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A simulation method is presented for the demographic and genetic variation of age structured haploid pop-

ulations. First, we use matrix analytic methods to derive an equilibrium distribution for the age class sizes

conditioned on the total population size. Knowledge of this distribution eliminates the need of a burn-in time

in simulations. Next, we derive the distribution of the alleles at a polymorphic locus in various age classes

given the allele frequencies in the total population and the age size composition. For the time dynamics, we

start by simulating the dynamics for the total population. In order to generate the inheritance of the alle-

les, we derive their distribution conditionally on the simulated population sizes. This method enables a fast

simulation procedure of multiple loci in linkage equilibrium.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Simulation studies are important as a tool for checking the va-

idity of various assumptions and approximations in population ge-

etic models. Fast and accurate simulation techniques are therefore

f interest in order to obtain reliable results. Age structured popu-

ation models with deterministic growth have been of interest for

long time [4,13,14] and a good overview can be found e.g. in [12]

ith extended models that account both for demographic and en-

ironmental noise. In this paper, we present simulation techniques

or an age structured population in a constant environment in which

he age class sizes, as well as the total population size, fluctuate

tochastically.

We present a discrete time model, where the age composition

t each time step is described by means of matrix recursions. Us-

ng this model, we derive an approximate distribution for the age

omposition, given the total population size. By knowing this dis-

ribution, the need for a burn-in time is eliminated in simulations

ince a random draw from this distribution can be used as a starting

oint.

In population genetics, the genetic information at various loci is

mportant for calculating and estimating e.g. inbreeding and effective

opulation sizes, as reviewed by [2] and [15]. We present a method

or simulation of alleles at independent loci given the trajectory of

ge class sizes. This method can be applied to models in which the
∗ Corresponding author. Tel.: +0046 8 16 45 61.
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ge class sizes are either constant, or vary stochastically according to

ome demographic model.

The paper is organized as follows. In Section 2 we define the

emographic population model. In the following section we derive

n approximate conditional distribution for the age composition,

iven the total population size. The accuracy of these approxima-

ions is tested by means of simulations in Section 4. In Section 5,

e present a method for simulation of allele frequencies at loci in

inkage equilibrium. A discussion is found in Section 6, derivations in

he appendices and a list of the most important notation is given in

able 1.

. Demographic model

Consider a population divided into J age classes and let

t = (Nt0, . . . , NtJ−1)
′,

ith ′ referring to vector transposition, be the number of individu-

ls in each age class at time t. Let Ytjh be the number of offspring

f an individual h in age class j at time t. For fixed t and j, all Ytjh

re independent and identically distributed random variables with

ean bj and variance σ 2
j

. The survival Itjh of an individual h from

ime t to t + 1 is Bernoulli distributed with probability sj and in-

ependent of other individuals’ survival. We also allow for a cor-

elation ρ j between the number of progeny Ytjh and survival Itjh

f h. Let Nt+1,0 j denote the total number of newborns at time t

f individuals in age class j. Then, the dynamics of the population

http://dx.doi.org/10.1016/j.mbs.2015.08.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2015.08.003&domain=pdf
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46 F. Olsson, O. Hössjer / Mathematical Biosciences 268 (2015) 45–51

Table 1

List of notation used in the paper.

Notation Definition

bj Mean number of offspring for an individual in age class j

lj Probability that an individual survives to age class j

sj Probability that an individual in age class j survives to age class j + 1

ρ j Correlation between the number of progeny and survival for an individual in age class j

Itjh Survival indicator of individual h in age class j from time t to t + 1

Ytjh Number of offspring of individual h in age class j at time t

Nt Vector containing number of individuals in all age classes at time t

Ntj Number of individuals in age class j at time t

Ntj0 Number of newborns at time t of individuals in age class j

Gt Projection matrix of vital rates for Nt

g Expected projection matrix

εt Matrix of serially uncorrelated demographic noise for the N-process

λ Multiplicative growth rate and largest eigenvalue of g

u Vector with components proportional to the center point of the equilibrium age distribution of N

v Vector with components proportional to the reproductive values

Ñt Population size when age classes are weighted by v

Ztaj Number of individuals with allele a in age class j at time t

Zta Vector containing number of individuals with allele a in all age classes

Z̃ta Number of individuals with allele a when age classes are weighted by v

pta Age averaged allele frequency, with respect to v, of allele a at time t
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is given by

Nt+1, j+1 =
Nt j∑

h=1

It jh, j = 0, . . . , J − 2,

Nt+1,0 j =
Nt j∑

h=1

Yt jh, j = 0, . . . , J − 1, (1)

Nt+1,0 =
J−1∑
j=0

Nt+1,0 j.

