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a b s t r a c t

We introduce amixed regressionmodel for mortality data which can be decomposed into a deterministic
trend component explained by the covariates age and calendar year, a multivariate Gaussian time series
part not explained by the covariates, and binomial risk. Data can be analyzed by means of a simple
logistic regression model when the multivariate Gaussian time series component is absent and there
is no overdispersion. In this paper we rather allow for overdispersion and the mixed regression model
is fitted to mortality data from the United States and Sweden, with the aim to provide prediction and
intervals for future mortality and annuity premium, as well as smoothing historical data, using the best
linear unbiased predictor. We find that the form of the Gaussian time series has a large impact on the
width of the prediction intervals, and it poses some new questions on proper model selection.
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1. Introduction

Decreasing mortality rates is not a new phenomenon, it is a
trend that has been evident for over a century in thewesternworld
and today it is present in practically all countries but the onesworst
plagued with civil wars and the AIDS epidemic. ‘‘Longevity’’ is an
often used term for this trend, especially when the trend is viewed
as an economic risk putting stress on pension plans and health care
systems.

Actuaries and demographers have a long tradition of making
life tables and models for mortality, trying to determine the death
intensity or force of mortality, denoted µx at age x. Closely related
is the one year death risk

Qx = 1 − exp
 1

0
µx+sds


,

forwhichwe use a capital letter (rather than qx) in order to empha-
size its randomness. After age is gender the most important factor
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for human mortality. Often separate life tables and sets of Qx are
produced formales and females, but for pricing purposes in the EU,
a gender neutral life tablemust be used in order not to discriminate
between genders.

In order to quantify dynamic effects, mortality rates and
death intensities should be regarded as functions of calendar
year t as well. For instance, Osmond (1985) introduced the
Age–Period–Cohort model within the medical statistics literature.
But the interest in stochastic modeling of mortality first took off
with a paper by Lee and Carter (1992) in which a principal com-
ponents approach of Bozik and Bell (1987) and Bell and Monsell
(1991)wasmodified. Since then a variety ofmodels have been pro-
posed. They differ in several ways, for instance in how age, calen-
dar year and cohort t − x are included as covariates, see Renshaw
and Haberman (2003b,c, 2006), Booth and Tickle (2008), Cairns
et al. (2008, 2009), Barrieu et al. (2012) and Cairns (2014) for re-
cent overviews with further references.

The richness of proposed models shows that the problem is
non-trivial, with a high dimensional data set. There are more than
hundred observed age specificmortalities, often gender specific for
males and females, collected for over thirty, fifty and even hundred
calendar years. Still there are obvious patterns of correlation
in data, in that mortality in general increases with age. The
improvements of mortalities seem to be non-stationary though,
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in that the rates vary over ages and time. On top of this we have
randomnoise, caused by individual variation in a finite population.

When evaluating models, some seem to be too simple. This
may either be assessed in an explorative data analysis which may
reveal marked patterns in residual plots that signify features of
historical data not explained by the model, or formally by some
model selection criterion such as BIC (Cairns et al., 2009). Other
models seem to be too complex. Even though they fit historical
data well, they might be sensitive to variations in data and have
less robust forecasts, see Cairns et al. (2009) and Cairns (2014).
Bell (1997) showed that a simple model, where the logged death
rates constitute a random walk with drift, separately for each
age, can sometimes outperform more complex models in terms of
forecasting. Bell’sworkhas received relatively little attention in the
literature, and there is still work to be done, it seems, in terms of
selecting models for mortality and forecasting.

In the Lee–Carter model and many of its successors, it is often
taken for granted that either the observed death rates µ̂xt or
mortality rates Q̂xt are stochastic processes. It is however seldomly
explicitly pointed out that what we observe is a finite population
and that the randomness is partially caused by this. Brouhns
et al. (2002) used Poisson regression, where instead, the actual
death rates are non-random, whereas the randomness from the
finite population manifests itself in terms of a Poisson distributed
number of deaths (see alsoWilmoth, 1993; Alho, 2000). This source
of variation has been referred to as the Poisson risk (Cairns et al.,
2014), and analogously,we speak of the binomial risk if the number
of deaths is assumed have a binomial distribution. Both Poisson
and binomial risks are examples of diversifiable risks, i.e. they
diminish as population grows due to the law of large numbers.

Ekheden and Hössjer (2014) studied the randomness in ob-
served mortality rates Q̂xt more closely, with the aim of getting a
better understanding of the underlying processes and to find new
means for mortality estimation and prediction. More specifically,
the focus in that paper was on variation of logit transformed Q̂xt ,
which were split into three components, systematic risk explained
by the covariates, systematic risk not explained by the covariates
and binomial risk, due to the finiteness of the population. The sec-
ond type of systematic risk corresponds to real effects not caught
by the model, and the formal test procedure developed by Ekhe-
den and Hössjer revealed that for a small population, it can often
be discarded, due to its large binomial risk.

In this paper we propose more specifically a mixed regression
model which can be decomposed into a deterministic trend
component explained by the covariates, a multivariate Gaussian
time series part not explained by the covariates and binomial risk.
The main novelty is the time series part, which causes mortality
rates to be overdispersed. The mortalities of a binomial model
without such a random effect are actually underdispersed, since
the variance of a binomial distribution is smaller than itsmean. But
a mixed binomial distribution is overdispersed, unless the random
effect is very small.

The multivariate time series is further divided into three vari-
ance components; corresponding towhite noise due to for instance
a heterogeneous population, period effects due to for instance nat-
ural catastrophes or influenzas, and a random walk that incorpo-
rates long termdepartures from thedeterministic trend. In absence
of this time series, our model reduces to the simple logistic regres-
sion that Ekheden and Hössjer (2014) advocated for small coun-
tries. Herewe include the time series into the analysis and estimate
systematic explained risk from logit transformed data by means
of an iteratively reweighted version of Aitken’s generalized least
squares (GLS) estimator (Aitken, 1935) and systematic explained
and unexplained risk by means of a best linear unbiased predic-
tor (BLUP, Henderson, 1975, Robinson, 1991). Prediction of future
mortality rates, life annuity premiums and life expectancies are
also incorporated into our Gaussian framework in a straightfor-
ward way that does not require any resampling.

Other overdispersion models include using negative binomial
distributions (Delwarde et al., 2007a; Li et al., 2009) and general-
ized linear models with overdispersed Poisson data (Renshaw and
Haberman, 2003b; Djeundje and Currie, 2010) for which param-
eters can be estimated by extended quasi likelihood methods. A
particular feature of our approach is that overdispersion, or unex-
plained systematic risk, enters as a stochastic process, for which a
rather general covariance structure is allowed.

The paper is organized as follows: The mixed regression model
is introduced in Sections 2–3, and estimates/prediction of his-
toric/future mortalities in Section 4. Section 5 presents analysis for
one Swedish and one US data set, Section 6 contains a discussion
and the Appendix, finally, provides mathematical details.

2. Regression model for mortality rates

We study a population of ages x = xl, . . . , xu spanning between
lower and upper limits xl and xu, during calendar years t = t1,
. . . , tT , where tT is the latest year of observations and T is the
length of the time window.

Let Nxt be the initial exposure-to-risk for individuals of age x
alive at the beginning of calendar year t . As in Cossette et al. (2007),
we model the number of deaths

Dxt |Qxt ∼ Bin(Nxt ,Qxt)

among these individuals within one year with a binomial distribu-
tion,whose death probability ormortality rateQxt can be estimated
as

Q̂xt =
Dxt

Nxt
. (1)

As mentioned in the introduction, it is also possible to assume a
Poisson distribution for death counts, with mean proportional to
the central exposure-to-risk Ext rather than Nxt , see for instance
Brouhns et al. (2002, 2005). This is a useful approximation formost
ages, but for higher ages, over 80, the Poisson distribution increas-
ingly overestimates the variance, making it less suitable for our
purposes. There is no general guideline as to which type of distri-
bution to employ. Currie (2013) used a data set from the UK Office
for National Statistics that included some individuals that reached
a very high age, and obtained a substantially better fit for the bi-
nomial model. On the other hand, Cossette et al. (2007) analyzed
population data from the Canadian province of Quebec. They found
that the Poisson model, which takes exposure to risk into account,
gave a slightly better fit.

