptions for the concept under study, and, for significant
effects, the model may need to be refined to obtain more realistic
and accurate results.

In this paper, we study methods for estimating one such con-
cept known as the effective population size (Ne). It was presented
by Wright (1931) as a method for approximating populations by
an idealized reference population with respect to some criterion.
Many closely related effective sizes depending on the criterion
under consideration have been developed and studied, such as
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the variance, inbreeding, coalescence and eigenvalue effective size
(Crow and Denniston, 1988; Wang and Caballero, 1999; Kaj et al.,
2001;Waples, 2002; Ewens, 2004; Sagitov and Jagers, 2005; Sjödin
et al., 2005; Charlesworth, 2009; Hössjer, 2011). Here, we focus on
the variance effective population size (NeV ), defined as the number
of breeding individuals in an idealized population thatwould show
the same amount of dispersion of allele frequencies under random
genetic drift as the population under consideration (Crow, 1954).
Expressions for NeV have previously been derived for age struc-
tured populations with fixed population size (Felsenstein, 1971;
Hill, 1972, 1979; Waples et al., 2011), for populations with fluc-
tuating population size (Engen et al., 2005; Olsson et al., 2013), for
determining the influence of e.g. mating structure and variation in
fecundity (Nunney, 1991, 1993, 1996). These models are impor-
tant in order to study e.g. how harvest strategies affect the popu-
lation (Hard et al., 2006).

There exist a number of methods for estimating Ne in real pop-
ulations (Waples, 1989b; Wang and Whitlock, 2003; Luikart et al.,
2010). For NeV , the temporal method (Krimbas and Tsakas, 1971)
is commonly used. It is based on the idea that if genetic drift is the
only cause of allele frequency change, NeV can be estimated from
temporal allele frequency shifts. Different methods to estimate
the standardized variance of allele frequency change have been
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presented (Nei and Tajima, 1981; Pollak, 1983; Jorde and Ryman,
2007), and comparisons between them can be found in Waples
(1989b) and Waples and Yokota (2007).

A crucial assumption for all the above mentioned methods is
that the population has discrete generations. However, for popula-
tions with overlapping generations, the genetic drift is no longer
the only source of allele frequency change (Jorde and Ryman,
1995). Effective population sizes calculated based on allele fre-
quency measurements close in time will be affected by the age
structure of the population. Jorde and Ryman (1995) presented a
modification of the temporal method, using a correction factor cal-
culated from the demographic parameters of the population. By
combining estimates of the allele frequency change in one age class
and assumptions about distributions and parameters in the demo-
graphic population model, they derived a correction factor which,
when applied to the estimate from the temporal method, yield ap-
proximately unbiased estimates of the expected long term stan-
dardized variance of allele frequency change.

Another way to reduce the bias due to the age structure
when estimating NeV is to increase the time between measure-
ments (Jorde and Ryman, 1995; Waples and Yokota, 2007; Olsson
et al., 2013).

In this paper we extend the estimator of Jorde and Ryman
(1995), and their correction factor, to models with overlapping
generations in several ways. We present a method for weighting
samples from different age classes to form a population sample.
The assumption in Jorde and Ryman (1995), that the number
of births of individuals are Poisson distributed, is extended to
situations with overdispersion. We also allow for correlated
survival and reproductive success. With this model we can study
how the correction factor depends on different parameters, such
as the time between samples and the age classes that are present
in the sample.

Another important criterion of an estimator, apart from low
bias, is a small variance. Here, we give an approximate formula for
the asymptotic coefficient of standard deviation of our proposed
estimator of NeV . Since the standard deviation of the estimator is
typically much larger than the bias, this formula is useful when
planing a study in order to determine how many individuals that
should be sampled from the different age classes and also how
many polymorphic loci we need genetic data from as well as opti-
mal ways of weighting information from them. It is a very explicit
function of key parameters of themodel, such as sample size, sam-
pling interval and the effective number of independent alleles, and
therefore it is of independent interest. Using the approximate for-
mula for the asymptotic coefficient of standard deviation, we also
present approximate confidence intervals for the estimator of NeV .

If individuals are sampled from all age classes and weighted
by their reproductive numbers (Fisher, 1958), the correction factor
equals one. Hence, if we use the reproductive numbers as weights
we do not need to specify the variances of reproductive success for
the different age classes, or possible correlation between reproduc-
tive success and survival. The same is true when the time interval
between samples becomes large.

The paper is structured as follows: In Section 2 we describe the
demographic model that is used throughout the paper. Next, in
Section 3 we describe the estimation procedure of NeV for popu-
lations with discrete generations andwe generalize the estimators
of Jorde and Ryman (1995, 2007) in Section 4. By means of simu-
lation we illustrate the performance of our proposed estimator in
various situations. In Section 5 we present a method for simulta-
neous estimation of the variance effective population size and the
census population size and in Section 6we present an optimal way
ofweighting loci. A discussion is found in Section 7, derivations and
some examples are gathered in the appendices and a summary of
the most important notation is collected in Table 1.
Table 1
List of notation used in the paper.

Notation Definition

NeV Variance effective population size
Nt Total number of individuals at time t
Nt Age composition at time t
g Expected projection matrix
bj Mean number of offspring for an individual in age class j
lj Probability that an individual survives to age class j
sj Probability that an individual in age class j survives to age class

j+ 1
ρj Correlation between survival and number of offspring for an

individual in age class j
λ Multiplicative growth rate and largest eigenvalue of g
u Vector with approximate equilibrium age distribution for Nt
v Vector with reproductive values
w Vector of age class weights wj normalized such that

J−1
j=0 wj = 1

T Generation time i.e. mean age of parents of newborns
F Standardized variance of allele frequency change
Fs Estimator of F presented by Jorde and Ryman (2007)
Fw Standardized variance of weighted allele frequency change
F̂w
OH Estimator of Fw before bias correction
Fw∗
OH Approximately unbiased estimator of Fw

n1j Number of sampled individuals from age class j at the first time
point

n2j Number of sampled individuals from age class j at the second time
point

n1 Effective number of sampled individuals at the first time point
n2 Effective number of sampled individuals at the second time point
ñ Time averaged effective sample size
τ Time between measurements when applying the temporal method

for assessing NeV . One time unit represents the age difference of
two successive age classes

A Projection matrix for standardized covariances
λA Largest eigenvalue of A
C Correction factor for estimated genetic drift based on population

demographics
L Number of loci
Le Effective number of independent alleles
κl Inverse information at locus l for estimating NeV

2. Population model

Wewill consider a population of monecious diploid individuals
divided into J age classes, with two homologous chromosomes per
individual. At time t the population consists of Nt =

J−1
j=0 Ntj in-

dividuals and the age composition is contained in the column vec-
tor Nt = (Nt0, . . . ,Nt,J−1)

′, where Ntj is the number of individuals
in age class j and ′ denotes transposition. Let Ytjh be the number of
progeny in the next time step of chromosome h in age class j and let
Ytjh be independent and identically distributed random variables
with expected value E[Ytjh] = bj and variance Var(Ytjh) = σ 2

j . The
survival of this chromosome, Itjh, is Bernoulli distributedwithmean
sj and the correlation, Corr(Ytjh, Itjh), between survival and number
of offspring is denotedρj. LetNt+1,j0 be the total number of progeny
at time t + 1 of all individuals in age class j at time t . Then,

2Nt+1,j+1 =

2Ntj
h=1

Itjh, j = 0, . . . , J − 2,

2Nt+1,j0 =

2Ntj
h=1

Ytjh, j = 0, . . . , J − 1,

Nt+1,0 =

J−1
j=0

Nt+1,j0,

(1)

describe the time dynamics of the population.
Let g = (gij) be a Leslie matrix (Leslie, 1945) with non-zero en-

tries g0j = bj, j = 0, . . . , J − 1 and gj+1,j = sj, j = 0, . . . , J − 2.
Perron–Frobenius Theorem ensures that g has a unique largest
positive eigenvalue, λ, which is the multiplicative growth rate of
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the population. The right eigenvector, u = (u0, . . . , uJ−1)
′ corre-

sponding to λ, normalized so that
J−1

j=0 uj = 1, is the approxi-
mate equilibrium age distribution, and the left eigenvector v =
(v0, . . . , vJ−1), normalized so that vu = 1, contains the reproduc-
tive values (Fisher, 1958). The expected time dynamics of the pop-
ulation can then be described by means of matrix recursions

E(Nt+1|Nt) = gNt .