This implies that the length of each age class is the same and it

equals one unit of time. Following [17], the time dynamics of the pop-

ulation size can also be described using matrix population models (cf.

[1]). Let

Nt+1 = Gt Nt = gNt + εt+1 (2)

where Gt is a J × J projection matrix of vital rates, g is the expected

projection or Leslie matrix [13] and εt+1 is a column vector with

E(εt+1|Nt) = 0 that represents serially uncorrelated demographic

noise. Let λ0, . . . , λJ−1 be the complex-valued eigenvalues of g in de-

scending order with respect to their moduli, and let g = Q�Q−1 be its

Jordan canonical form. The columns (rows) of the matrix Q (Q−1) are

the right (left) eigenvectors of g, and � is an upper triangular matrix

with λ0, . . . , λJ−1 along the diagonal (see for instance [7]).

The largest eigenvalue λ = λ0 of g, which is real-valued, positive

and unique according to Perron–Frobenius theorem, represents the

multiplicative growth rate of the population. The right eigenvector u

corresponding to λ consists of the stable age distribution and the el-

ements of the left eigenvector v are proportional to the age specific

reproductive values [6]. It is assumed that the elements of u and v are

normalized so that
∑J−1

j=0
u j = ∑J−1

j=0
u jv j = 1. The age specific repro-

ductive values are of importance for age structured populations. For

instance, if they are used as weights when calculating the variance

effective population size it is possible to determine the long term ge-

netic drift [5,11,17,20].

3. Distribution of the age composition

Suppose that the reproductively weighted population size at time

t is Ñt = vNt . Here, we will derive an approximate age distribution for

both the total population as well as for different alleles at a specific

chromosomal locus. We show in Appendix A that recursion (2) can be
ewritten as

t+1 − Ñt+1u = g(Nt − Ñt u) + �2εt+1, (3)

here �2 = QI2Q−1 and I2 = diag(0, 1, . . . , 1) are J × J matrices. It-

rating (3) with respect to t we can express the deviation from the

table age distribution Ñt u at time t as

t − Ñt u =
∞∑

τ=0

gτ�2εt−τ . (4)

ollowing calculations in [3] and [17], the noise covariance matrix is

ov(εt |Nt−1) ≈ Ñt−1�, (5)

here � = (�i j) has non-zero elements given by

�00 =
J−1∑
j=0

ujσ
2
j ,

j+1, j+1 = ujs j(1 − s j), j = 0 . . . , J − 2, (6)

�0, j+1 = � j+1,0 = ujσ j

√
s j(1 − s j)ρ j, j = 0 . . . , J − 2.

n formula (5), the number of individuals in each class j at time t − 1

s approximated by Ñt−1u j, so that for instance the variance of the

otal reproductive success of all age j individuals is roughly Ñt−1u jσ
2
j

.

ince {εt} are martingale differences, it follows from (4), (5) and the

entral limit theorem for martingales [8,10] that

t − Ñt u|{Ñt−τ−1}∞
τ=0 ≈ N(0,

∞∑
τ=0

Ñt−τ−1gτ�2��′
2(gτ )′)

≈ N(0, Ñt−1V ), (7)

s a good approximation if the sum does not converge too rapidly,

o that many terms contribute. In the last step we assumed that
˜

t−τ−1/Ñt−1 ≈ λ−τ , so that the covariance matrix is proportional to

=
∞∑

τ=0

λ−τ gτ�2��′
2(gτ )′, (8)

nd in order for the sum in (8) to converge, it is necessary that |λ1|2 <

= λ0, see [17]. Hence,

t |Ñt , Ñt−1 ≈ N(Ñt u, Ñt−1V ), (9)

s the conditional distribution of the age composition given the

eighted population size.
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Fig. 1. Estimated variances (a) and covariances (b) from simulations divided by the corresponding element in the analytically derived covariance matrix (9), as a function of time.