Logit transformed mortalities were originally used by Brass
(1971) for a one-factor age model. In this paper, we assume a two-
factor model

logitQxt = log
Qxt

1 − Qxt
= αx + βx(t − t̃) + εs

xt (2)

with age and calendar years included, whereas cohort effects t − x
are not. Similarly as for Generalized Linear Models (Renshaw and
Haberman, 2003a), parameters enter linearly in (2), with time as a
known covariate. This deterministic period effect is linear in t , with
a parametrization centered around calendar year t̃ , which can be
chosen after convenience, for instance the starting point (t̃ = t1),
the mid point (t̃ = (t1 + tT )/2) or the end point (t̃ = tT ) of the
chosen time interval, depending on whether the purpose is to fit
historical mortalities or to predict future ones. See Section 6 for an
extensive discussion of the linear time trend assumption.
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The intercepts αx and slopes βx represent deterministic age
effects, for which we assume a parametrization

αx =

p1
j=0

ajφj(x),

βx =

p2
j=0

bjφj(x)

in terms of basis functions φj. In order to capture global agewise
effects, one could use polynomials,

φj(x) = xj, (3)

whereas single age class indicators

φj(x) = 1{x=xj+l} (4)

will capture age-specific effects, where each age class is assigned a
separate intercept and slope parameter, with p1 = p2 = xu − xl,
aj = αxl+j and bj = βxl+j. A compromise between (3) and (4) is
to use B-splines (Eilers and Marx, 1996; Imoto and Konishi, 2003)
in order to smooth locally. A first degree B-spline, for instance, has
intercept and slope parameters that vary piecewise linearly with
age. This corresponds to choosing m ≤ (xu − xl + 1) knot points
x0 = xl < x1 < · · · xm−1

= xu, and

φj(x) =


1 − (xj − x)/(xj − xj−1)


+

, xl ≤ x ≤ xj,
1 − (x − xj)/(xj+1

− xj)

+

, xj ≤ x ≤ xu,
(5)

with z+ = max(0, z) the positive part function, and p1 = p2 =

m − 1.
The terms εs

xt are random variables with E(εs
xt) = 0 that

represent unexplained systematic variation, with ‘s’ an acronym
for systematic. One possibility is to model εs

xt in terms of a
Gaussian Markov random field (Rue and Held, 2005), since this
would facilitate statistical inference.Wewill use another approach
though for which covariance matrices with all Cov(εs

xt , ε
s
x′t ′) are

less tractable (more difficult to invert), but on the other hand the
parameters have a more straightforward interpretation; in more
detail, we assume that εs

t = {εs
tx; xl ≤ x ≤ xu} for all ages at

calendar year t is written as a multivariate Gaussian time series

εs
t = ηt + cζt + d

|t−t̃|
s=1

κt̃+sgn(t−t̃)s, (6)

where c = {cx; xl ≤ x ≤ xu} and d = {dx; xl ≤ x ≤ xu}
are deterministic vectors, ηt = {ηxt; xl ≤ x ≤ xu}, ζt and κt are
random, and sgn(x) equals −1, 0 or 1 depending on whether x is
negative, zero or positive.

We will assume that {ηxt}, ζt and κt are independent and
normally distributed random variables with mean zero and
variances σ 2

η , σ
2
ζ and σ 2

κ . Then the right hand side of (6) involves
three components, the first of which is white noise and it is
caused, for instance, by a heterogeneous populationwith a varying
mortality rate. The second term represents period effects, such
as catastrophes and influenzas, that effect many age classes in
a similar way, as specified by c . The third term is a two-sided
random walk term that incorporates random departures from a
linear trend, common to all age classes. This process vanishes at
time t̃ (assuming in (6) that

0
1 = 0) and starts in two directions

from this time point.
As mentioned in Section 1, a number of other methods of

mortality estimation have been proposed. Many of those that do
not include cohort effects have the form

h(Qtx) = αx + β1xκ1t + β2xκ2t ,
where h is a link function, {αx}, {β1x}, {β1x} are age-specific and
{κ1t}, {κ2t} time specific parameters. Some constraints are im-
posed on these parameters in order to assure their identifiabil-
ity. Mortalities are predicted using the estimated age-specific pa-
rameters, with future time parameters modeled stochastically as a
random walk, or more generally an ARIMA time series (Brockwell
and Davis, 1991). Cossette et al. (2007) use a link function h(q) =

log[log(1/(1 − q))] and a Lee–Carter parametrization (β2x ≡ 0).
The Cairns–Blake–Dowd model of Cairns et al. (2006) has a logit
link function h(q) = logit(q), and age parameters αx ≡ 0, β1x ≡ 1,
β2x = x. See also Cairns et al. (2009) for a comparison of a num-
ber of models, including LC and CBD. A difference of our curve fit-
ting model (2) and (6) is that time enters as a known covariate,
so that linear (rather than bilinear) regression techniques can be
used for estimation. But the major advantage of our approach is
that historical and future data are both mixed regression models
with general covariance structure. This makes it possible to obtain
prediction intervals of futuremortalities and life expectancies ana-
lytically, with futuremortality change uncertainties and parameter
estimation errors accounted for.

3. Mixed regression model for observed mortality rates

Our approach is different from Generalized linear models
or Generalized linear mixed models, in that we transform the
estimated mortalities Q̂ = {Q̂xt; (x, t) ∈ Ω} rather than their
(conditionally) expected values, for a collection

Ω ⊂ {(x, t); xl ≤ x ≤ xu, t1 ≤ t ≤ tT }

of ages and calendar years. This provides logit transformed
mortality (LM) data

Yxt = logitQ̂xt = log
Q̂xt

1 − Q̂xt
. (7)

The analogous transformations of the true but unknown mortali-
ties Q = {Qxt; (x, t) ∈ Ω}, are denoted as

Y∞

xt = logit(Qxt)

for (x, t) ∈ Ω , where superscript ∞ signifies a hypothetical
population of infinite size with no diversifiable or binomial risk.

This gives amixed regressionmodelwith response variables Yxt ,
covariates (x, t) and parameters θ. In order to assess how much of
the variation in Yxt that is a function of changes in the underlyingQ ,
not explained by our model (systematic variation) and how much
is due to random noise (binomial risk), we write

Yxt = mxt + εxt

= mxt + εs
xt + εb

xt , (8)

as a sum of one part

mxt = mxt(θ)

= Eθ(Y∞

xt )

=

p1
j=0

ajφj(x) + (t − t̃)
p2
j=0

bjφj(x) (9)

explainedby a regressionmodel, and another part εxt not explained
by the regression model. We notice that the explained part
depends on p = p1 + p2 + 2 regression parameters

θ = (θ1, . . . , θp)

= (a0, . . . , ap1 , b0, . . . , bp2)
T .

The unexplained (random) part can further be decomposed into a
sum of

εs
xt = Y∞

xt − mxt , (10)



E. Ekheden, O. Hössjer / Insurance: Mathematics and Economics 65 (2015) 156–171 159
the unexplained systematic variation (-risk) defined in (6), which
by definition satisfies E(εs

xt) = 0, and

εb
xt = Yxt − Y∞

xt

= logitQ̂xt − logitQxt , (11)

the unexplained random noise, corresponding to binomial risk
(with ‘b’ an acronym for binomial). By means of a second order
Taylor expansion of the logit function g(q) = logit(q) at q = Qxt ,
and from the binomial variance formula Var(Q̂xt |Qxt) = Qxt(1 −

Qxt)/Nxt , we find that

E(εb
xt) = E


1
2
g ′′(Qxt)Var(Q̂xt |Qxt)


+ o


1
Nxt


= E


Qxt −

1
2

Qxt(1 − Qxt)


·

1
Nxt

+ o


1
Nxt



=

 1

0

q −
1
2

q(1 − q)
fQxt (q)dq ·

1
Nxt

+ o


1
Nxt


= o


1

√
Nxt


. (12)

In the last step of (12) we used (2) and (8) to rewrite the mortality
rate as

Qxt =
exp(mxt + εs

xt)

1 + exp(mxt + εs
xt)

.