We will focus on two types of progeny distributions, either the
number of progeny of individuals in age class j follows a Poisson
distribution Ytjh ∼ Po(bj), so that

P(Ytjh = y) = exp(−y)
byj
y!

, (2)

and σ 2
j = bj; or a negative binomial distribution Ytjh ∼

NegBin(mj, qj), with

P(Ytjh = y) =

mj + y− 1

y


(1− qj)mjqyj , (3)

corresponding to

E(Ytjh) = mj(1− qj)/qj = bj,
Var(Ytjh) = mj(1− qj)/q2j = σ 2

j > bj.

For joint survival and reproduction, we use a logistic regression
model

P(Itjh = 1|Ytjh = y) =
exp(β0j + β1jy)

1+ exp(β0j + β1jy)
=: sjy,

so that

sj = P(Itjh = 1) =
∞
y=0

sjyP(Ytjh = y),

bjsj + σj

sj(1− sj)ρj = E(YtjhItjh) =

∞
y=0

ysjyP(Ytjh = y),

gives a one-to-one correspondence between (sj, ρj) and (β0j, β1j),
for j = 0, 1, . . . , J−2, if the offspring distribution has already been
specified. In particular, ρj = 0 corresponds toβ1j = 0, and then Ytjh
and Itjh are independent, with

sj =
exp(β0j)

1+ exp(β0j)
.

3. Estimation of NeV for populations with discrete generations

For a population with non-overlapping generations, the vari-
ance effective population size NeV is obtained by solving

1−

1−

1
2NeV

τ

= F ,

which yields

NeV =
1
2


1−


1−

E([pt+τ − pt ]2|pt)
pt(1− pt)

1/τ−1
=

1
2


1− (1− F)1/τ

−1
as a function of the allele frequencies pt and pt+τ of a selectively
neutral gene at times t and t + τ , where

F = Ft =
E([pt+τ − pt ]2|pt)

pt(1− pt)
(4)
is the standardized variance of the allele frequency change. With
this definition, the standardized genetic drift F is the same as for a
Wright–Fisher population of diploid size NeV .

One way to estimate NeV is by the temporal method where
we assume that n1 and n2 individuals are sampled at time t and
t + τ respectively. Previously, two different sampling plans have
been identified for populations with discrete generations (Nei and
Tajima, 1981;Waples, 1989a). Under plan I individuals are sampled
without replacement after reproduction or sampled before repro-
duction and subsequently returned to the population. Under plan
II, individuals are sampled destructively before they reproduce.

From the sampled individuals, the allele frequencies at a num-
ber of loci are used to estimate the standardized variance F of al-
lele frequency change. There exist many estimators F (e.g Nei and
Tajima, 1981; Pollak, 1983). In particular

Fs =

A
a=1


p̂t+τ ,a − p̂t,a

2
A

a=1

p̂t+τ ,a+p̂t,a
2


1− p̂t+τ ,a+p̂t,a

2

 , (5)

is the estimator presented by Jorde and Ryman (2007) for one lo-
cus. Here A is the number of alleles and p̂t,a is an estimator of pt,a,
the allele frequency of allele a at time t , and τ is the time between
samples. With this estimator, alleles with allele frequency close to
0.5will beweightedhigher than rarer alleles. Correcting Fs for sam-
pling bias, Jorde and Ryman (2007) found an approximately unbi-
ased estimator F ′s of the standardized allele frequency change Fs.
The variance effective population size can then be estimated by

N̂eV =
1
2


1− (1− F ′s)

1/τ −1
≈

τ

2F ′s
,

where the approximation is accurate when τNeV ≫ 1.

4. Estimation of NeV for populations with overlapping genera-
tions

In order to extend the temporal method to populations with
overlapping generations, we first need to clarify the sampling
mechanism as well as how the allele frequencies in the population
are defined.

4.1. Sampling

For populations with overlapping generations the interpreta-
tion of the two sampling schemes I and II is unclear (Jorde and Ry-
man, 1995). Here, wewill only consider situations where sampling
is non-destructive but we distinguish between sampling with or
without replacement.

One advantage with plan II is that in order to compute the es-
timate of F we need no knowledge of the total population size
(Waples, 1989a). This also holds if we sample non-destructively
with replacement. However, this sampling scheme might be un-
practical since we have to return each individual to the population
before the next one is drawn. Our other scheme, sampling non-
destructively without replacement, corresponds to plan I above.

4.2. Allele frequency

Following the approach in Olsson et al. (2013), we let

pwtal =
J−1
j=0

wjptjal (6)

be a weighted average over all age classes of ptjal, the frequency of
allele a in age class j at time t at locus l, andw = (w0, . . . , wJ−1) are
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non-negative weights such that
J−1

j=0 wj = 1. When estimating
these quantities in the population, we let p̂tjal be the estimate of
ptjal based on n1j sampled individuals of age class j, and

p̂wtal =
J−1
j=0

wjp̂tjal

the corresponding estimate of the age averaged allele frequency.
However, if n1j = 0 we let p̂tjal = 0 for all a and l and we also
require that wj = 0. The sampling variance for a particular locus l
and allele a at time t equals

Var(p̂wtal|{ptjal}
J−1
j=0) =

J−1
j=0

Djw
2
j ptjal(1− ptjal)

2n1j
, (7)

where Dj = (2Ntj − 2n1j)/(2Ntj − 1) when sampling without
replacement, and Dj = 1 when sampling with replacement.

4.3. Temporal method for an age structured population

It is well known that it is intractable to quantify genetic drift for
structured populations (Ewens, 1982; Hössjer and Ryman, 2014).
For a fixed allele a at locus l we could treat pwt = pwtal as an allele
frequency of a homogeneous population and quantify genetic drift
using F in (4). However, for a structured population, due to the
conditional expectations in (4), this formula will in general depend
on pwt . It is more convenient to use

Fw
=

E([pwt+τ − pwt ]
2)

E(pwt [1− pwt ])
(8)

where the conditional expectation in (4) is replaced by an expecta-
tion with respect to generation 0. In order to compute an approxi-
mation of (8), we will use a multilocus variant

F̂w
OH =

L
l=1

Al
a=1


p̂wt+τ ,al − p̂wtal

2
L

l=1

Al
a=1

p̂wtal+p̂
w
t+τ ,al
2


1−

p̂wtal+p̂
w
t+τ ,al
2

 (9)

of (5) as our estimator of the standardized variance of the allele
frequency change, where L is the number of loci and Al the number
of alleles at locus l. We show in Appendix A that F ′s in the previous
section can be extended to an approximately unbiased estimator

Fw∗
OH =

F̂w
OH [1− 1/(4ñ)] − 1/ñ

(1+ F̂w
OH/4)[1− 1/(2n2)]

(10)

of the standardized variance Fw of allele frequency change be-
tween time t and t + τ for weighting schemew, where

1/n1 =

J−1
j=0

w2
tj

n1j
,

1/n2 =

J−1
j=0

w2
t+τ ,j

n2j
,

(11)

if genes are sampled with replacement, with n2j the number of in-
dividuals sampled in age class j at time t + τ , and

1/n1 =

J−1
j=0

w2
tj

n1j

2Ntj − 2n1j

2Ntj − 1
≈

J−1
j=0

w2
tj

n1j

(uj − n1j/Nt)

(uj − 1/[2Nt ])
,

1/n2 =

J−1
j=0

w2
t+τ ,j

n2j

2Nt+τ ,j − 2n2j

2Nt+τ ,j − 1

≈

J−1
j=0

w2
t+τ ,j

n2j

(uj − n2j/Nt+τ )

(uj − 1/[2Nt+τ ])
,

(12)
when genes are sampled without replacement. The numbers n1
and n2 can be interpreted as the effective sample sizes at time t
and t + τ and ñ is their harmonic mean,

1
ñ
=

1
2n1
+

1
2n2

, (13)

interpreted as a time averaged effective sample size.

4.4. Generalization of the Jorde–Ryman correction factor

For most choices of w, the temporal allele frequency changes
will be affected by the age structure. Since we are generally in-
terested in the long time average rate at which the standardized
variance of allele frequency change increases, Fw∗

OH will typically not
describe the quantity of interest. To overcome this problem, Jorde
and Ryman (1995) derived a correction factor C based on popu-
lation demographics. They showed that this factor can be applied
to samples close in time from one age class in order to predict the
long time average rate. Jorde (2012) improved themethod to allow
for time intervals of arbitrary length between the samples. Here,
we generalize their results to accommodate samples frommultiple
age classes, general weighting schemes, overdispersion (bi < σ 2

i )
and correlated reproduction and survival (ρi ≠ 0).