The estimates are based on 5000 simulated values for each age class.
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Table 2

Life table data for sparrows,

where bj is the mean number of

progeny for an individual in age

class j, l j = ∏ j−1
i=0

si is the proba-

bility for an individual to survive

to age class j and sj the probabil-

ity that an individual in age class

j survives to age class j + 1. Each

age class represents 1 year.

Sparrow

Age class lj bj

0 1.000 0.000

1 0.167 3.018

2 0.083 3.202

3 0.048 3.416

4 0.012 3.602

5 0.006 3.842
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Now, assume that the population is haploid, and consider a se-

ectively neutral gene with A alleles at the locus of interest. Since

he population is haploid, each individual carries a single copy of the

ene. Let Zt ja ⊂ {h = 1, . . . , Nt j} refer to the individuals in age class j

t time t with allele a, and put Zt ja = |Zt ja| = Nt j pt ja, where ptja is the

requency of a in age class j at time t. Also, let Zta = (Zta0, . . . , Zta,J−1)
′

e a vector with the number of individuals having allele a in all age

lasses and let Z̃ta = vZta be the weighted number of individuals with

his allele. Hence,

pta = Z̃ta

Ñt

s the weighted frequency of allele a at time t. Then, the vector of total

ge class sizes can be expressed as

t =
A∑

a=1

Zta.

uppose we know the age-weighted frequencies pt1, . . . , ptA for all

lleles at time t, but not how they are distributed over age classes. We

an repeat the argument leading to (9) for each allele separately. In

nalogy with (4)–(8), since different alleles reproduce independently,

e find that

Zt1 − Z̃t1u

...

ZtA − Z̃tAu

Nt − Ñt u

⎞
⎟⎟⎟⎠

∣∣{Z̃t−1,a}A
a=1 ≈ N

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

0

...

0

0

⎞
⎟⎟⎟⎠, Ñt−1P1 ⊗ V

⎞
⎟⎟⎟⎠, (10)

here ⊗ is the tensor product of matrices and

1 =

⎛
⎜⎜⎜⎜⎜⎝

pt1 0 . . . 0 pt1

0 pt2

. . .
... pt2

...
. . .

. . . 0
...

0 . . . 0 ptA ptA

pt1 pt2 . . . ptA 1

⎞
⎟⎟⎟⎟⎟⎠

.

he approximate conditional allele frequency distribution given all

ge class sizes, is given by

Zt1

...
ZtA

⎞
⎠∣∣Nt , {Z̃ta}A

a=1, {Z̃t−1,a}A
a=1 ≈ N

⎛
⎝

⎛
⎝

pt1Nt

...
ptANt

⎞
⎠, Ñt−1P2 ⊗ V

⎞
⎠,

(11)
here

2 =

⎛
⎜⎜⎜⎜⎜⎝

pt1(1 − pt1) −pt1 pt2 . . . −pt1 ptA

−pt2 pt1

. . .
...

...
. . . −pt,A−1 ptA

−ptA pt1 . . . −ptA pt,A−1 ptA(1 − ptA)

⎞
⎟⎟⎟⎟⎟⎠

.

n order to derive the mean vector and covariance matrix in (11) we

sed (10) and formulas, given in Appendix B, for the conditional dis-

ribution X|Y of two jointly multivariate normal vectors X and Y.

. Simulation of demographic equilibrium

In order to illustrate the performance of the proposed method we

ompare our approximate age composition distribution (9) with sim-

lated values. Using the methods in Section 2, we simulate a pop-

lation with demographic parameters according to Table 2. We let
˜

0 = 1000 be the initial size and u the age composition and simulate

he population for 25 time steps t = 0, 1, . . . , 25. For each time step t,

e calculate the reproductively weighted population size Ñt and keep

he age composition only if Ñt is rounded to 1000. We repeat the sim-

lation until we have 5000 sampled age distributions for each time

tep.