Since εs
xt is normally distributed according to (6), we use tail

estimates of the normal distribution to deduce that the density
function fQxt (q)ofQxt is o(qc) as q → 0, and o((1−q)c) as q → 1, for
any c > 0, so that the integral in (12) is finite. This proves the last
step of (12), which makes the bias term E(εb

xt) negligible for large
populations, since the standard deviation of εb

xt is of order N−1/2
xt .

We deduce this by looking at the variance,

Var(εb
xt) = Var


E(εb

xt |Qx,t)

+ E


Var(logitQ̂xt |Qx,t)


= Var


Qxt −

1
2

Qxt(1 − Qxt)


·

1
N2

xt

+ E

g ′(Qxt)

2Var(Q̂xt |Qx,t)


= o


1
Nxt


+ E


1

Qxt(1 − Qxt)


·

1
Nxt

, (13)

where in the second step we used (12) for the first term, and a
first order Taylor expansion of g(q) around q = Qxt for the second
term, as for the delta method. In the third step we used that the
variance term is finite, by means of a similar argument as below
(12). Repeating this argument once again, we finally note that
E [1/(Qxt(1 − Qxt))], on the last line of (13), is finite as well.

In the Lee–Carter model and many of its extensions, age and
period parameters enter bilinearly into the regression function.
However, since time enters as a fixed known covariate in terms of
a linear time trend in (2), it is possible to rewrite (8) as a multiple
linear mixed regression model

Y = Xθ + ε, (14)

where Y = (Yxt; (x, t) ∈ Ω)T and ε = (εxt; (x, t) ∈ Ω)T are n×1
column vectors of observations and errors, n = T (xu − xl + 1) is
the number of elements of Ω , and X an n × p design matrix with
rows

(φ0(x), φ1(x), . . . , φp1(x), (t − t̃)φ0(x),

(t − t̃)φ1(x), . . . , (t − t̃)φp2(x))

for all (x, t) ∈ Ω .
4. Estimating and predicting mortality rates

Since Qxt involves unexplained systematic risk, it is random,
and therefore it is of interest to estimate E(Qxt) and predict Qxt

from historical data, as well as predicting future values of Q̂xt and
annuity premiums.

4.1. Historical mortality rates

In order to assess historic mortality rates, one option would be
to start estimatingmodel parameters fromuntransformeddataDxt .
However, the maximum likelihood function is quite complicated
with such an approach, since the systematic unexplained risk
εs enters as a hidden variable. If the components of εs are
independent, we get a generalized (or hierarchical) linear mixed
model, for which various approximate estimation algorithms are
available (Breslow and Clayton, 1993; Lee et al., 2006), whereas
likelihood inference is less tractable when εs involves serial
correlation.

We will rather extend the curve fitting approach, reviewed in
Section 3 of Bell (1997). The expectedmortality rates are functions
of the parameters θ of the multiple linear mixed regression model
in (14). We estimate the expected mortality rates by plugging in
estimates of θ from an iteratively reweighted GLS, usually referred
to as feasible generalized least squares (FGLS), see for instance
Parks (1967) and Hansen (2007). Iteration is needed since the
covariance matrix of the unexplained errors ε = (εxt; (x, t) ∈

Ω)T is unknown and has to be estimated simultaneously with the
regression parameters.

For historical data, only observed mortality rates are available,
whereas the actual mortality rates are unknown random variables
that can be predicted by means of a best linear unbiased predictor
(BLUP). In this waywe get separate FGLS and BLUP estimates of the
expected and actual mortality rates.

We will allow for quite general dependency structures of ε. Its
covariance matrix can be written as a sum

V = Vεs + Vεb (15)

of two terms, of which the second Vεb is the expected covariance
matrix of the binomial risk error terms εb

= {εb
xt; (x, t) ∈ Ω}. It

is shown in the Appendix how its form can be deduced from (13).
The first term Vεs of (15) is the covariance matrix of the systematic
unexplained errors (6). We will assume that c and d are fixed in
this equation, so that the only variance parameters that need to be
estimated are

ξ = (σ 2
η , σ 2

ζ , σ 2
κ )T . (16)

Simultaneous maximum likelihood estimation of θ and ξ (Harville,
1977) can be achieved by an iterativeGLS procedure for both sets of
parameters (Goldstein, 1986). Since this requires fourth moments
of ε, we propose a simpler and more robust method that employs
logit mortality increments (LMI) data

Y LMI
xt = 1logitQ̂xt = logitQ̂xt − logitQ̂x,t−1 (17)

rather than Yxt . It admits a decomposition into explained and
unexplained systematic variation and binomial risk, and amultiple
linear regression model (28) analogous to (14) with response
vector, design matrix and regression parameters Y LMI, X LMI and
θLMI. The covariancematrix of the unexplained part of LMI data can
be decomposed into two terms

V LMI
= V1εs + V1εb , (18)

that are the covariance matrices of 1εs
=

1εs

xt; (x, t) ∈ ΩLMI
T

and 1εb
= (1εb

xt; (x, t) ∈ ΩLMI)T , with ΩLMI
= {(x, t); xl ≤ x ≤

xu, t2 ≤ t ≤ tT }.
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An iterativeweighted least squares (WLS)method is the used to
estimate ξ, by fitting an estimate of the covariance function of 1εs

to data. TheWLS approach is not optimal, since the weights do not
take dependencies within 1εs into account. But when the random
walk variance component σ 2

κ dominates, the WLS approach is
rather efficient for LMI transformed data, since 1εs has close to
independent components for different time points.

We will write V = V (θ, ξ) and V LMI
= V LMI(θ, ξ), since it

follows from (6), (13) and (29) that both covariance matrices are
functions of the regression parameters θ for LM transformed data
and the variance parameters ξ.

With these preliminaries the procedure for estimating E(Qxt)
and Qxt for historical data can be summarized by the following
iterative scheme:

1. Put i = 0. Compute least squares estimates θ̂0 = (XX T )−1X TY
and θ̂

LMI
0 in the same way, replacing X and Y by X LMI and Y LMI.

2. Compute an estimate ξ̂i of ξ from residuals Y LMI
− X LMIθ̂

LMI
i by

WLS, as specified in the Appendix.
3. Update the covariance matrix estimates V̂i = V (θ̂i, ξ̂i) and

V̂ LMI
i = V LMI(θ̂i, ξ̂i).

4. Compute θ̂i+1 = (X T V̂−1
i X)−1X T V̂−1

i Y and θ̂
LMI
i+1 in the same

way, replacing X , V̂i and Y by X LMI, V̂ LMI
i and Y LMI.

5. Let i → i + 1.
6. If some parameter estimate has changed by more than tol (a

predefined small tolerance number) in the last step, go to
step 2.

7. Define the final estimate ξ̃ = ξ̂i of the unexplained systematic
variance parameters, the FGLS estimator θ̃ = θ̂i of the
regression parameters for LM transformed data, and the final
estimate Ṽ = V̂i of the covariance matrix of LM transformed
data.

8. Estimate the regression functionm = (mxt; (x, t) ∈ Ω)T for LM
transformeddata by m̃ = X θ̃, and then the expectedmortalities
by

Q̃xt =
em̃xt

1 + em̃xt
.

9. Predict the systematic effectsm+εs of LM transformed data by
a BLUP m̌ + ε̌

s
= X θ̌ + ε̌

s, where θ̌ and ε̌
s solve the system of

equations
X T Ṽ−1

εb
X X T Ṽ−1

εb

Ṽ−1
εb

X Ṽ−1
εb

+ Ṽ−1
εs


θ̌

ε̌
s


=


X T Ṽ−1

εb
Y

Ṽ−1
εb

Y


, (19)

and Ṽ = Ṽεs + Ṽεb is the estimate of (15) from Step 7. Then the
smoothed estimated mortalities are

Q̌xt =
em̌xt+ε̌sxt

1 + em̌xt+ε̌sxt
.

