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A simulation method is presented for the demographic and genetic variation of age structured haploid pop-
ulations. First, we use matrix analytic methods to derive an equilibrium distribution for the age class sizes
conditioned on the total population size. Knowledge of this distribution eliminates the need of a burn-in time
in simulations. Next, we derive the distribution of the alleles at a polymorphic locus in various age classes
given the allele frequencies in the total population and the age size composition. For the time dynamics, we
start by simulating the dynamics for the total population. In order to generate the inheritance of the alle-
les, we derive their distribution conditionally on the simulated population sizes. This method enables a fast
simulation procedure of multiple loci in linkage equilibrium.
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1. Introduction

Simulation studies are important as a tool for checking the va-
lidity of various assumptions and approximations in population ge-
netic models. Fast and accurate simulation techniques are therefore
of interest in order to obtain reliable results. Age structured popu-
lation models with deterministic growth have been of interest for
a long time [4,13,14] and a good overview can be found e.g. in [12]
with extended models that account both for demographic and en-
vironmental noise. In this paper, we present simulation techniques
for an age structured population in a constant environment in which
the age class sizes, as well as the total population size, fluctuate
stochastically.

We present a discrete time model, where the age composition
at each time step is described by means of matrix recursions. Us-
ing this model, we derive an approximate distribution for the age
composition, given the total population size. By knowing this dis-
tribution, the need for a burn-in time is eliminated in simulations
since a random draw from this distribution can be used as a starting
point.

In population genetics, the genetic information at various loci is
important for calculating and estimating e.g. inbreeding and effective
population sizes, as reviewed by [2] and [15]. We present a method
for simulation of alleles at independent loci given the trajectory of
age class sizes. This method can be applied to models in which the
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age class sizes are either constant, or vary stochastically according to
some demographic model.

The paper is organized as follows. In Section 2 we define the
demographic population model. In the following section we derive
an approximate conditional distribution for the age composition,
given the total population size. The accuracy of these approxima-
tions is tested by means of simulations in Section 4. In Section 5,
we present a method for simulation of allele frequencies at loci in
linkage equilibrium. A discussion is found in Section 6, derivations in
the appendices and a list of the most important notation is given in
Table 1.

2. Demographic model
Consider a population divided into J age classes and let

N; = (N, ... Ny_1)'.

with ’ referring to vector transposition, be the number of individu-
als in each age class at time t. Let Yy, be the number of offspring
of an individual h in age class j at time t. For fixed ¢ and j, all Yy,
are independent and identically distributed random variables with
mean b; and variance ojz . The survival I, of an individual h from
time ¢ to t + 1 is Bernoulli distributed with probability s; and in-
dependent of other individuals’ survival. We also allow for a cor-
relation p; between the number of progeny Y, and survival I,
of h. Let N q; denote the total number of newborns at time t
of individuals in age class j. Then, the dynamics of the population
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Table 1
List of notation used in the paper.
Notation  Definition
b; Mean number of offspring for an individual in age class j
i Probability that an individual survives to age class j
sj Probability that an individual in age class j survives to age class j + 1
0j Correlation between the number of progeny and survival for an individual in age class j
Ljn Survival indicator of individual h in age class j from time tto t + 1
Yiin Number of offspring of individual h in age class j at time ¢
N; Vector containing number of individuals in all age classes at time t
Ni Number of individuals in age class j at time ¢
Nijo Number of newborns at time t of individuals in age class j
G, Projection matrix of vital rates for N;
g Expected projection matrix
€ Matrix of serially uncorrelated demographic noise for the N-process
A Multiplicative growth rate and largest eigenvalue of g
u Vector with components proportional to the center point of the equilibrium age distribution of N
v Vector with components proportional to the reproductive values
N Population size when age classes are weighted by v
Zigj Number of individuals with allele a in age class j at time ¢
Zi Vector containing number of individuals with allele a in all age classes
Zia Number of individuals with allele a when age classes are weighted by v
Dta Age averaged allele frequency, with respect to v, of allele a at time ¢
is given by rewritten as
Nij Nei1 — Nepqu = g(Ne — New) + To€py g, (3)
Negtjv1 = Lin, j=0,...,]-2, . .
RN th: LI J where IT, = QLQ ! and I, = diag(0,1,..., 1) are | x J matrices. It-
h; erating (3) with respect to t we can express the deviation from the
tj . . . ~ .
stable age distribution N;u at time ¢ as
N, P= Yiip, j=0,....]—1, 1
t+1,0j hX} tjh J J ( ) o
- N; — Nou = g | PY 7 4
-1 e — Nt 2(:)8 261 (4)
T=l
Nez10 =Y Niitoj. . L ) . .
20 Following calculations in [3] and [17], the noise covariance matrix is

This implies that the length of each age class is the same and it
equals one unit of time. Following [17], the time dynamics of the pop-
ulation size can also be described using matrix population models (cf.
[1]). Let

N1 =GNy = gN; + €441 (2)

where G; is a | x ] projection matrix of vital rates, g is the expected
projection or Leslie matrix [13] and €;,q is a column vector with
E(€;.1|N:) =0 that represents serially uncorrelated demographic
noise. Let Ag, ..., Aj_1 be the complex-valued eigenvalues of g in de-
scending order with respect to their moduli, and letg = QAQ ! be its
Jordan canonical form. The columns (rows) of the matrix Q (Q ') are
the right (left) eigenvectors of g, and A is an upper triangular matrix
with Ag, ..., Aj_; along the diagonal (see for instance [7]).