In Fig. 1, we show how the estimated variances and covariances,

ivided by the corresponding values of the covariance matrix (9), vary
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0 and 1. The estimates are based on 5000 simulated values for each age class and are sampled after t = 1 time step in (a) and after t = 20 time steps in (b). The bivariate quantiles

from simulations are computed according to function kde2d of the package MASS [19] in R [18].
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over time. We see that both variances and covariances approach the

true value after only a few time steps. Only values from the first three

age classes are shown, however, the variances and covariances for the

other age classes follow a similar pattern.

For age classes 0 and 1, we have estimated the 10% , 25% , 50% , 75%

and 90% quantiles from the simulations, as shown in Fig. 2. We com-

pare the estimated quantiles of the bivariate distribution (Nt0, Nt1) af-

ter one and 20 time steps with the corresponding quantiles from the

bivariate normal distribution in (9). As expected, we obtain a good fit

if a longer burn-in time is allowed for.

5. Demographic and multilocus genetic simulation

It is straightforward to generate demographic and genetic data

{Nt j, Zt ja; j = 0, . . . , J − 1, a = 1, . . . , A} jointly for time t = 0, . . . , T

at one specific locus, according to the model of Section 2, keeping

track of which genes that have the different alleles. However, we will

present a different approach, by first generating all Ntj and then con-

ditionally on them the allele counts Ztja. As an intermediate step we

also need the total offspring numbers Ntj0 of all age classes j at all

time points t. The simplest option is to generate all Ntj0 simultane-

ously with the Ntj variables, as described in Section 2. But in order

to allow also for prechosen scenarios, where Ntj but not Ntj0 are pre-

specified, one may obtain the offspring numbers Ntj0 conditionally on

{Ntj}. For instance, if all

t jh ∼ Po(bj) (12)

are Poisson distributed, addition of independent Poisson distributed

random variables implies Ntj0 ∼ Po(Ntjbj). Given the total number of

offspring Nt+1,0, children choose age of parents multinomially

(Nt+1,00, . . . , Nt+1,J−1,0)|Nt+1,0 ∼ Mult(Nt+1,0; Qt0, . . . , Qt,J−1) (13)

for t = 0, . . . , T, with probabilities Qt j = Nt jb j/
∑J−1

i=0
Ntibi. These

probabilities simplify to Q j = u jb j/(u0λ) for a population in ex-

act demographic equilibrium Nt j = Nt u j . For other offspring distri-

butions we either use (13) as an approximation, or simulate from

the exact conditional distribution of {Nt+1,0 j}J−1
j=0

by first generating

{Nt+1,0 j}J−1
j=0

from the unconditional distribution of Ytjh and then ac-

cept draws for which the lower equation of (1) holds.

The major advantage of generating {Ntj} before {Ztja} is that this

approach allows us to generate allele frequencies independently for

loci in linkage equilibrium in one single population, with the same

demographic history {Ntj} at all loci. The price to be paid is a more
omplicated algorithm for generating allele frequencies. In order to

llocate alleles to all age classes at all time points we start at t = 0, as-

uming that the weighted allele frequencies p01, . . . , p0A are known,

or instance drawn from allele frequency spectrum data. Then we

enerate {Z0 ja}J−1,A
j=0,a=1

according to (11) and derive a recursive scheme

or the allele frequency change in all age classes from time t to t + 1,

onditionally on {Nt j, Nt+1, j, Nt+1, j0, {Zt ja}A
a=1

}J−1
j=0

, for t = 0, . . . , T −
. To this end, we need to find the conditional distribution of survival

t+1, j+1,a =
∑

h∈Zt ja

It jh (14)

nd reproduction

t+1,0,a =
J−1∑
j=0

Zt+1, j0a (15)

here

t+1, j0a =
∑

h∈Zt ja

Yt jh (16)

s the number of offspring of individuals in age class j = 0, . . . , J − 1

t time t = 0 that have allele a = 1, . . . , A.

Starting with survival from time t to t + 1, the conditional distri-

ution

Zt+1, j+1,1, . . . , Zt+1, j+1,A|Nt j, Nt+1, j+1, Zt j1, . . . , Zt, j,A

∼ MultHyp

(
Nt j, Nt+1, j+1; Zt j1

Nt j

, . . . ,
Zt jA

Nt j

)
(17)

ollows a multivariate hypergeometric distribution for j = 0, . . . , J −
, since survival of individuals in each age class j are independent and

ernoulli distributed random variables with the same probability sj.