4.2. Future mortality rates, life annuity premium and life expectancy

Several authors have suggested prediction methods of future
mortality rates, see for instance Denton et al. (2004), Brouhns
et al. (2005), Koissi et al. (2006), Li et al. (2009), Cairns et al.
(2009), Cairns (2014) and references therein, and Cairns (2013)
for applications to hedging. Here we first present a method for
predicting the observedmortality rate Q̂xt of a fixed future calendar
year t > tT and age xl ≤ x ≤ xu, and then annuity premiums for
a single individual. Our approach is purely analytical and does not
require resampling.
The analysis simplifies considerably if the last random walk
term of (6) is centered around t̃ = tT . This effectively means
thatwe separate unexplained systematic variation of the past from
the future, so that historical mortalities are independent of future
mortalities. Together with (12), this implies that

E(Yxt |Y ) = mxt(θ)

would be the predictor of the logit mortality rate Yxt = logitQ̂xt
if all parameters θ were known, with a prediction error equal to a
process error εxt = Yxt − mxt(θ) in (8) that has one unexplained
systematic and one binomial risk component. Replacing θ by its
estimate θ̃, we get instead a predictormxt(θ̃), and a prediction error

Yxt − mxt(θ̃) = εxt −


mxt(θ̃) − mxt(θ)


, (20)

that is the difference of the process error εxt and an estimation
errormxt(θ̃) − mxt(θ).

In order to find the prediction error variance, we utilize
that since historic and future mortalities are independent, the
approximately Gaussian process error εxt is independent of θ̃, so
that the two terms of the right hand side of (20) are independent.
If we further assume that θ̃ is an estimator with an approximately
Gaussian distribution, the estimation error will be approximately
Gaussian as well, since (9) implies thatmxt(θ̃)−mxt(θ) = ṁT

xt(θ̃ −

θ) is a linear function of θ̃, with ṁxt a column vector containing the
partial derivatives

∂mxt(θ)

∂θi
=


φj(x), θi = aj,
(t − tT )φj(x), θi = bj,

for i = 1, . . . , p. Putting things together, we get a Gaussian
predictive distribution

Yxt ∼ N

mxt(θ̃), σ

2
xt


(21)

of Yxt , with a prediction variance σ 2
xt that is estimated as a sum

σ̃ 2
xt = ṁT

xt


X T Ṽ−1X

−1
ṁxt +


Nxtqxt(θ̃)(1 − qxt(θ̃))

−1

+ σ̃ 2
η + c2x σ̃

2
ζ + d2x(t − tT )σ̃ 2

κ (22)

of estimates of the estimation error variance (using the fact thatVar(θ̃) = (X T Ṽ−1X)−1), the binomial risk variance and the
unexplained systematic risk variance (using estimated variance
components ξ̃ = (σ̃ 2

η , σ̃ 2
ζ , σ̃ 2

κ )T ).
We can easily convert the predictive distribution (21) from

a logit to a probability scale. Let FQ̂xt
(z) denote the predictive

distribution function of the future observedmortality rate at (x, t).
By inverting the logit transformation in (20), we obtain from (21)
the predictive density function

fQ̂xt
(z) = F ′

Q̂xt
(z)

=
1

√
2πσxtz(1 − z)

exp

−


logit(z) − mxt(θ̃)

2
2σ 2

xt


and α-quantile

F−1
Q̂xt

(α) =
1

1 + exp

−(mxt(θ̃) + λασxt)


of Q̂xt respectively, where λα is theα-quantile of a standard normal
random variable.

Mortalities can be used to compute the n-year annuity premium
P̂xt(n). This is the expected annuity during n years of an age x
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individual, starting at the beginning of calendar year t . It can be
written as a function

P̂xt(n) = P ·

n−1
k=0


k

j=0

(1 − Q̂x+j,t+j)


(1 + IR)−k−1

= P ·

n−1
k=0


k

j=0


1 + eYx+j,t+j

−1


(1 + IR)−k−1

=: f (Yxt), (23)

of the observed logit transformed mortalities Yxt = (Yx+j,t+j)
n−1
j=0

within cohort (x, t), with P the yearly annuity, (1 + IR)−1 the
discount factor, corresponding to a yearly interest rate IR, see for
instance the Appendix and Brouhns et al. (2002) for details.

It is possible to predict the n-year annuity premium by

P̃xt(n) = P ·

n−1
k=0


k

j=0

(1 − Q̃x+j,t+j)


(1 + IR)−k−1

= P ·

n−1
k=0


k

j=0


1 + em̃x+j,t+j

−1


(1 + IR)−k−1

=: f (m̃xt), (24)

where m̃xt = mxt(θ̃), and m̃xt = (m̃x+j,t+j)
n−1
j=0 represent estimated

expected logit mortalities. It is harder to obtain a closed form
expression for the predictive distribution of P̂xt(n), as it depends
nonlinearly on Yxt . An approximate normal distribution can be
found by means of the multivariate delta method, i.e. a first order
Taylor expansion of the nonlinear function f = fn. This gives

P̂xt(n) ∼ N(P̃xt(n), σ 2
P ,xt),

with a predictive variance that can be estimated as

σ̃ 2
P ,xt =

n−1
i,j=0

σ̃x+i,t+i;x+j,t+j
∂ f

∂m̃x+i,t+i

∂ f
∂m̃x+j,t+j

, (25)

where σ̃xt,x′t ′ is a covariance term analogous to (22). Explicit
expressions for σ̃xt,x′t ′ and the partial derivatives ∂ f /∂m̃x+j,t+j are
given in the Appendix.

A notion closely related to (23) is the life expectancy Êxt of an
age x individual at the beginning of calendar year t . It corresponds
to putting P = 1, IR = 0 and n = xmax − x, where xmax is the
maximal integer valued age, for instance 110 years. In addition,
each term (1 − Q̂x+j,t+j) in (23) with j = k is replaced by
(1 − 0.5Q̂x+j,t+j) when j = k < n − 1, and by a slightly more
complicated expression when j = k = n − 1. This is based
on the assumption that individuals who die during calendar year
t ≤ t ′ ≤ t + n, do so uniformly over [t ′, t ′ + 1], see the Appendix
for details. Prediction intervals for life expectancies can be derived
as above, taking the extra 0.5 factors into accountwhen computing
the partial derivatives of f .

5. Data analysis

Wewill use data sets for Swedish andUnited States populations
in our analysis. Rather than finding a multipopulation model that
fits both data sets (Li and Lee, 2005; Cairns et al., 2011), we build
a single model separately for each country. A danger with using
a single data set is that it contains something specific that one
takes to be general. Together, the two countries have a broad
range of population sizes and both are popular in the literature,
for their economic importance and size (USA) or admittedly good
data quality (Sweden). Therefore they constitute a fairly broad
range of Western populations. We use data from 1980 to 2011 for
Table 1
Estimates ξ̃ = (σ̃ 2

η , σ̃ 2
ζ , σ̃ 2

κ ) of the three variance components of unexplained
systematic variation for logit mortalities, for US and Swedish men of age 60–90.

Population σ̃ 2
η σ̃ 2

ζ σ̃ 2
κ

US m 60–90 0.000127 0.000033 0.000130
SWE m 60–90 0.000300 0.000210 0.000000

Swedish data and from1980 to 2007 forUSdata respectively (latest
available at time of download), with males and females handled
separately. The data comes from the Human Mortality database,
see mortality.org for further documentation.

5.1. Residual plots

Even with the above derivation of the FGLS estimate and the
BLUP, it is instructive to first study the residual plots of

ε̂LMI
0,xt = Y LMI

xt − m̂LMI
0,xt ,

for LMI transformed data, with m̂LMI
0,xt = mLMI

xt (θ̂
LMI
0 ) defined in

(27) and θ̂
LMI
0 the ordinary least squares estimate in Step 1 of the

algorithm in Section 4.1. In Fig. 1 we have plotted these residuals
for two age-bands of males from the US population.

5.1.1. Calendar year effects
Calendar effects can be seen as vertical lines in the residual

plots. They can be spotted mostly in higher ages, above 60, and
a probable cause are such effects as the seasonal influenza, heat
waves and cold spells that are known to vary in severity from year
to year.

There is a notable exception from the old age only effects, a
steep drop for US males in their 30s in 1996–97, the same years
as the modern HIV inhibitor medicines reached the markets.

5.2. Estimated and predicted mortality rates

In order to simplify estimation of variance parameters, we will
not analyze all age classes as one data set, but rather treat a number
of age-bands separately. If this band contains a sufficiently small
range of age classes, the noise terms ζt and κt of the unexplained
systematic variation (6) will affect each age by a similar amount. It
is then reasonable to assume that c and d have fixed and constant
elements cx = dx = 1. In Section 6 we briefly discuss how to
model the whole age-span, using separate and partly overlapping
variance components for different age-bands.