In Appendix B, we show that the estimator (10) has expected
value

E(Fw∗
OH ) ≈ Fw .

However, the standardized variance of allele frequency change, Fw ,
depends on the weighing scheme w, and does not describe the
long term genetic drift for age structured populations in general.
Whereas the average rate at which the variance of allele frequency
change increases per time step during a time interval of length τ is
1 − (1 − Fw)1/τ when using weighting scheme w, the long term
rate at which the variance of allele frequency change increases per
time step is 1 − λA, where λA is derived in Appendix B. It is the
largest eigenvalue of a certain matrix A, and it can be calculated
from the assumptions of the demographicmodel. By dividing these
two rates, we generalize the expression for the constant C in Jorde
and Ryman (1995) to

C =
1− (1− Fw)1/τ

1− λA
. (14)

If we put τ = 1, w = (1, 0, . . . , 0) and let Ntj → ∞ for all t and
j = 0, . . . , J − 1, in (14) we obtain the correction factor of Jorde
and Ryman (1995). In Appendix C we give an example of how to
calculate the correction factor, assuming constant age class sizes
and Poisson reproduction, and another example in Appendix D
with non-constant age class sizes and overdispersion.

As a next step, we define the (diploid) variance effective popu-
lation size per generation implicitly through

λA =


1−

1
2NeV

1/T

, (15)

where

T =
J−1
j=0

(j+ 1)ljbjλ−j−1,

is themean age of parents of a newborn. The corresponding estima-
tor of NeV is obtained by combining (14) and (15) with Fw∗

OH instead
of Fw and solve for NeV . This yields

N̂eV =
1
2


1−


1−

1− (1− Fw∗
OH )1/τ

C

T−1
≈

Cτ

2TFw∗
OH

. (16)

Omitting T in (16), we end up instead with an expression for an
estimator of a version of NeV that quantifies drift per time step.
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a b

Fig. 1. The correction factor (14) as a function of the time interval τ between samples. Demographic parameters are according to the sparrow data of Table 2. The lines
correspond to different choices of weight vectors were the i:th line consists of the first i age classes having equal weights, wj = 1/i, j = 0, . . . , i − 1 in subplot (a), and
weights proportional to their reproductive values wj = ujvj/

i−1
k=0 ukvk, j = 0, . . . , i− 1 in subplot (b).
4.5. Reproductive weights

It has previously been shown that weighting individuals ac-
cording to their reproductive value when calculating the effec-
tive population size for populations with overlapping generations
eliminates the fluctuations due to the age structure (Felsenstein,
1971;Waples and Yokota, 2007). With the reproductive weighting
scheme, the rate at which the variance of allele frequency change
increases per time stepwill equal the long term rate 1−λA (Olsson
et al., 2013), and in Appendix E, we show that indeed, the correc-
tion factor C = 1 regardless of the demographic model.

With theseweightswe only need to specify first ordermoments
of the distributions in the demographic model, whereas the vari-
ance of the offspring distribution, as well as the correlation be-
tween survival and reproduction, need not be known. However, it
is required that individuals are sampled from all age classes with
positive reproductive values.

4.6. Increasing time between samples

Another method to reduce the fluctuations in the estimate of
the standardized variance of allele frequency change due to the
age structure, is to increase the time between the samples (Jorde
and Ryman, 1995;Waples and Yokota, 2007; Olsson et al., 2013). In
Appendix F we show that, regardless of weighting scheme, when
the time τ between the samples increases, the correction factor C
approaches 1. However, the timeneededuntilC is sufficiently close
to 1, varies a lot depending on the weighting scheme.

In Fig. 1 the correction factor is shown as a function of time
and the number of age classes present in the sample. As a model
species, we use a population of sparrows with demographic pa-
rameters according to Table 2, given by Baker et al. (1981). Age
classes are added from the youngest to create differentweight vec-
tors. In Fig. 1(a), equal weights are given to the age classes with
positive weights, and in Fig. 1(b), the weights are proportional to
their reproductive values.We see in Fig. 1 that for the equalweight-
ing scheme, sampling from more age classes does not necessarily
result in lower values of C .

4.7. Asymptotic variance and distribution of the estimator

In real populations, it is not sufficient for the estimator to have
low bias. Since we usually only have one estimate, the variability
of the estimator is of great importance in order to obtain reliable
Table 2
Life table data for sparrows, where bj is the mean number of progeny for an
individual in age class j, lj =

j−1
i=0 si is the probability for an individual to survive

to age class j and sj the probability that an individual in age class j survives to age
class j+ 1. Each age class represents 1 year.

Age class Sparrow
lj bj

0 1 0
1 0.167 3.018
2 0.083 3.202
3 0.048 3.416
4 0.012 3.602
5 0.006 3.842

estimates. In Appendix G, we derive the following approximate
formula

AsVar(N̂eV )

N2
eV

≈
AsVar(Fw∗

OH )

(Fw)2
≈

2
Le


1+

2NeV T
Cτ ñ

2

, (17)

for the asymptotic coefficient of variance of the estimator of the
effective population size, where

Le =


L

l=1

Al
a=1

pwtal(1− pwtal)

2

L
l=1

κl


Al

a=1
pwtal(1− pwtal)

2 , (18)

can be interpreted as the effective number of independent alleles
and

κl =

Al
a=1

(pwtal)
2(1− pwtal)

2
+


a≠b
(pwtal)

2(pwtbl)
2


Al

a=1
pwtal(1− pwtal)

2 , (19)

is a number between 0 and 1 that quantifies how correlated genetic
drift is among the Al alleles at locus l, with κl = 1 at biallelic loci. If
we have L loci with the same number A of alleles and equal allele
frequency 1/A, the effective number of independent alleles equals
(A− 1)L, as shown in Appendix H.

It is clear from (17) that precision increases when the product
Cτ ñ increases. We also see that when either the time between
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samples or the effective sample size tend to infinity, the asymptotic
variance of the estimator equals 2/Le and hence only depends on
the effective number of independent alleles.

It has previously been shown that estimators of F by e.g. Krim-
bas and Tsakas (1971) and Nei and Tajima (1981) can be nor-
malized to follow approximately a χ2-distribution (Lewontin and
Krakauer, 1973; Waples, 1989a). Jorde and Ryman (1995) argued
that this approximation also holds for their estimator. For our es-
timator (10), it follows from the derivations in Appendix G that

L(Fw∗
OH +

1
ñ )

F + 1
ñ

≈ χ2(L) (20)

if all loci are biallelic with the same allele frequencies. In this case,
a confidence interval with confidence level 1− α is given by

IFw ,α =


L

χ2
(α/2)(L)


Fw∗
OH +

1
ñ


−

1
ñ
,

L
χ2

(1−α/2)(L)


Fw∗
OH +

1
ñ


−

1
ñ


, (21)

whereχ2
(α/2)(L) is the (1−α/2)-quantile of aχ2(L)distribution. For

the general case withmultiple alleles or unequal allele frequencies
there is no simple explicit distribution. However, if multiple loci
are used, we could construct an approximate confidence interval

IFw ,α =

 Fw∗
OH +

1
ñ

1+ λα/2


2
Le

−
1
ñ
,

Fw∗
OH +

1
ñ

1− λα/2


2
Le

−
1
ñ

 (22)

using normal approximation where λα/2 is the (1− α/2)-quantile
of a standard normal distribution. By transforming the limits in
(21) and (22) using (16) we obtain an approximate confidence in-
terval for NeV where the negative lower bound in (22) can be inter-
preted as an infinite upper bound in the corresponding confidence
interval for NeV .

4.8. Simulations

In order to verify the performance of the method and to justify
the approximations that have been made, we have performed a
number of simulations. In all simulations we use the demographic
parameters of Table 2 and simulate a population of N =

10 000 individuals with L unlinked biallelic loci using initial
allele frequency 0.5 for all loci. We sample n =

J−1
j=0 n1j =J−1

j=0 n2j individuals with replacement at two consecutive time
steps and estimateNeV using (16). The simulations have beenmade
according to methods defined in Olsson and Hössjer (2014), which
allow us to simulate multiple alleles for a given population and to
eliminate the need for a burn in period.