For the conditional distribution of reproduction, we need to gen-

rate newborns at time t + 1 in each age class j. We first assume

hat ρ j = 0, and in order to obtain an explicit distribution we need

o make further assumptions on the distribution of Ytjh. If Ytjh are

oisson distributed (12), reproduction follows a Wright–Fisher model

ithin each age class, with

Yt j1, . . . ,Yt jNt j
)|Nt j, Nt+1, j0 ∼ Mult

(
Nt+1, j0; 1

Nt j

, . . . ,
1

Nt j

)
. (18)
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f

ogether with (16) this implies

(Zt+1,0 j1, . . . , Zt+1,0 jA)|Nt j, Nt+1, j0, Zt j1, . . . , Zt jA

∼ Mult

(
Nt+1, j0; Zt j1

Nt j

, . . .
Zt jA

Nt j

)
. (19)

lternatively, in order to allow for overdispersion, we may assume

hat all offspring numbers

t jh ∼ NegBin(mj, qj)

ave a negative binomial distribution, with expected value

(Yt jh) = mj(1 − qj)

qj

= bj

nd variance

ar(Yt jh) = mj(1 − qj)

q2
j

= σ 2
j

n age class j. Since Ytjh ∼ Po(�tjh) has a mixed Poisson distribution

ith a gamma distributed mean �t jh ∼ �(m j, (1 − q j)/q j), it follows

hat the offspring numbers of age class j and time t have a Dirichlet

ultinomial distribution

Ytj1, . . . ,YtjNtj

)|Nt+1, j0, Ptj ∼ Mult
(
Nt+1, j0, Ptj

)
,

Ptj|Ntj ∼ Dir
(
mj, . . . , mj

)
,

(20)

here Pt j = (Pt j1, . . . , Pt jNt j
), see for instance [9] and references

herein. By the marginalization property of the Dirichlet distribution,

16) implies

Zt+1, j01, . . . Zt+1, j0A

)|Nt+1, j0, Ptj ∼ Mult
(
Nt+1, j0, Ptj

)
,

Ptj|Ntj, Ztj1, . . . , ZtjA ∼ Dir
(
Ztj1mj, . . . , ZtjAmj

)
,

(21)

ith P̄t j = (P̄t j1, . . . , P̄t jA), and P̄t ja = ∑
h∈Zt ja

Pt jh. The Poisson case

19) corresponds to qj → 1 and mj → ∞ while bj is kept fixed. Then,
2
j

= b j/q j converges to bj and P̄t ja|Nt j, Zt ja converges in probability

o Ztja/Ntj, the non-random probabilities of the multinomial distribu-

ion in (19).

Suppose q j = q (and hence also the amount of overdispersion)

s the same in all age classes j, whereas mj (and hence also the ex-

ected number of offspring bj) varies. Then the total offspring num-

ers within each age class can be generated from a distribution

Nt+1,00, . . . , Nt+1,J−1,0)|Nt+1,0 ∼ Mult(Nt+1,0, Pt)

Pt ∼ Dir(Nt1m1, . . . , NtAmA).

hat generalizes (13).

When ρ j �= 0 things are much more complicated. Formula (17),

escribing survival, will be unchanged but reproduction will be

onditioned on survival, and a simulation method is presented in

ppendix C.

To generate multiple loci, we use the same Ntj and Ntj0 at all loci.

f they are in linkage equilibrium, we may either repeat the above

rocedure and generate all Ztj and Ztj0 independently at each lo-

us. Alternatively, in order to mimic a diploid situation more accu-

ately, we employ the same Ytjh and Itjh at all loci, and then pick

he sets Zt ja randomly and independently between loci, accord-

ng to the allele frequencies at time t for each age class and locus

ombination.

. Discussion

In this paper, we present a method to simulate demographics and

NA for an age structured population at loci in linkage equilibrium.

y specifying the initial population size and aged averaged allele fre-

uencies we first derive novel formulas for the initial approximate

ge distribution of the total population as well as how the alleles dis-

ribute over age classes independently at different loci. Given that the
nitial age distribution is known, it is straightforward to generate fu-

ure generations of the population according to the method described

n Section 5. In Fig. 3, we give a schematic overview of the simulation

rocess.