Due to space, here we restrict the analysis to US and Swedish
males in one age band, 60–90, for which we perform the
procedures described in Sections 4.1 and 4.2.

We define our data by setting, for the US

ΩUS = {(x, t); 60 ≤ x ≤ 90, 1980 ≤ t ≤ 2007}

and for Sweden

ΩSWE = {(x, t); 60 ≤ x ≤ 90, 1980 ≤ t ≤ 2011}.

Estimates of ξ̃ are found in Table 1. For the Swedish data set
no random walk component was detected (σ̃ 2

κ = 0) for the
unexplained systematic variation {εs

t}.
In order to get an overview of the material, the Swedish FGLS

estimates of the general mortality development are presented in
Fig. 2; both on the logit scale (logitQ̃xt ) and the nominal scale (Q̃xt ).
It can be seen that the improvements on the logit scale are largest
at ages close to 60, but around 80 on the absolute scale.

A closer look at the inference procedure for historical and future
data can be found in Figs. 3–4. For ages x = 60, 70, 80 and 90
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Fig. 1. Residuals of a least squares fit to one year increments of estimated logit mortality rates for US males of ages 30–60 (left) and 60–90 (right).
Fig. 2. Plots, for Swedish data, of logitQ̃xt and Q̃xt . The points (x, t) ∈ ΩSWE are ordered linearly along the horizontal axis, where the first set of points are for age 60, years
1980–2011, then the rest of the ages 61, . . . , 90 line up from left to right.
we plot observed mortalities Q̂xt , FGLS-estimates Q̃xt and BLUPs
Q̌xt , for t = 1980, . . . , 2007/2011. We also give predictions of Q̂xt
for t = 2008/2012, . . . , 2036, and 95% prediction intervals. Since
the FGLS estimate fits an average linear trend during the whole
time period, the prediction intervals could miss trend changes. For
instance, for the US data of Fig. 3 there is a decreased mortality
rate during 2002–2007 for x = 90 that is not accounted for in the
prediction intervals. Recall from Section 4.2 that the random walk
component is centered around t̃ = tT = 2007. This implies that
the difference between the FGLS estimates and the BLUPs the last
few years is due white noise ηxt and period effects ζt . Since these
are both independent over years, neither of themwill influence the
prediction intervals. In order to have the US prediction intervals for
x = 90 to start at the last observed value one can either allow for
trend changes in the deterministic trend (see Section 6) or force
the estimates σ̃ 2

η and σ̃ 2
ζ of the variances of ηxt and ζt to be small.

To analyze how well the estimated expected (FGLS) and
predicted systematic (BLUP) mortalities fit data, we first introduce
their respective logit mortality residuals,

ε̃xt = Yxt − m̃xt ,

ε̌xt = Yxt − (m̌xt + ε̌s
xt),

(26)

and then their standardized counterparts

ε̃st
xt = ε̃xt/

Var(εb
xt),
Table 2
The estimated standard deviation of the standardized FGLS and BLUP residuals ε̃st

xt
and ε̌st

xt , for US and Swedish males of ages 60–90.

Population
Var(ε̃st

xt )

Var(ε̌st
xt )

US m 60–90 4.46 0.73
SWE m 60–90 1.44 0.89

ε̌st
xt = ε̌xt/

Var(εb
xt),

where

Var(εb
xt) =

1

Nxt Q̃xt(1 − Q̃xt)

is an estimate, on a logit scale, of the binomial variance (13).
If the deterministic part of our model explains all systematic
variation, then the standardized FGLS residuals should have a
distribution close to a standard normal N(0, 1). The distribution
of the standardized BLUP residuals, on the other hand, should be
close to a standard normal whenever the mortality rates qxt are
accurately predicted.

The values are presented in Table 2. The FGLS estimate leaves
some residual variance to explain, since the variance of their
residuals is larger by a factor 4.46 (1.44) for US (Swedish) data
compared to a model without unexplained systematic variation.
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Fig. 3. For US males of ages x = 60, 70 80 and 90, plots of observed mortality rates Q̂xt , FGLS estimates Q̃xt and BLUPs Q̌xt are shown for t = 1980, . . . , 2007, as well as
predictions of future observed mortality rates Q̂xt for t = 2008, . . . , 2036, together with a 95% confidence band.
TheBLUP, on the other hand, overfits a bit, explaining all systematic
variation, but also part of the binomial variation. To get a graphical
view, we plot the residuals in Fig. 5 and order them in a QQ-plot in
Fig. 6. Some of the QQ-plots have slopes that differ significantly
from 1, in accordance with Table 2. As an unordered collection
the residuals seem normal, but the QQ-plots of the FGLS residuals
reveal a lighter tail than normal, especially for US data. This is
possibly due to the unexplained systematic effects, whose random
walk component introduces dependencies between residuals.

We now turn to prediction of future observed mortality rates
Q̂xt . It is interesting to analyze how the different sources of vari-
ation in (22) add to the total prediction variance σ̃ 2

xt . In Figs. 7–8,
we plot σ̃ 2

60,t as well as its three components of estimation error
variance, binomial variance and unexplained systematic variance.

For the US population, the estimation error dominates, growing
quadratically in t . The unexplained systematic variance increases
linearly in t due to the random walk component. The binomial
variance is just about 5% of the total variance. To illustrate the
impact, we show in Fig. 9 the result of a model fit were the random
walk component is excluded from the model. The resulting 95%
confidence bands seem to be too narrow.

For Sweden it is the other way around. The binomial variance
dominates the other two terms, contributing about 75% of the total
prediction variance. The general picture looks the same for higher
ages, but due to higher mortality, the binomial variance is lower
(up to an age over 95 were it starts to increase again due to the
smaller sizes of these cohorts), with a minimal relative variance
contribution of about 60% at the age of 90.

Fig. 10 shows (predictions of) the 20-year annuity premiums
P̂65,t(20) in (23) for US males of age x = 65 at the beginning of
33 consecutive years t = 1980, . . . , 2012. They reflect knowledge
of mortalities up to and including 2007, so that the annuities of the
first years are known, whereasmore recent annuities involvemore
uncertainties. This can be seen from the 95% prediction intervals
that gradually widen as the number of years with unknown
mortalities increases.

6. Discussion

We have analyzed logit transformed observed mortality rates
bymeans of amultiple linearmixedmodel, with three components
of variation; binomial risk due to a finite population, systematic
risk explained by age and calendar year and systematic risk not
explained by these two covariates. In the accompanying paper
Ekheden and Hössjer (2014), we applied a variance decomposition
of Hössjer (2008) and Hössjer et al. (2009) in order to estimate
the explained systematic risk, the unexplained systematic risk and
the binomial risk from data. In this way, a test of overdispersion
could be defined, which was used to decide whether a simple
logistic regression model, without unexplained systematic risk,
is sufficient for inference or not. In this paper we include
unexplained systematic risk as amultivariate Gaussian time series.
We propose an iterative estimation algorithm for historical data,
where explained systematic risk is estimated by FGLS, and the total
systematic risk by a BLUP. We also obtain closed form expressions
for the prediction variance and the prediction interval of life
expectancies and future mortalities.

The unexplained systematic risk contains three variance
components corresponding to white noise, period effects and a
two-sided random walk, which quantifies how much confidence
we have in the deterministic long term trend. It is possible to
let the strength of period and random walk effects vary with



164 E. Ekheden, O. Hössjer / Insurance: Mathematics and Economics 65 (2015) 156–171
Fig. 4. For Swedish males of ages x = 60, 70 80 and 90, plots of observed mortality rates Q̂xt , FGLS estimates Q̃xt and BLUPs Q̌xt are shown for t = 1980, . . . , 2011, as well
as predictions of future observed mortality rates Q̂xt for t = 2012, . . . , 2036, together with a 95% confidence band.
age by choosing non-uniform weight vectors c and d or to make
separate analyses for different age bands. Even so, the mortality
development can be quite different in different age bands in a
way that is difficult predict. When a new deadly disease enters a
population we can have this effect, like HIV that mostly strikes a
certain age band. A possible extension is then to introduce more
period and random walk components in (6) and weight them
together agewisewith B-splines for instance. Inmore detail, define

εs
t = ηt +

nc
j=1

cjζjt +

nd
j=1

dj

|t−t̃|
s=1

κj,t̃+sgn(t−t̃)s,

where ηt = (ηxt; x = xu, . . . , xl)T has components ηxt ∼ N(0, σ 2
η )

as before, ζjt ∼ N(0, σ 2
jζ ) and κjt ∼ N(0, σ 2

jκ), so that the parameter
vector ξ of {εs

t} contains 1 + nc + nd variance components that
can be estimated by means of a straightforward extension of the
algorithm in the Appendix. If for instance linear splines are used
with m knot points as in (5), both for the period and random walk
components, then nc = nd = m, cj =


φj(x); x = xl, . . . , xu

T
and dj =


φj(x); x = xl, . . . , xu

T
will give a piecewise linear age

dependency of the variance of εs
t .