The values of L and n as well as the sample and weighting
scheme have been varied. For each combination we repeated the
simulation M = 10 000 times and let N̂eV ,i and Fw∗

OH,i be the
estimates of NeV ,i and Fw

i in simulation i, with N̂eV ,(1) ≤ · · · ≤

N̂eV ,(M) and Fw∗
OH,(1) ≤ · · · ≤ Fw∗

OH,(M) the corresponding ordered
values. We let

RelMedBias(N̂eV ) =
N̂eV ,(0.5M) − NeV

NeV
(23)

be an estimate of the relative median bias for N̂ev and

StDev(N̂ev)

NeV
=

N̂eV ,(0.75M) − N̂eV ,(0.25M)

[Φ(0.75)− Φ(0.25)]Nev
(24)
be a robust estimate of the coefficient of standard deviation, where
Φ is the standard normal cumulative distribution function. The
corresponding functions for Fw∗

OH are defined analogously.
In the first simulation we let L = 1000, the age class sizes Ntj

equal Ntuj rounded to the nearest integers and sample n = 500
individuals fromone age class at each timepoint.We see in Fig. 2(a)
that the estimated relative median bias (23) is small compared
to the estimated coefficient of standard deviation (24). We also
see that the precision increases with the age of the sampled
individuals. This is expected since older age classes consist of
fewer individuals and the standardized variance of allele frequency
change is expected to be larger and hence, easier to estimate.

In Fig. 2(b) we let the initial age class size distribution vary
according to its equilibrium distribution. We see that the relative
bias still is small, however for the later age classes, the coefficient
of standard deviation deviates from the expected value calculated
as the square root of (17). By introducing demographic variability,
the coefficient of standard deviation will increase since the actual
value of (8) will vary between the simulations. This is not
accounted forwhen deriving the asymptotic variance (17) of Fw∗

OH in
(10). However, repeating the simulation for one choice of initial age
class composition, we see in Fig. 2(c) that the estimated coefficient
of standard deviation is close to the theoretical value. On the other
hand, if individuals are sampled from older age classes, where the
demographic variance is larger, we introduce a bias.

In Fig. 2(d), we fix L = 1000 and n = 500 but vary the sampling
scheme and the weight vector. In the left part, we use equal
weights as in Fig. 1(a), but let the number of sampled individuals be
proportional to the stable age distribution. In the right part, we use
the reproductiveweighting schemes of Fig. 1(b), and the number of
sampled individuals are proportional to the reproductive weights
for the various age classes.

In Fig. 3(a), we let L = 1000 and sample individuals from age
class 2 with n varied from 20 to 750 and in Fig. 3(b) we also sample
individuals fromage class 2 but fixn = 500 and let L range between
100 and 10000. Since the demographic variance is small for age
class 2, it is only for large values of L that the estimated coefficient
of standard deviation differs noticeably from the square root of
(17).We also see that, ifwe consider the average bias frommultiple
simulatedpopulations, the standarddeviation of N̂eV ismuch larger
than the bias, so the standard deviation can be used as performance
measure.

5. Simultaneous estimation of population census size and
effective population size

Usually, not only the effective population size but also the pop-
ulation census size is of interest, but both are in general difficult to
estimate. However, using knowledge of the ratio Ne/N , one could
save both time and money by inferring one parameter from the
other, if the ratio is relatively stable (Luikart et al., 2010). In our
model, the assumptions needed to calculate the correction fac-
tor (14) can be used to calculate the ratio of the effective popula-
tion size and census population size, Ne/N (Felsenstein, 1971; Hill,
1972, 1979; Engen et al., 2005; Waples et al., 2011; Olsson et al.,
2013) which is constant over time. By combining these assump-
tions with genetic data from the temporal method we propose a
method for simultaneous estimation of the effective population
size and the census population size.

The estimator (16) depends on the census population size
through the correction factor (14). If we sample without replace-
ment, the census population size also affects Fw∗

OH through the ef-
fective sample size (12), and in any case the estimation procedure
turns into an iterative process. In Appendix I we provide an algo-
rithm for computing estimates (N̂eV , N̂) of the variance effective
and census sizes jointly.
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a b

c d

Fig. 2. Observed and asymptotic coefficients of standard deviation of N̂eV and Fw∗
OH according to (24) and (17) and the observed relative median bias (23) as a function of

which age class that is sampled (a)-(c) and of the sampling and weighting scheme (d). Age class sizes are constant in (a) but random in the other subplots. In (c), the age
class sizes are the same in all M = 10 000 repetitions. In (d), age classes are sampled according to a truncated stable age (left) or reproductive (right) distribution, using
equal (left) or reproductive (right) weights that are truncated to 0 above the highest sampled age class. Demographic parameters are according to Table 2, L = 1000 loci are
generated and n = 500 individuals are sampled for each of the two consecutive time points.
a b

Fig. 3. Observed and asymptotic coefficients of standard deviation of N̂eV and Fw∗
OH according to (24) and (17) and the observed relative median bias (23) as a function of

sample size (a) and number of loci (b). In (a) the number of loci L = 1000 is fixed and the sample size n = 500 at each time point is fixed in (b). All individuals are sampled
from age class 2 at two consecutive time points, and demographic parameters are according to Table 2.
To illustrate the performance of the method we simulated
10000 data sets by methods in Olsson and Hössjer (2014) and
demographic parameters according to Table 2. We sampled 500
individuals both with and without replacement from age class 0
at two consecutive time points. In Fig. 4(a), estimates of the census
population size are shown for both sampling schemes.We see that,
regardless of sampling scheme, both box plots are centered around
the true value. However, the variance of the estimates is larger
when individuals are sampled without replacement. Estimates
of the variance effective population size are shown in Fig. 4(b).
When estimating NeV , we assume that the census size in the two
boxes to the left is unknown, whereas we assume it is known for
the estimates in the two boxes to the right. We see that, when
sampling with replacement, we obtain a similar distribution of
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ba

Fig. 4. Box plots of 10000 repeated simulations based on the demographic parameters of Table 2. The census population size and the variance effective population size are
estimated simultaneously according to (I.1)–(I.2). Estimates of the census population size N for sampling without and with replacement are shown in (a). The two boxes in
(b) to the left show the corresponding estimates of the variance effective population size NeV , whereas the two boxes to the right illustrate the distribution of the estimates
of NeV if we assume that N is known. The dashed lines correspond to the true values N = 10 000 and NeV = 2589. Estimated coverage is 95.1% for calculated 95% confidence
intervals according to (21) and (22) when sampling is conducted with replacement, regardless if N is known or not. For sampling conducted without replacement the
estimated coverage is 94.9% if N is known and 78% if N is unknown. Demographic parameters are according to Table 2, L = 1000 loci are generated and n = 500 individuals
are sampled from age class 0 at two consecutive time points.
the estimates of NeV regardless of whether we assume that N is
known or not, and the corresponding 95% confidence intervals
calculated by (21) and (22) all have an estimated coverage of
95.1%. On the other hand, for sampling without replacement, the
lack of knowledge of N increases the variance of the estimates
of NeV and the corresponding 95% confidence intervals estimated
coverage is only 78%. The confidence intervals become too narrow
since the uncertainty of the estimates of N is not accounted
for, and refined methods for more accurate confidence intervals
is an interesting problem for future research. However, if N is
known, the confidence intervals for samplingwithout replacement
perform well and we obtain an estimated 94.9% coverage of the
corresponding 95% confidence intervals.

6. Optimal weighting of loci

When using the estimator (9)–(10), alleles with frequency close
to 0.5 will be given the highest weight as in Jorde and Ryman
(2007). This way of weighting alleles might not be optimal. For
example, if we first consider L biallelic loci with minor allele
frequency 0.01 the effective number of independent alleles equals
L. By adding a single biallelic locus with allele frequency 0.5 the
effective number of independent alleles is reduced since this locus
will have a much higher weight than the other loci. This serves as
a motivation to extend (9) to

F̂w
OH =

L
l=1

ωl

Al
a=1


p̂wt+τ ,al − p̂wtal

2
L

l=1
ωl

Al
a=1

p̂wtal+p̂
w
t+τ ,al
2


1−

p̂wtal+p̂
w
t+τ ,al
2

 (25)

for an appropriate sequence of locus specific weights ωl. It can be
seen, by similar calculations as in Appendix G, that (17) still holds
for the generalized estimator of NeV based on (25), with

Le =


L

l=1
ωl

Al
a=1

pwtal(1− pwtal)

2

L
l=1

κl


ωl

Al
a=1

pwtal(1− pwtal)

2 ≤

L
l=1

1
κl

, (26)
with themaximumattainedwhenωl ∝


κl
Al

a=1 p
w
tal(1− pwtal)

−1
,

by the Cauchy–Schwarz inequality. This optimalweighting scheme
leads to Le = L when all loci are biallelic. On the other hand,
these weights have to be estimated from data, and thus introduces
additional variance to the estimator of NeV . We also see from (26)
that 1/κl quantifies howmuch information each locus l provides in
terms of estimating NeV .