An advantage of knowing the distribution of the age composi-

ion is that the need for a burn-in time is eliminated in the simula-

ions. For populations in which the population size fluctuates, it en-

bles us to draw the initial distribution of the age composition and

nsures that each simulation starts with the same total population

ize.

For age structured populations with constant age class sizes, it is

asy to apply a burn-in time to ensure that the distribution of alleles

as reached its stationary distribution. However, with a burn-in time

t is harder to choose an exact allele frequency to start with. With

he proposed method, the initial allele frequency can be specified for

ach allele at a given locus, and the method can be used regardless

f the scenario by which the population was generated, as long as

he assumptions (2) and (5) of a time invariant expected projection

atrix and demographic noise are reasonable.

The method to generate DNA for loci in linkage equilibrium gives a

ore realistic and efficient simulation procedure compared to if age

lass sizes and number of offspring for each individual were simu-

ated at each locus. This method has recently been used to simulate

ata in order to illustrate the performance of a multilocus estimator

f the variance effective population size [16].

It is also possible to extend the demographic simulation method to

model where all reproduction and survival parameters b j = b j(N),
2
j

= σ 2
j
(N), s j = s j(N) and ρ j = ρ j(N) depend on the current popu-

ation size vector Nt = N. This incorporates populations with a finite

arrying capacity. Recursion (2) then generalizes to

t+1 = f (Nt) + εt+1

≈ f (n) + g(Nt − n) + εt+1 (22)

f n = (n0, . . . , nJ−1)
′ is a fix point f (n) = n, and g = D f (n) the non-

egative derivative matrix at the fix point. If the fix point is sta-

le, and if g is irreducible and aperiodic, g has a unique real-valued

argest eigenvalue λ = λ0 < 1. It is then possible to apply (9) with
¯ t = v(Nt − n) rather than Ñt , so that

t |N̄t ≈ N(n + N̄t u, nV ),

here v and u are the left and right eigenvectors of g correspond-

ng to λ, n = ∑J−1
j=0

n j, V is given by (7), but � is defined differently,

ith nj/n replacing uj everywhere. In Appendix D, we give an example

f a population for which the carrying capacity affects the offspring

istribution.

On the other hand, it is not as straightforward to generalize the

llele frequency distribution (11) when the carrying capacity is finite.

he reason is that different alleles do not change independently, as in

10). Finding this allele frequency distribution is an interesting topic

or further research.
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Appendix A. Derivation of (3)

Starting with Nt+1 − Ñt+1u, we apply recursion (2) and have that

Nt+1 − Ñt+1u = gNt + εt+1 − Ñt+1u

= gNt − Ñtλu + εt+1 − (Ñt+1 − λÑt)u

= g(Nt − Ñt u) + εt+1 − (Ñt+1 − λÑt)u

= g(Nt − Ñt u) + �1εt+1 + �2εt+1 − (Ñt+1 − λÑt)u

= g(Nt − Ñt u) + �2εt+1,

where �1 = QI1Q−1 and I1 = diag(1, 0, . . . , 0) are J × J matrices. In

the third step we used that gu = λu and in the last step that

0 = v(Nt+1 − Ñt+1u)

= λv(Nt − Ñt u) + v�1εt+1 + v�2εt+1 − v(Ñt+1 − λÑt)u

= v
[
�1εt+1 − (Ñt+1 − λÑt)u

]
.

By definition of the matrix �1, �1εt+1 − (Ñt+1 − λÑt)u = cu for

some constant c. The normalization of u and v implies that

v[�1εt+1 − (Ñt+1 − λÑt)u] = cvu = c. Therefore v[�1εt+1 − (Ñt+1 −
λÑt)u] = 0 leads to c = 0 and hence also �1εt+1 − (Ñt+1 − λÑt)u =
0.

Appendix B. Mean vector and covariance matrix in (11)

Let X and Y be two jointly multivariate normal vectors such that(
X
Y

)
∼ N

((
μx

μy

)
,

(
�xx�xy

�yx�yy

))
. (B.1)

The conditional distribution X|Y = y is also multivariate normal

with mean vector μx|y = μx + �xy�
−1
yy (y − μy) and covariance ma-

trix �x|y = �xx − �xy�
−1
yy �yx.