The BLUP can be viewed as smoother of historical observed
mortality rates, the purpose of which is to remove or suppress
the binomial risk part. It automatically adjusts the amount of
smoothing to be large for a small country with a high binomial
risk, and low for a large country with a small binomial risk.
Other smoothing methods have also been suggested in the
life insurance or epidemic literature, including two-dimensional
penalized B-splines (Currie et al., 2004), penalized B-splines for
parameters of the Lee–Carter model and its extensions (Delwarde
et al., 2007b; Currie, 2013), generalized additive models and
penalized likelihoods (Hall and Friel, 2010) or generalized linear
array models and extended quasi likelihoods (Eilers et al., 2008).
Guerrero and Silva (2010) use time series methods for the log
mortalities, assuming that departures from a linear (or higher
order polynomial) trend are fitted by means of penalized least
squares, the solution ofwhich has a Kalman filter and a generalized
least squares interpretation.

The prediction error can be split into a process and an
estimation error. For the latter, it is important to have accurate
estimates of the mortality rates QxtT at the last observed calendar
year tT , as well as of their linear slopes, on a logit scale. The
reason is that future predicted mortalities will be offset by the
estimation error at time tT , and for this reason we chose t̃ = tT in
Section 4.2. This is particularly important for smaller populations
with a relatively high binomial risk were the estimation error
might be considerable.

We have shown here that a least squares analysis of the
observed logit mortalities is enough for a good fit of Swedish
data, and it is practically identical to the maximum likelihood
fit from a simple logistic regression model (results not shown).
Still we performed the full analysis on ages 60–90. No random
walk component was found, but white noise and period effects
were found for the unexplained systematic mortality. The main
advantage is that these add some width to the prediction
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Fig. 5. Standardized FGLS and BLUP residuals ε̃st
xt and ε̌st

xt for US males of ages 60–84 and Swedish males of ages 60–84.
intervalswhen future observedmortalities are forecasted, showing
that a logistic regression analysis probably underestimates the
uncertainty if it is used for prediction purposes. Even so, the
binomial risk dominates the prediction variance.

Interestingly enough, we got quite a different picture when
analyzing the US data, age 60–90. Here a randomwalk component
was found. For prediction, it does add to the unexplained
systematic risk variance, growing linearly in time. But perhaps a
bit unexpected, it adds even more significantly to the estimation
error variance, which grows quadratically with time. In total we
get confidence bands as wide as or wider than for Sweden, even
tough the binomial risk is negligible for the US. This suggests that
the prediction intervals for Swedish data are still too narrow, since
the size of the randomwalk component was estimated to zero and
this estimate is highly unreliable, because of the high binomial
risk. It may therefore be wise to perform a sensitivity analysis,
see Fig. 8, and compute prediction intervals for a range of values
of the parameter describing the size of the random walk variance
component. Another possibility is to use a Bayesian approach, with
a prior distribution for all variance parameters. Pedroza (2006)
has shown, in the context of the Lee–Carter model, that Bayesian
prediction intervals are wider, since more sources of variation are
taken into account.

The large influence of the random walk component on the
estimation error can also be understood in terms of the FGLS
estimate, which does not fit historical data as well as the ordinary
least squares solution. On the other hand, if we exclude the
random walk component from our model, we get much narrower
confidence bands and the FGLS almost coincides with the least
squares estimate, effectively meaning that we trust the presently
observed rate of decrease in mortality.

The addition of a random walk component in a regression
modelwill have a large impact on the conclusions drawn regarding
prediction. In some sense it is to say that we do not trust the
long term trend of the regression model, neither for historical (as
manifested by a large estimation error) or future (as manifested
by a large unexplained systematic risk variance) data. Indeed, how
plausible is a model that predicts in essence that a linear trend
will go on and on? One can think of factors or events that will
change the trend in the future, for example the more and more
widespread metabolic syndrome, or if (when) antibiotic resistant
bacterias really start to spread and turn today harmless infections
back into the deadly diseases theywere before the antibiotics were
discovered. Looking at historic logit mortality data for Swedish
males during 1900–2011, the development for most ages can be
described as ‘‘piecewise linear’’, with just two or three knots of
which the last one (common to most ages) took place in the early
1980swhen the improvements accelerated up to its current speed.

It is possible to extend our model in order to incorporate such
change points in at least twoways. Either random structural breaks
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Fig. 6. Quantile–quantile plots of the standardized FGLS and BLUP residuals ε̃st
xt and ε̌st

xt , for US and Swedishmales of ages 60 to 90. A linewith slope 1 is added for comparison.
Notice the large slope of the upper left plot, which strongly indicates a significant amount of unexplained systematic variation.
Fig. 7. Left: The solid curve is total prediction variance σ̃ 2
60,t of the future observed mortality rate for US males of age 60. The three dotted curves represent, from top

to bottom, the components of estimation error variance, unexplained systematic variance and binomial variance. Right: Same plot but with the random walk component
removed from the model (σ̃ 2

κ = 0). Notice the different scales along the vertical axes.
are built into the drift process {κt} of the unexplained systematic
noise in (6). This increases the widths of the prediction intervals,
but not very much their locations. Another option is to have a
piecewise linear deterministic time trend, and use some model
selection criterion, such as F-tests or BIC, in order to estimate the
optimal number of change points. This will change the locations
of the prediction intervals, but not very much their widths. Such
extensions have recently been proposed for the Lee–Carter and
Cairns–Blake–Dowdmodels, see Coelho and Nunes (2011), Li et al.
(2011), Sweeting (2011) and van Berkum et al. (2013).

On the other hand, White (2002) argues that a simple linear
time trend (2) often performs better than expert opinions. Similar
conclusions were drawn in Section 9 of Denton et al. (2004) and
in Section 3 of Booth and Tickle (2008). This defies the persisting
idea that ‘‘improvements cannot continue at this fast rate’’, and
only time will tell if it really is so. If one uses a linear trend, a
possible option is to start finding a period during which mortality
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Fig. 8. Left: The solid curve is total prediction variance σ̃ 2
60,t of the future observed mortality rate for Swedish males of age 60. The three dotted curves represent, from top

to bottom, the components of binomial variance, unexplained systematic variance (constant) and estimation error variance. Right: The same plot but when the randomwalk
component is assumed to equal the estimate for the US data. Notice the different scales along the vertical axes.
Fig. 9. Adjusted model, without random walk component: US males of ages x = 60 and 80, plots of observed mortality rates Q̂xt , FGLS estimates Q̃xt and BLUPs Q̌xt are
shown for t = 1980, . . . , 2007, as well as predictions of future observed mortality rates Q̂xt for t = 2008, . . . , 2036, together with a 95% confidence band that is much
narrower than in Fig. 3.
improvement has not changed much. The R package demography
(Hyndman et al., 2014), for instance, has an inbuilt option in its
life expectancy function for varying the input period of years. One
may also use one of the above mentioned change point detection
algorithms in order to find the latest trend break. Then data is
analyzed from this timepointwith amodel that has the same linear
trend for historic and future periods of time.
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Appendix

Mixed regression model for logit mortality increments data.
We will define a mixed linear regression model for logit mortality
increments data Y LMI

xt in (17), for all (x, t) in ΩLMI. It follows from
(8)–(11) that

Y LMI
xt = mLMI

xt (θLMI) + εLMI
xt

= mLMI
xt (θLMI) + ε

LMI,s
xt + ε

LMI,b
xt , (27)
with mean function, regression parameters, systematic unex-
plained and binomial error terms given by

mLMI
xt (θLMI) =

p2
j=0

bjφj(x),

θLMI
= (b0, . . . , bp2)

T ,

ε
LMI,s
xt = εs

xt − εs
x,t−1,

ε
LMI,b
xt =


logitQ̂xt − logitQxt


−


logitQ̂x,t−1 − logitQx,t−1


.