7. Discussion

Jorde andRyman (1995) presented an unbiased estimator ofNeV
for populations with overlapping generations. Their main idea was
to sample individuals from one of the age classes and correct the
estimate for overlapping generations using a correction factor. This
method has since then been modified (Jorde, 2012) and used to
estimateNeV from real data (Jorde and Ryman, 1996; Charlier et al.,
2012).

In this paper we have generalized the estimator presented
in Jorde and Ryman (1995) in several ways. In the original version,
the correction factor was calculated using an iterative process.
Here, we derive a direct way to calculate it through formulas (14)
and (16). We include the actual age class sizes when deriving the
correction factor which gives a more accurate constant, especially
for populations with few individuals in the sampled age classes.
An optimal way of weighting multiple loci is given and we also
derive a general formula for the coefficient of asymptotic standard
deviation, with accompanying approximate confidence intervals.
This approximate and very explicit formula implies that in order
to reduce the standard deviation for a specified population one can
do one or more of the following:

• Increase the effective number of independent alleles Le,
• increase the effective sample size ñ,
• increase the time τ between the samples,
• sample from age classes that maximize C .

Even though the standard deviation of the estimator decreases as
the time τ between samples increases, one has to be careful while
increasing τ by one or a few time steps, since the correction factor
also depends on τ . This means that the product Cτ can initially get
smaller when τ increases, which will result in a higher standard
deviation of N̂eV .
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Usually, in real populations, neither the effective population
size, nor the census population size is known. However, both
the effective population size and the census population size are
generally of interest. Here, we present a method for simultaneous
estimation of both sizes. This method relies on the ratio NeV/N of
the effective and census sizes being known when the life table is,
so that an estimator ofNeV naturally gives rise to an estimator ofN .
A number of other one- and two-sample demographic and genetic
estimators of N exist, as reviewed by Luikart et al. (2010). If such
data is available it should of course be used for estimating N . Since
most of these estimators of N do not require a life table, they could
be compared with ours in order to test whether the life table is
correctly specified or not.

The temporalmethod has twomain drawbacks. First, in order to
calculate the correction factor C , a number of assumptions have to
bemade. In this paperwehave generalized the original assumption
of Poisson distributed number of offspring to allow for overdisper-
sion. We also include the possibility of correlation between sur-
vival and reproductive success. Such detailed information about a
studied population is often not known. But if individuals are sam-
pled from all age classes with positive reproductive numbers, we
show that, when using reproductive weights, the correction factor
equals one. Since assumptions about variance of reproductive suc-
cess and its correlation with survival are only needed in order to
calculate the correction factor, in this case, such assumptions can
be relaxed. However, to determine the reproductive weights, we
still need to know the expected number of births per age class and
the age specific survival probabilities.

Even if accurate life-table information can be difficult to assess
formany species, we still believe it is important to use it for species
where such data can be estimated, see for instance Jorde and Ry-
man (1996), Turner et al. (1999) and Serbezov et al. (2012). But it
is also possible to extend our method to include uncertainty of C .
Write C = C(θ) as a function of the set θ of all relevant demo-
graphic parameters. Then, if θ̂ is the estimate of θ , we can estimate
C as Ĉ = C(θ̂). Given that the demographic uncertainty is specified
in terms of a distribution of θ̂ , we may use parametric bootstrap
to estimate Var(Ĉ). It then follows from (16) that a second term
AsVar(Ĉ)/C2 should be added in (17) to the asymptotic coefficient
of variance of N̂eV .

Second, the temporalmethod requires genetic data fromat least
two time points. In order to avoid this, Wang (2009) and Wang
et al. (2010) use information from one sample of multilocus
genotypes. The idea is to estimate identity-by-descent-sharing
between sampled individuals first, to assign either their sibship
or parental relations, and then to use this for estimating Ne. One
may also utilize that genetic drift causes linkage disequilibrium
between pairs of loci in order to estimate Ne of an age structured
populations from one single sample, see Hill (1981), Waples et al.
(2014) and references therein. We believe these methods are of
great value, and a good complement to the temporal method even
when data from several time points are available.

The framework in this paper is formonecious populations. Since
animal species are diecious, our method should be extended to
account for this. Effective size formulas for age-structured two sex
models have been derived by Johnson (1977), Emigh and Pollak
(1979), Engen et al. (2005) and Pollak (2011). Engen et al. (2007)
showed how effective size estimates for males and females are
combined into one when birth and survival rates of each sex
are age independent. This could be used as a first approximation
to combine two separate estimators (16) for males and females
into one. A more elaborate approach is to extend the estimator
of this paper to diecious models. The theory for calculating C in
Appendix B relies on haploid results of Hössjer et al. (2014). We
have recently developed a corresponding theory for diploid and
diecious species in Hössjer et al. (2015), and it would be of great
interest to apply it in order to derive a diecious extension of the
Jorde–Ryman estimator of NeV .
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Appendix A. Derivation of (10)

Let E denote expectation with respect to t = 0. We will
motivate that Fw∗

OH in (10) is an approximately unbiased estimator
of Fw in (8), which is assumed to be independent of a and l. Starting
with the unadjusted estimator F̂w

OH it follows from (9) that

E(F̂w
OH) ≈

L
l=1

Al
a=1

E([p̂wt+τ ,al − p̂wtal]
2)

L
l=1

Al
a=1

E


p̂wtal+p̂
w
t+τ ,al
2


1−

p̂wtal+p̂
w
t+τ ,al
2

 (A.1)

when L is large. By conditioning on all pwtal and pwt+τ ,al, and since
E(p̂wtal) = pwtal, E(p̂wt+τ ,al) = pwt+τ ,al, the nominator in (A.1) can be
written as

L
l=1

Al
a=1

E([p̂wt+τ ,al − p̂wtal]
2)

=

L
l=1

Al
a=1

E[E([p̂wt+τ ,al − p̂wtal]
2
|pwtal, p

w
t+τ ,al)]

=

L
l=1

Al
a=1

{E([pwt+τ ,al − pwtal]
2)

+ E[Var(p̂wt+τ ,al|p
w
t+τ ,al)] + E[Var(p̂wtal|p

w
tal)]}, (A.2)

and the denominator, by the same type of argument, as

L
l=1

Al
a=1

E

p̂wtal + p̂wt+τ ,al

2


1−

p̂wtal + p̂wt+τ ,al

2



=

L
l=1

Al
a=1

E

E

p̂wtal + p̂wt+τ ,al

2

×


1−

p̂wtal + p̂wt+τ ,al

2

 pwtal, pwt+τ ,al


=

L
l=1

Al
a=1


E

pwtal + pwt+τ ,al

2


1−

pwtal + pwt+τ ,al

2



− (E[Var(p̂wt+τ ,al|p
w
t+τ ,al)] + E[Var(p̂wtal|p

w
tal)])/4


, (A.3)

where Var(p̂wtal|p
w
tal) is the sampling variance which approximates

(7) and depends on the sampling scheme. For binomial sampling,
i.e. sampling with replacement

Var(p̂wtal|{ptjal}
J−1
j=0 ) =

J−1
j=0

w2
tj
ptaj(1− ptaj)

2n1j

≈
pwtal(1− pwtal)

2n1

≈ Var(p̂wtal|p
w
tal), (A.4)

because of (11), and analogously



18 F. Olsson, O. Hössjer / Theoretical Population Biology 101 (2015) 9–23
Var(p̂wt+τ ,al|{pt+τ ,jal}
J−1
j=0)

=

J−1
j=0

w2
t+τ ,a,j

pt+τ ,a,j(1− pt+τ ,a,j)

2n2j

≈
pwtal(1− pwtal)

2n2
−

pwtal(1− pwtal)− pwt+τ ,al(1− pwt+τ ,al)

2n2

≈ Var(p̂wt+τ ,al|p
w
t+τ ,al). (A.5)

The right hand sides of (A.4) and (A.5) are still valid for sampling
without replacement, if we redefine n1 and n2 as in (12).