In order to derive (11) from (10), we apply (B.1) with

X = (Zt1, . . . , ZtA)
′|{Z̃t}A

a=1, {Z̃t−1}A
a=1,

Y = Nt |Ñt , Ñt−1,

y = Nt ,

μx = (Z̃t1u′, . . . , Z̃tAu′)′,
μy = Ñt u,

�xx = Ñt−1diag(pt1, . . . , ptA) ⊗ V ,

�yy = Ñt−1V ,

�yx = �′
xy = Ñt−1(pt1, . . . , ptA) ⊗ V .

We also use that, for any square matrices A and B, (A ⊗ V )(B ⊗ V ) =
(AB ⊗ V ) and if A is also invertible, then (A ⊗ V )−1 = A−1 ⊗ V −1. Note

also that we made the approximation pt−1,a = pta in (10) and (11), for

a = 1, . . . , A. �

Appendix C. Simulation of populations with correlation between

reproduction and survival

Assume Ytjh ∼ NegBin(mj, qj) has a negative binomial distribution

and that survival conditionally on offspring numbers follows a logis-

tic regression model

P(It jh = x|Yt jh = y) = (eβ0 j+β1 jy){x=1}

1 + eβ0 j+β1 jy
or x = 0, 1. There is a one-to-one correspondence between the re-

ression parameters β0j and β1j for age class j and sj, ρ j, the survival

robability and correlation coefficient. Note in particular that β1 j = 0

s equivalent to ρ j = 0.

When ρ j �= 0, we can still generate survival variables Itjh according

o (17). But then we must generate offspring numbers conditionally

n survival as

(Yt jh =y|It jh =x) ∝ P(It jh = x|Yt jh = y)P(Yt jh = y)

= exp(β0 j +β1 jy)
{x=1}

1+exp(β0 j +β1 jy)

(
mj +y−1

y

)
(1−qj)

mj qy
j

=: f j(y|x), (C.1)

nd condition on the total number of offspring of individuals in age

lass j as well, so that(
Yt j1 = y1, . . . ,Yt jNt j

= yNt j
|

Nt j∑
h=1

Yt jh

= Nt+1, j0, It j1 = x1, . . . , It jNt j
= xNt j

)
=C

Nt j∏
h=1

f j(yh|xh), (C.2)

here C is a normalizing constant assuring that the conditional prob-

bilities in (C.2) sum to 1. One possibility is to simulate from another

onditional distribution, where the constraint
∑Nt j

h=1
Yt jh = Nt+1, j,0

s removed, so that all Yt j1, . . . ,Yt jNt j
are conditionally independent

ith distributions fj( · |Itjh).

Then, in the end, only draws with
∑Nt j

h=1
Yt jh = Nt+1, j,0 are ac-

epted. Finally, the allele frequencies are updated in all age classes

ccording to (14)–(16).

ppendix D. Demography example with linear decrease in

xpected value of the offspring distribution

Here, we give an example of a population with a carrying capacity

and how it affects the offspring distribution. Suppose that the Pois-

on assumption (12) holds, but let the expected number of offspring

f a parent in age class j

j = bj(Nt) = b′
j

[
max

(
0, 1 −

∑J−1
i=0

Nti

K

)]
,

nd the corresponding variance σ 2
j
(Nt) = b j(Nt), depend on the cur-

ent population size, where b′
j

is a constant. Then, if survival sj and

orrelation ρ j between survival and reproduction for any age class j

o not depend on the population size, we can apply recursion (22)

ith

f (Nt) =

⎛
⎜⎜⎜⎝

f0(Nt)

f1(Nt)

...

fJ−1(Nt)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∑J−1
j=0

bj(Nt)Nt j

s0Nt0

...

sJ−2Nt,J−2

⎞
⎟⎟⎟⎠,

o that

= n0

⎛
⎜⎜⎜⎝

l0

l1

...

lJ−1

⎞
⎟⎟⎟⎠

s the stable fix point, with

0 =
K
[
1 − (

∑J−1
j=0

b′
j
l j)

−1
]

∑J−1
j=0

l j

.
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