We can write this as a multiple linear regression model

Y LMI
= X LMIθLMI

+ εLMI, (28)

where Y LMI
=

Y LMI
xt ; (x, t) ∈ ΩLMI

T and εLMI
=

εLMI
xt ; (x, t) ∈

ΩLMI
T

are column vectors of length n = (T − 1)(xu − xl + 1),
and X LMI a design matrix of dimension n × (p2 + 1), with row
(φ0(x), φ1(x), . . . , φp2(x)) corresponding to (x, t).

It follows by a similar argument as in (12) and (13), that the
binomial risk variance function satisfies

Var(εLMI,b
xt ) = E


Var(logitQ̂x,t−1|Qx,t−1)


+ E


Var(logitQ̂xt |Qxt)


≈ E


1

Nx,t−1Qx,t−1(1 − Qx,t−1)


+ E


1

NxtQxt(1 − Qxt)


. � (29)
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Fig. 10. The graph reflects remaining uncertainties of 20 year annuity premiums
for US males in the beginning of year 2008, with mortality data available up to and
including year tT = 2007. The crosses are the known annuity premiums P̂65,t (20)
in (23) for males aged x = 65 at the beginning of years t = 1980, . . . , 1988.
The squares are the predicted annuity premiums P̃65,t (20) in (24) for t =

2008, . . . , 2012. The crossed squares are hybrid annuity premiums for the years
t = 1989, . . . , 2007 in between. They combine observed mortalities Q̂x+j,t+j the
first r = min(2008 − t, 20) years (j = 0, . . . , r − 1) with predicted mortalities
Q̃x+j,t+j the last 20 − r years (j = r, . . . , 20 − 1). The 95% prediction intervals
assume a normal predictive distribution, with a predictive variance computed for
the last n = 20 − r years, as in (25). The solid line, finally, is a smoothed annuity
curve based on FGLS-estimated parameters.

Formulas for V and V LMI. In view of (15) and (18), we need
formulas for Vεb = Vεb(θ), V1εb = V1εb(θ), Vεs = Vεs(ξ) and
Vεb = Vεb(ξ).

Starting with the former twomatrices, wewill first simplify the
variance formulas in (13) and (29). It follows from (2), (8) and (10),
that

Qxt =
emxt+εsxt

1 + emxt+εsxt
H⇒

1
Qxt(1 − Qxt)

=


1 + emxt+εsxt

2
emxt+εsxt

with mxt = mxt(θ). If the variance components of εs
xt in (6) are

small enough, the approximation

E


1
Qxt(1 − Qxt)


≈

(1 + emxt )2

emxt

is justified, and we can write the elements of Vεb and V1εb as

Vεb,(x,t),(x′,t ′) = 1{(x,t)=(x′,t ′)}
(1 + emxt )2

Nxtemxt
,

and

V1εb,(x,t),(x′,t ′) = 1{(x,t)=(x′,t ′)}


(1 + emx,t−1)2

Nx,t−1emx,t−1
+

(1 + emxt )2

Nxtemxt



− 1{(x,t)=(x′,t ′)+(0,1)}
(1 + emx,t−1)2

Nx,t−1emx,t−1

− 1{(x,t)=(x′,t ′)−(0,1)}
(1 + emxt )2

Nxtemxt
, (30)

respectively. The elements of Vεs have the form

Vεs,(x,t),(x′,t ′) = 1{(x,t)=(x′,t ′)}σ
2
η + cxcx′1{t=t ′}σ

2
ζ

+ dxdx′1{(t−t̃)(t ′−t̃)>0} min(|t − t̃|, |t ′ − t̃|)σ 2
κ ,

whereas those of V1ϵ are given by

V1εs,(x,t),(x′,t ′) = 21{(x,t)=(x′,t ′)}σ
2
η + 2cxcx′1{t=t ′}σ

2
ζ

+ dxdx′1{t=t ′}σ
2
κ − 1{(x,t)=(x′,t ′)±(0,1)}σ

2
η

− cxcx′1{t=t ′±1}σ
2
ζ . � (31)
WLS estimation of ξ. We will utilize (30) and (31) in order to
estimate ξ in (16), and tacitly assume that data is LMI transformed,
so that this superscript is omitted at several places. Denote the
elements of V LMI by V LMI

(x,t),(x′,t ′), and introduce

Vx,x′(τ ) = V LMI
x,x′ (τ ) =

1
T − 1 − |τ |

tT−|τ |
t=t1+1

V LMI
(x,t),(x′,t+|τ |), (32)

for each lag τ = 0, ±1, . . . ,±(T − 2). It is the covariance function
of εxt = εs

xt + εb
xt and εx′,t+|τ | = εs

x′,t+|τ |
+ εb

x′,t+|τ |
, averaged over

t2 ≤ t ≤ tT − |τ |. Analogously, we define an average covariance
function

V1εb,x,x′(τ ) =
1

T − 1 − |τ |

tT−|τ |
t=t1+1

V1εb,(x,t),(x′,t+|τ |) (33)

from V1εb in (30). It follows from (31) that the covariance of
(1εs

xt , 1εs
x′,t+|τ |

) does not depend on t and

V1εs,x,x′(τ ) =
1

T − 1 − |τ |

tT−|τ |
t=t1+1

V1εs,(x,t),(x′,t+|τ |)

= V1εs,(x,t),(x′,t+|τ |)

= 1{τ=0}

1{x=x′}2σ 2

η + 2cxcx′σ 2
ζ + dxdx′σ 2

κ


− 1{|τ |=1}


1{x=x′}σ

2
η + cxcx′σ 2

ζ


. (34)

Combining (18) with (32)–(34), we find that

Vx,x′(τ ) = V1εb,x,x′(τ ) + V1εs,x,x′(τ ). (35)

In the ith iterate of Step 2 of the estimation algorithm in Section 4.1,
we first estimate (32) as

V̂i,x,x′(τ ) =
1

T − 1 − |τ |

tT−|τ |
t=t2

ε̂LMI
i,xt ε̂

LMI
i,x,t+|τ |

,

where ε̂LMI
i,xt = Y LMI

xt − (X LMIθ̂
LMI
i )xt are the residuals from the

generalized least squares fit of θLMI in iteration i. Then we compute
estimates

V̂i,1εb,x,x′(τ ) =
1

T − 1 − |τ |

tT−|τ |
t=t2

V̂i,1εb,(x,t),(x′,t+|τ |)

of (33), where V̂i,1εb,(x,t),(x′,t+|τ |) is an estimate of V1εb,(x,t),(x′,t+|τ |)

in (30),which can be computed in twoways. Eithermxt = mxt(θ) in
(9) is replaced by m̂i,xt = mxt(θ̂i) everywhere, or (1 + emxt )2 /emxt

is replaced by [Q̂xt(1 − Q̂xt)]
−1 everywhere. The latter version is

simpler and does not depend on the iteration number i.
From the last three displayed equations we find that the

elements of (34) can be estimated as

V̂i,1εs,x,x′(τ ) = V̂i,x,x′(τ ) − V̂i,1εb,x,x′(τ ) (36)

in the ith iteration of the algorithm. We will estimate ξ by fitting
(36) to (34) by means of a WLS estimator

ξ̂i = (σ̂ 2
iη, σ̂

2
iζ , σ̂

2
iκ)

T

= arg min
σ 2
η ,σ 2

ζ ,σ 2
κ


xl≤x≤x′≤xu

1
τ=0

Wxx′(τ )

×


V̂i,1εs,x,x′(τ ) − V1εs,x,x′(τ )

2
, (37)

with pre-defined (or inverse variance) non-negative weights
Wxx′(τ ), and a constrained minimization, so that all three variance
components are non-negative.
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Since the variance components enter linearly into (34), we can
rewrite these equations jointly for all x, x′, τ as

V1εs = Zξ, (38)

where V1εs =

V1εs,x,x′(τ ); xl ≤ x ≤ x′

≤ xu, τ = 0, 1
T is a

column vector of lengthm = (xu − xl + 1)(xu − xl + 2) containing
all covariances, and Z a design matrix of dimension m × 3, whose
row corresponding to (x, x′, τ ) equals

1{τ=0}1{x=x′}

2, 2c2x , d

2
x


+ 1{τ=0}1{x<x′} (0, 2cxcx′ , dxdx′)

− 1{τ=1}1{x=x′}

1, c2x , 0


− 1{τ=1}1{x<x′} (0, cxcx′ , 0) .