Putting (A.2), (A.4) and (A.5) together, we find that E(pwtal[1 −
pwtal] − pwt+τ ,al[1 − pwt+τ ,al]) = E(pwtal[1 − pwtal])F

w , where
E(pwt+τ ,al|p

w
tal) ≈ pwtal is used, Fw is defined in (8) and assumed to

be independent of a, l. Then we have that
L

l=1

Al
a=1

E([p̂wt+τ ,al − p̂wtal]
2)

= [Fw
+ 1/(2n1)+ 1/(2n2)− Fw/(2n2)]

×

L
l=1

Al
a=1

E[pwtal(1− pwtal)]. (A.6)

In the same way, (A.3) can be written as
L

l=1

Al
a=1

E

p̂wtal + p̂wt+τ ,al

2


1−

p̂wtal + p̂wt+τ ,al

2


= [1− Fw/4− 1/(8n1)− 1/(8n2)(1− Fw)]

×

L
l=1

Al
a=1

E[pwtal(1− pwtal)], (A.7)

so that the double sums in (A.6) and (A.7) cancel when taking the
ratio of these two expressions, and

E(F̂w
OH) ≈

Fw
+ 1/(2n1)+ 1/(2n2)− Fw/(2n2)

1− Fw/4− 1/(8n1)− 1/(8n2)(1− Fw)
. (A.8)

Solving for Fw in (A.8) and using the definition of ñ, we find that
(10) is an approximately unbiased estimator of the standardized
variance of allele frequency change between time t and t + τ for
weighting schemew. �

Appendix B. How to calculate (14)

Let ptj = ptjal and pwt = pwtal be age-specific and age-averaged
frequencies of a particular allele a at some locus l. It is shown in
the previous subsection, that the expected value of Fw∗

OH is well
approximated by Fw in (8). By using the definition of pwt in (6) and
expanding the expected values of the numerator and denominator
of (8), we can rewrite Fw as

Fw
=

J−1
i=0

J−1
j=0

wiwj


ft+τ ,ij + ft,ij −

2Cov(pt+τ ,i,pt,j)
p(1−p)


1−

J−1
i=0

J−1
j=0

wiwjft,ij

, (B.1)

where E and Cov denote expectation and covariance with respect
to t = 0, and

ftij = Cov(pti, ptj)/(p(1− p)), (B.2)

is a standardized covariance at time t between age classes i and
j, assuming that all age classes j have the same allele frequency,
p = p0j, at time 0.

Let pt = (pt0, . . . , pt,J−1)′ be a column vector of the generic,
conditional on demographics, allele frequencies in all age classes
at time t . It follows from Hössjer et al. (2014) that the expected
time dynamics of the allele frequencies is given by

E[pt+τ |pt ] = Bt+τ−1 · . . . · Bt+1pt (B.3)

where

Bt = (Btik)
J−1
i,k=0 =


Qt0 Qt1 . . . Qt,J−2 Qt,J−1
1 0 . . . 0 0
0 1 . . . 0 0

. . .

0 0 . . . 1 0

 (B.4)

is a backward migration matrix between time points t + 1 and t ,
and

Qtj = Ntjbj/Nt+1,0

is the probability that the parent of an offspring belongs to age class
j. If population size changes slowly over the time interval [t, t+ τ ]
we have approximately Bt = · · · = Bt+τ = B, and
Cov(pt+τ ,i, ptj) = Cov(E[pt+τ ,i|ptj], ptj)

= Cov([Bτpt ]i, ptj) = p(1− p)
J−1
k=0

(Bτ )ikftkj,

and combining this with (B.1), we have

E(Fw∗
OH ) ≈ Fw

=

J−1
i=0

J−1
j=0

wiwj(ft+τ ,ij + ft,ij − 2

k

(Bτ )ikftkj)

1−
J−1
i=0

J−1
j=0

wiwjft,ij

. (B.5)

Let

ft = vec

(ftij)

J−1
i,j=0


be a column vector of length J2 that stacks all standardized covari-
ances. From theory developed in Hössjer et al. (2014) and Hössjer
(2014), it follows that

ft+1 = At ft + (I − At)1, (B.6)

where 1 is a column vector of J2 ones, I an identity matrix of order
J2,

At = (At,ij,kl)0≤i,j≤J−1,0≤k,l≤J−1

a square matrix of order J2 with elements

At,ij,kl =


1−

1
2Nt+1,i

{i=j} 1− πtij,k

1− 1
2Ntk

{k=l}
BtikBtjl, (B.7)

and πtij,k is the coalescence probability that two individuals in age
classes i and j at time t + 1 that have both of their parents at time
t in age class k, have the same parent.

Assuming that demographics changes slowly, so that At ≈ A,
we have from (B.6) for large t that

ft = 1− At1 ≈ 1− λt
Arl1 = 1− λt

Ar, (B.8)

where λA is the largest eigenvalue of A, l and r are the left and right
eigenvectors, corresponding to λA, normalized such that l1 = lr =
1. By inserting (B.8) into (B.5) and dividing by λt

A in the numerator
and denominator, we have that

E(Fw∗
OH ) ≈ Fw

≈

J−1
i=0

J−1
j=0

wiwj


2

k

(Bτ )ikrkj − (1+ λτ
A)rij


J−1
i=0

J−1
j=0

wiwjrij

. (B.9)

Finally, we compute C by inserting the right hand side of (B.9) into
(14).
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For a demography that changes cyclically with period c time
steps so that At+c = At for all t , we let A = (A1 · . . . · Ac)

1/c so
that λA and r in (B.9) is the largest eigenvalue and corresponding
right eigenvector of this matrix. In order to take fluctuating demo-
graphics into account, we have to replace A by its expected value
with respect to such fluctuations. �

Appendix C. Constant age class sizes and Poisson reproduction

This is the scenario treated by Jorde and Ryman (1995), with
Ntj = Nj, πtijk = πijk and At = A. Since the subpopulation sizes are
constant, we drop index t for all quantities.

We only need to specify the coalescence probabilities for age
class triples i, j, k such that BikBjk ≠ 0. This includes three
possibilities; a commonparent in age class k of twonewborns,with

π00k =
1

2Nk
, (C.1)

that two adults in age class k ∈ {1, . . . , J − 1} originate from the
same individual (in age class k − 1) at the previous time point,
which is not possible, so that

πkk,k−1 = 0, (C.2)

and an adult in age class k being the parent of a newborn at the
previous time point,

π0,k+1,k = πk+1,0,k =
1

2Nk
. (C.3)

Inserting (C.1)–(C.3) into (B.7), one can show that recursion (B.6)
for the vector ft of the standardized allele frequency covariances is
the same as in Jorde and Ryman (1995). �

Appendix D. Non-constant age class sizes and overdispersion

We will extend the previous example by dropping the
assumptions of constant subpopulation sizes, Poisson distributed
reproduction numbers and independence between survival and
reproduction.

In order to achieve this, we need to generalize (C.1)–(C.3). Start-
ing with (C.2), this is straightforward, since

πt,kk,k−1 = 0. (D.1)

Generalizing (C.1) is a well known problem of coalescence theory,
see for instance Durrett (2008) and references therein. If follows
from the exchangeability of the terms in the middle equation of
(1) that

πt,00,k = E


2Ntk
h=1


Ytkh
2




2Nt+1,k0
2

  Ntk,Nt+1,k0


=

NtkE

Ytk1[Ytk1 − 1]|Ntk,Nt+1,k0


Nt+1,k0(2Nt+1,k0 − 1)

=
Ntk

Nt+1,k0(2Nt+1,k0 − 1)


(Nt+1,k0/Ntk)

2
− Nt+1,k0/Ntk

+ Var(Ytk1|Ntk,Nt+1,k0)

, (D.2)

since

E(Ytk1|Ntk,Nt+1,k0) =
Nt+1,k0

Ntk
. (D.3)
When the number of offspring has a Poisson distribution, before
conditioning on the total number of offspring in the age class, the
distribution after such conditioning is binomial, so that

Var(Ytk1|Ntk,Nt+1,k0) = Nt+1,k0 ·
1
Ntk


1−

1
2Ntk


, (D.4)

which inserted into (D.2) yields

πt,00,k =
1

2Ntk
.

From this we see that (D.2) generalizes (C.1) to varying population
sizes and non-Poissonian offspring distributions. For instance, for
negative binomial offspring distribution, we use instead (3), and
find that

Ytk1|Nt+1,k0 ∼ Bin(2Nt+1,k0, Ptk1),
Ptk1|Ntk ∼ Beta(mk, (2Ntk − 1)mk).

Hence the variance term in (D.2) can be computed as

Var(Ytk1|Ntk,Nt+1,k0) = E

Var(Ytk1|Ntk,Nt+1,k0, Ptk1)


+Var


E[Ytk1|Ntk,Nt+1,k0, Ptk1]


= E


2Nt+1,k0Ptk1[1− Ptk1]|Ntk


+ Var(2Nt+1,k0Ptk1)

= Nt+1,k0 ·
1
Ntk


1−

1
2Ntk


+ 2Nt+1,k0(2Nt+1,k0 − 1)Var(Ptk1)

= Nt+1,k0 ·
1
Ntk


1−

1
2Ntk


·


1+

2Nt+1,k0 − 1
2Ntkmk + 1


. (D.5)

We notice that (D.4) is a special case of (D.5) that corresponding to
mk = ∞. Inserting (D.5) into (D.2), we get a general expression for
πt,00,k when population sizes vary and the number of offspring has
a negative binomial distribution.

Finally, we need to generalize (C.3). By a similar argument as in
(D.2), one can show that

πt,0,k+1,k = πt,k+1,0,k

= E


2Ntk
h=1

YtkhItkh

4Nt+1,k0Nt+1,k+1

 Ntk,Nt+1,k0,Nt+1,k+1


=

NtkE

Ytk1Itk1|Ntk,Nt+1,k0,Nt+1,k+1


2Nt+1,k0Nt+1,k+1

. (D.6)

In particular, if survival and reproduction are independent (ρk =

0), it follows from (D.3) and

E(Itk1|Ntk,Nt+1,k+1) =
Nt+1,k+1

Ntk
(D.7)

that

πt,0,k+1,k = πt,0,k+1,k =
1

2Ntk
,

in agreementwith (C.3). More generally, we compute the expected
value in the numerator of (D.6) as

E

Ytk1Itk1|Ntk,Nt+1,k0,Nt+1,k+1


=

Nt+1,k+1

Ntk

2Nt+1,k0
y=0

yP(Ytk1 = y|Itk1 = 1,Nt+1,k0,Nt+1,k+1),

making use of (D.7) in the last step. The sum refers to the expected
value of Ytk1 given Itk1 = 1, Nt+1,k0 and Nt+1,k+1, which could be
approximated by a Monte Carlo simulation. �
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Appendix E. Correction factor for reproductive weights

First, let

wj = γj =
vjNtj

J−1
i=0

viNti

≈
vjuj

J−1
i=0

viui

= vjuj,

if the population is close to demographic equilibrium, Ntj ≈ Ntuj,
so that an individual in age class j in the sample is weighted
according to its age class reproductive value γj. With this choice
of weights and letting

γ = (γ0, . . . γJ−1) (E.1)

be the vector of reproductive values it can be shown generally that
γ is the equilibrium distribution of the backwardmigrationmatrix
B (Nagylaki, 1980; Hössjer and Ryman, 2014). Therefore

γBτ
= γ, (E.2)

and it follows from (B.9) that

Fγ
=

J−1
i=0

J−1
j=0

γiγj(1− λτ
A)rij

J−1
i=0

J−1
j=0

γiγjrij

= 1− λτ
A.

Hence, the correction factor

C =
1− (1− (1− λτ

A))
1/τ

1− λA
= 1

regardless of demographic model. �

Appendix F. Correction factor in the limit of large time
intervals

For an arbitrary vector of weights, w, we insert (B.9) into (14),
let τ →∞ and find that

lim
τ→∞

C = lim
τ→∞

1−

1−

J−1
i=0

J−1
j=0
[2γiwj−wiwj(1+λτ

A)]rij

J−1
i=0

J−1
j=0

wiwjrij


1/τ

1− λA

= lim
τ→∞

1−

1−
2
J−1
i=0

J−1
j=0

γiwjrij

J−1
i=0

J−1
j=0

wiwjrij

+ (1+ λτ
A)


1/τ

1− λA

since γ is the equilibrium distribution of B (cf. (E.2)) and therefore
(Bτ )ik → γk as τ → ∞. Hence, if

J−1
i=0
J−1

j=0 γiwjrij ≈J−1
i=0
J−1

j=0 wiwjrij, then the correction factor C → 1 as τ → ∞.
Since

J−1
j=0 γj =

J−1
j=0 wj = 1 and ftij ≈ 1 − λt

Arij according to
(B.2), we thus need to show that

J−1
i=0

J−1
j=0

γiwjftij −
J−1
i=0

J−1
j=0

wiwjftij = o(λt
A). (F.1)

Wewillmotivate (F.1) for strongmigration (Nagylaki, 1980),which
is reasonable to assume for age-structured models.

By weighting the standardized covariances (B.2) and making
use of (6), we have that
J−1
i=0

J−1
j=0

wiwjft,ij =
Var(pwt )

p(1− p)
,

and
J−1
i=0

J−1
j=0

γiwjft,ij =
Cov(pγ

t , pwt )

p(1− p)
,

where

Cov(pγ
t , p

w
t ) = Cov(pγ

t , p
γ
t + [p

w
t − pγ

t ])

= Var(pγ
t )+ Cov(pγ

t , [p
w
t − pγ

t ])

and

Var(pwt ) = Var(pwt + pγ
t − pγ

t )

= Var(pγ
t )+ Var(pwt − pγ

t )+ 2Cov(pγ
t , [p

w
t − pγ

t ]). (F.2)

Hence, in order to establish (F.1), we need to show that

Var(pwt − pγ
t ) = o(λt

A) (F.3)

and

Cov(pγ
t , [p

w
t − pγ

t ]) = o(λt
A). (F.4)

Let pt = (pt,0, . . . , pt,J−1)′ be the vector of allele frequencies in
the different age classes at time t for a particular allele a and locus
l, as in (B.3). Following the approach in Hössjer and Ryman (2014)
we have the recursion

pt = Bpt−1 + ϵt ,

where ϵt = (ϵt0, . . . , ϵt,J−1)
′ is a random error vector with

expected value

E (ϵt |pt−1) = 0,
and covariance matrix

Cov (ϵt |pt−1) = Ω(pt−1) = O[p(1− p)(1− λA)λ
t
A].

Let

pt = pγ
t 1+ p0

t ,

where p0
t represents the deviation from equal allele frequencies in

all age classes, and 1 is a column vector of J ones. Suppose that all
age classes have the same allele frequency p at time t = 0, then

pγ
t = p+

t
s=1

ϵs

and

pwt = w(pγ
t 1+ p0

t ) = pγ
t +w

t
s=1

(B0)t−sϵ0s ,

where ϵs = γϵs =
J−1

j=0 γjϵsj, ϵ0s = ϵs − ϵs1 and B0
= B− 1γ . Let

λ2 denote the largest eigenvalue of B0. It is the same as the second
largest eigenvalue of B, and quantifies how fast migration is. Then,

Var(pwt − pγ
t ) =

t
s=1

Var(w(B0)t−sϵ0s )

= O


p(1− p)(1− λA)λ

t
A

1− λ2
2/λA


since Var(w(B0)t−sϵ0s ) ∈ O(p(1− p)(1− λA)λ

s
Aλ

2(t−s)
2 ) and

Cov(pγ
t , (p

w
t − pγ

t )) =

t
s=1

Cov(ϵs,w(B0)t−sϵ0s )

= O


p(1− p)(1− λA)λ

t
A

1− λ2/λA


since Cov(ϵs,w(B0)t−sϵ0s ) ∈ O(p(1 − p)(1 − λA)λ

s
Aλ

t−s
2 ). Strong

migration means that genetic drift is much slower than migration
between age classes, i.e. 1−λA ≪ 1−λ2, which implies 1−λA ≪

1− λ2/λA. Then (F.3)–(F.4) follow and hence also (F.1). �
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Appendix G. Asymptotic variance of N̂eV

We derive the asymptotic variance in two steps. First, consider
a biallelic locuswith allele frequency pt = pwt at time t .We assume
that F = Fw is the genetic drift in (8),

pt+τ ≈ pt + X1


Fpt(1− pt), (G.1)

is the allele frequency at time t + τ ,

p̂t ≈ pt + X2


pt(1− pt)

2n1
, (G.2)

is the estimated allele frequency at time t and

p̂t+τ ≈ pt+τ + X3


pt(1− pt)

2n2
, (G.3)

is the estimated allele frequency at time t + τ , where X1, X2 and
X3 are independent standard normal distributed random variables,
applying a normal approximation to the genetic drift from time t to
t + τ and the sample variation of p̂t and p̂t+τ . This approximation
is accurate when F is small and n1, n2 are large.