By adding random noise to (38) in terms of estimation errors, we
get a multiple linear regression model

V̂i,1εs = Zξ + (V̂i,1εs − V1εs), (39)

where V̂i,1εs =


V̂i,1εs,x,x′(τ ); xl ≤ x ≤ x′

≤ xu, τ = 0, 1
T

is the
observational column vector of lengthm. The objective function on
the right hand side of (37) can be written as a quadratic function

(ξ − ξ̃i)
TA(ξ − ξ̃i) + constant,

of ξ, where the last, constant term, does not depend on ξ,

ξ̃i = (ZTWZ)−1ZTWV̂i,1εs ,

is the unconstrained WLS solution of (39) with weight matrix W ,
a diagonal matrix containing all Wxx′(τ ), and finally A = ZTWZ is
half the Hessian matrix of the objective function.

Because of the constrainedminimization in (37), its solution has
the form

ξ̂i = Π ξ̃i (40)

where Π is a projection in R3 onto the region [0, ∞) × [0, ∞) ×

[0, ∞), defined using the scalar product (x, y) = xTAy between
column vectors in R3.

A more explicit formula for (40) can be found as follows:
Introduce ei, the unit vector in R3 with 1 in position i ∈ {1, 2, 3}
and zeros elsewhere. For each binary vector u = (u1, u2, u3) of
length 3, we let Πuξ, refer to a projection of ξ down to the linear
subspace spanned by vectors {ei; ui = 1}. More explicitly, we have
that Π(0,0,0,)ξ = (0, 0, 0) and

Πuξ = (BT
uABu)

−1BT
uAξ

foru ≠ (0, 0, 0), whereBu is a designmatrix of order 3×(
3

i=1 ui),
with columns all ei for which ui = 1. Then

Πξ = Πu(ξ)ξ,

where

u(ξ) = arg min
u;Πuξ∈[0,∞)3

(ξ − Πuξ)
TA(ξ − Πuξ). �

Annuity premiums and their prediction. We will first motivate
the annuity premium formula (23). Let τ = τxt be the minimum of
n and the (continuous) remaining life time of a randomly chosen
individual of (integer valued) age x at the beginning of calendar
year t . The total discounted premium that this individual pays, is
nonzero and equal to

P ([τ ]) = P ·

[τ ]−1
k=0

(1 + IR)−k−1,

whenever [τ ], the integer part of τ , is positive. With F̄(r) = P(τ ≥

r) the survival function of τ , we can write the expected annuity
premium as

P̂xt(n) = E [P ([τ ])]

=

n
i=1

P([τ ] = i)P (i)

= P ·

n
i=1

P([τ ] = i)
i−1
k=0

(1 + IR)−k−1

= P ·

n−1
k=0

(1 + IR)−k−1
n

i=k+1

P([τ ] = i)

= P ·

n−1
k=0

(1 + IR)−k−1F̄(k + 1)

= P ·

n−1
k=0

(1 + IR)−k−1


k

j=0

(1 − Q̂x+j,t+j)


,

in agreement with (23).
In order to derive an expression for the annuity premium

prediction variance above (25), we Taylor expand f . This gives

σ 2
P ,xt = Var(P̂xt(n)|m̃xt)

= Var

f

m̃xt + ε̄xt


|m̃xt


≈ Var


n−1
j=0

ε̄x+j,t+j
∂ f

∂m̃x+j,t+j



=

n−1
i,j=0

Cov(ε̄x+i,t+i, ε̄x+j,t+j)
∂ f

∂m̃x+i,t+i

∂ f
∂m̃x+j,t+j

, (41)

where ε̄xt = (ε̄x+j,t+j)
n−1
j=0 , and ε̄xt = εxt − (m̃xt − mxt) is

the prediction error at age x and time t . The next step is to find
(estimates of) the terms in (41). First, for the prediction error
covariances, we split the process error εxt into systematic and
binomial parts (8), as in (22), and use the formula below (30). This
gives a covariance

σ̃xt,x′t ′ = Cov(ε̄xt , ε̄x′t ′)
= ṁT

xt


X T Ṽ−1X

−1
ṁx′t ′

+ 1{(x,t)=(x′,t ′)}


Nxtqxt(θ̃)(1 − qxt(θ̃))

−1

+ 1{(x,t)=(x′,t ′)}σ̃
2
η + 1{t=t ′}cxcx′ σ̃ 2

ζ

+ dxdx′ min(t − tT , t ′ − tT )σ̃ 2
κ

between cells (x, t) and (x′, t ′). Notice in particular that the
prediction variance σ̃xt,xt equals σ̃ 2

xt in (22). Second, for the partial
derivatives of f we get

∂ f
∂m̃x+j,t+j

= −P ·

n−1
k=j


k

i=0

1
1 + em̃x+i,t+i


·

em̃x+j,t+j

1 + em̃x+j,t+j


× (1 + IR)−k−1

= −P · Q̃x+j,t+j

n−1
k=j


k

i=0

1
1 + em̃x+i,t+i


(1 + IR)−k−1

= −P · Q̃x+j,t+j

j
i=0

(1 − Q̃x+i,t+i)

·

n−1
k=j


k

i=j+1

(1 − Q̃x+i,t+i)


(1 + IR)−k−1,

where the last product equals 1 when k = j. �
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Life expectancy formula. We will motivate the life expectancy
formula described in the last paragraph of Section 4.2. Let τ =

τxt be the remaining life time of a randomly chosen individual
of age x at the beginning of calendar year t . Since the integer
valued maximal age is xmax, we assume that τ has a continuous
distribution on (0, xmax + 1), since an individual may live up to
birthday xmax + 1 is reached. Recalling that n = xmax − x, we write

τ = τ1 + τ2,

where τ1 = min(n, τ ) is the remaining life time within n years
from the start of calendar year t , and τ2 = max(0, τ − τ1) is
the remaining life time between n and n + 1 years from this time
point. Let f (r) and F̄(r) = P(τ ≥ r) be the density and survival
functions of τ , and let X represent the time of the year of this
individual’s birthday, uniformly distributed on (0, 1). Assume that
f is piecewise constant on all one year intervals [0, 1], . . . , [n −

1, n], so that F̄ is piecewise linear on [0, n]. Assume further that τ2
has a uniform distribution on (0, X) for an individual with birthday
X that survives n years. Then integrals can be replaced by Riemann
sums, so that

Êxt = E(τ )

= E(τ1) + E(τ2)

=

 n

0
rf (r)dr + nF̄(n)


+ F̄(n)E(τ − n|τ > n)

=

n−1
i=0

(i + 0.5)f (i + 0.5) + nF̄(n)

+ F̄(n)E [E(τ − n|τ > n, X = x)]

=

n−1
i=0

f (i + 0.5)


0.5 +

i−1
k=0

1


+ nF̄(n) + F̄(n)E(0.5X)

=

n−1
k=0


0.5f (k + 0.5) +

n−1
i=k+1

f (i + 0.5)


+ nF̄(n) + 0.25F̄(n)

=

n−1
k=0


F̄(k + 0.5) − F̄(n)


+ nF̄(n) + 0.25F̄(n)

=

n−1
k=0

F̄(k + 0.5) + 0.25F̄(n)

=

n−1
k=0

(1 − 0.5Q̂x+k,t+k)

k−1
j=0

(1 − Q̂x+j,t+j)

+ 0.25
n−1
j=0

(1 − Q̂x+j,t+j),

where any sum (product) forwhich the upper index is smaller than
the lower one, is defined as 0 (1). �
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