In order to find an approximation of the sample variance of Fw∗
OH ,

we can assume

Fw∗
OH ≈

(p̂t+τ − p̂t)2

p̂t(1− p̂t)
−

1
ñ

≈


X1
√
Fpt(1− pt)− X2


pt (1−pt )

2n1
+ X3


pt (1−pt )

2n2

2
pt(1− pt)+ (1− 2pt)X2


pt (1−pt )

2n1

−
1
ñ

=
Y 2

F + 1

ñ


1+ 1−2pt

pt (1−pt )
X2


pt (1−pt )

2n1

−
1
ñ

≈ Y 2

F +

1
ñ


−

1
ñ
, (G.4)

where

Y =
X1
√
F − X2

1
√
2n1
+ X3

1
√
2n2

1
2n1
+ F + 1

2n2

(G.5)

is a standard normal distributed random variable and ñ is defined
in (13), keeping only terms of order F+1/ñ in the last step of (G.4).
Since

AsVar(Fw∗
OH ) ≈ AsVar


Y 2

F +

1
ñ


−

1
ñ


= 2


F +

1
ñ

2

,

we may use (16)–(17) to conclude that

AsVar(N̂eV )

N2
eV

≈
AsVar(Fw∗

OH )

F 2
≈ 2


1+

1
F ñ

2

≈ 2

1+

2NeV T
Cτ ñ

2

.

As a next step, we generalize the derivation above and consider L
loci, of which locus l has Al alleles and aged averaged frequency
ptal = pwtal of allele a = 1, . . . , Al. Analogously with (G.1)–(G.3), we
have that

(pt+τ ,1l, . . . , pt+τ ,Al) ≈ (pt1l, . . . , ptAl)

+


X11l


Fpt1l(1− pt1l), . . . , X1Al


FptAl(1− ptAl)


,

(p̂t1l, . . . , p̂tAl) ≈ (pt1l, . . . , ptAl)

+


X21l


pt1l(1− pt1l)

2n1
, . . . , X2Al


ptAl(1− ptAl)

2n1


,

and

(p̂t+τ ,1l, . . . , p̂t+τ ,Al) ≈ (pt+τ ,1l, . . . , pt+τ ,Al)

+


X31l


pt1l(1− pt1l)

2n2
, . . . , X3Al


ptAl(1− ptAl)

2n2


,

where A = Al for simplicity of notation, and Xi1l, . . . , XiAl are
dependent standard normal random variables for i = 1, 2, 3 but
independent for different i and l. Hence,

(p̂t+τ ,1l, . . . , p̂t+τ ,Al)− (p̂t1l, . . . , p̂tAl)

≈


F +

1
ñ


pt1l(1− pt1l)Y1l, . . . ,


ptAl(1− ptAl)YAl


,

where Y1l, . . . , YAl are dependent standard normally distributed
random variables, defined analogously as in (G.5), with Yal a linear
combination of X1al, X2al and X3al. Then, summing over L loci in
(9)–(10), and making a similar approximation as in (G.4), we find
that

Fw∗
OH ≈

L
l=1

Al
a=1

(p̂t+τ ,al − p̂tal)2

L
l=1

Al
a=1

ptal(1− ptal)

−
1
ñ

≈


F +

1
ñ

 L
l=1

Al
a=1

Y 2
alptal(1− ptal)

L
l=1

Al
a=1

ptal(1− ptal)

−
1
ñ
. (G.6)

To calculate the variance of Fw∗
OH we assume that each vector (p̂t+τ ,al

− p̂tal)
Al
a=1 has the same covariance structure as a multinomial

distribution i.e. that

Var(p̂t+τ ,al − p̂tal) =

F +

1
ñ


ptal(1− ptal)

and

Cov(p̂t+τ ,al − p̂tal, p̂t+τ ,bl − p̂tbl) = −

F +

1
ñ


ptalptbl

for a ≠ b. Hence,

Var(Yal) = 1

and

Corr(Yal, Ybl) = −


ptalptbl

(1− ptal)(1− ptbl)
= κabl

for a ≠ b. We can then decompose Yal and Ybl into independent
standard random variables U , V andW by letting

Yal =
√

κablU +

1− κablV

and

Ybl =
√

κablU +

1− κablW

so that Var(Y 2
al) = 2 and

Cov(Y 2
al, Y

2
bl)

= Cov

√

κablU +

1− κablV

2
,

√

κablU +

1− κablW

2
= Cov


κablU2

+ (1− κabl)V 2
+ 2


κabl(1− κabl)UV ,

κablU2
+ (1− κabl)W 2

+ 2


κabl(1− κabl)UW


= Var(κablU2)

= 2κ2
abl
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when a ≠ b. Hence,

Var


Al

a=1

ptal(1− ptal)Y 2
al



=

A
a=1

A
b=1

ptal(1− ptal)ptbl(1− ptbl)Cov(Y 2
al, Y

2
bl)

= 2
Al

a=1

p2tal(1− ptal)2 + 2


a≠b

p2talp
2
tbl

= 2κl


Al

a=1

ptal(1− ptal)

2

with κl as defined in (19). Letting Le be the effective number of
alleles in (18), taking the variance of the right hand side of (G.6)
and dividing by F 2

= (Fw)2 we obtain (17).
The confidence intervals (21)–(22) are also obtained from (G.6),

looking at the pivotal statistic
Fw∗
OH +

1
ñ

F + 1
ñ

,

which has distribution as in (20) when all loci are biallelic with the
same allele frequencies and for the general case, its distribution is
approximately N(1, 2/Le). �

Appendix H. Effective number of independent alleles

Suppose that locus l has Al alleles with equal allele frequency
1/Al for l = 1, . . . , L. The effective number of independent alleles
(18) can then be expressed as

Le =


L

l=1

Al
a=1

1
Al


1− 1

Al

2

L
l=1

κl


Al

a=1

1
Al


1− 1

Al

2

=


L

l=1


1− 1

Al

2
L

l=1
κl


1− 1

Al

2

=


L

l=1
(
Al−1
Al

)

2
L

l=1

Al−1
A2l

, (H.1)

since

κl =

Al
a=1

1
A2l


1− 1

Al

2
+


a≠b
1
A2l

1
A2l

Al
a=1

1
Al


1− 1

Al

2

=

1
Al


1− 1

Al

2
+ Al(Al − 1) 1

A4l
1− 1

Al

2
=

1
Al


1− 1

Al


+

1
A2l

1− 1
Al


=

1
Al − 1

.

Fig. 5. Iterated estimates of the census (upper lines) and the variance effective
population sizes (lower lines) for different initial estimates N̂(0) of N and one
simulated data set. The true values are N = 10 000 for the census size and NeV =

2589 for the variance effective population size. Regardless of the starting value
N̂(0), we obtain estimates N̂ = N̂(∞) = 9715 and N̂eV = N̂eV (∞) = 2519. The
population is simulated according to the demographic parameters of Table 2 with
L = 1000 generated loci and n = 500 individuals sampled from age class 0 at two
consecutive time points.

If all loci have the same number, A, of alleles then (H.1) simplifies
to Le = (A− 1)L. �

Appendix I. Simultaneous estimation of effective and census
population size

For simultaneous estimation of the effective population size
and the population census size we make an initial guess N̂(0) of
N = Nt = Nt+τ . Then, starting with i = 0, we let

N̂eV (i) =
1
2

1−

1−
1−


1− Fw∗

OH (N̂(i))
1/τ

C(N̂(i))


T

−1

, (I.1)

be the estimate of the variance effective size in step i of the
algorithm. Then we update our estimate of the census population
size as

N̂(i+ 1) = N̂eV (i)
N
NeV

. (I.2)

After that, we let i← i + 1, repeat (I.1)–(I.2) until both estimates
converge, and let

(N̂eV , N̂) = (N̂eV (∞), N̂(∞)) (I.3)

be our final estimates.
To demonstrate this simultaneous estimation procedure, we

simulated data by methods in Olsson and Hössjer (2014) and
demographic parameters according to Table 2. In Fig. 5, we
consider one simulated data set and illustrate the convergence rate
of the estimates (I.1)–(I.2). We sampled 500 individuals without
replacement from age class 0 at two consecutive time points.
Three different starting guesses are used for N̂(0) and we see that
regardless of which value we choose, all estimates converge to the
same value.
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