The largest eigenvalue A = Ag of g, which is real-valued, positive
and unique according to Perron-Frobenius theorem, represents the
multiplicative growth rate of the population. The right eigenvector u
corresponding to A consists of the stable age distribution and the el-
ements of the left eigenvector v are proportional to the age specific
reproductive values [6]. It is assumed that the elements of u and v are
normalized so that Z]j;}) uj= Zﬂ;}; u;v; = 1. The age specific repro-
ductive values are of importance for age structured populations. For
instance, if they are used as weights when calculating the variance
effective population size it is possible to determine the long term ge-
netic drift [5,11,17,20].

3. Distribution of the age composition

Suppose that the reproductively weighted population size at time
tis N; = vN;. Here, we will derive an approximate age distribution for
both the total population as well as for different alleles at a specific
chromosomal locus. We show in Appendix A that recursion (2) can be

COV(€[|Nt,]> ~ Nt,] E, (5)

where ¥ = (%) has non-zero elements given by

J-1
Too = Y ujo7,
j=0
ZjJr]_jJr] ZUij(l—Sj), j:O...,j—Z, (6)

Egvj_*_] = Ej.,.]yo = UjUj\/Sj(l — Sj)pj, ] = 0...,] - 2.
In formula (5), the number of individuals in each class j at time t — 1
is approximated by N;_ju;, so that for instance the variance of the
total reproductive success of all age j individuals is roughly N;_;u jajZ.

Since {€;} are martingale differences, it follows from (4), (5) and the
central limit theorem for martingales [8,10] that

Ne — Neu[{Ne -1} ~ N(0, ) "Ny - 18 T X115 (g7))

=0
~ N(0, N;_1V), (7)

is a good approximation if the sum does not converge too rapidly,
so that many terms contribute. In the last step we assumed that
Ni_z_1/N¢_1 = A7, so that the covariance matrix is proportional to

V=Y ATg MZM)(g), (8)
=0

and in order for the sum in (8) to converge, it is necessary that |11 |2 <
A = Ao, see [17]. Hence,

Nt|Nt» Nt—1 ~ N(Ntlh thv), (9)

is the conditional distribution of the age composition given the
weighted population size.
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Fig. 1. Estimated variances (a) and covariances (b) from simulations divided by the corresponding element in the analytically derived covariance matrix (9), as a function of time.

The estimates are based on 5000 simulated values for each age class.

Now, assume that the population is haploid, and consider a se-
lectively neutral gene with A alleles at the locus of interest. Since
the population is haploid, each individual carries a single copy of the
gene. Let Z;j, c {h=1...., N;;} refer to the individuals in age class j
at time t with allele a, and put Z; j, = |2 jq| = N;jPtjq. Where pyjq is the
frequency of a in age class j at time t. Also, let Zeg = (Ztqo. - - - . Zyaj—1)’
be a vector with the number of individuals having allele a in all age
classes and let Z;q = vZ;, be the weighted number of individuals with
this allele. Hence,

pt = =

a N
is the weighted frequency of allele a at time t. Then, the vector of total
age class sizes can be expressed as

A
N = sz.
a=1

Suppose we know the age-weighted frequencies pq, ..., pss for all
alleles at time t, but not how they are distributed over age classes. We
can repeat the argument leading to (9) for each allele separately. In
analogy with (4)-(8), since different alleles reproduce independently,
we find that

Zy —Znu 0
. | HZaadas =N NeaPev |, (10)
Zip — Ziaul
N; — Neu 0
where ® is the tensor product of matrices and
pa 0O 0 pn
0 p2 De2
P‘l = . .
: . .0 :
0 ... 0 pu D
Pr1 Pe2 pa 1

The approximate conditional allele frequency distribution given all
age class sizes, is given by
Zy Pe1Ne
|Nt, {Za}?:p {Z_1,a}ﬁ=1 ~ N :
Zia PealNt

NP oV |,

(11)

Table 2

Life table data for sparrows,
where b is the mean number of
progeny for an individual in age
class j, I =[]/, s; is the proba-
bility for an individual to survive
to age class j and s; the probabil-
ity that an individual in age class
Jj survives to age class j + 1. Each
age class represents 1 year.

Sparrow
Ageclass  ; b;
0 1.000  0.000
1 0167  3.018
2 0.083  3.202
3 0.048  3.416
4 0.012  3.602
5 0.006  3.842
where
pa(1=pe1)  —Pripe ~Pr1Dta
—Dt2Pr1
P, =
—DPt,A-1PtA
—DtaPe1 —DeabPea-1 DPea(1 — pea)

In order to derive the mean vector and covariance matrix in (11) we
used (10) and formulas, given in Appendix B, for the conditional dis-
tribution X|Y of two jointly multivariate normal vectors X and Y.

4. Simulation of demographic equilibrium

In order to illustrate the performance of the proposed method we
compare our approximate age composition distribution (9) with sim-
ulated values. Using the methods in Section 2, we simulate a pop-
ulation with demographic parameters according to Table 2. We let
Ny = 1000 be the initial size and u the age composition and simulate
the population for 25 time stepst = 0, 1, ..., 25. For each time step ¢,
we calculate the reproductively weighted population size N; and keep
the age composition only if N; is rounded to 1000. We repeat the sim-
ulation until we have 5000 sampled age distributions for each time
step.

In Fig. 1, we show how the estimated variances and covariances,
divided by the corresponding values of the covariance matrix (9), vary
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Fig. 2. Estimated quantiles from simulations (solid lines) and theoretical quantiles according to (9) (dashed lines) for the bivariate age class size distribution (N, N¢; ) of age classes
0 and 1. The estimates are based on 5000 simulated values for each age class and are sampled after t = 1 time step in (a) and after ¢t = 20 time steps in (b). The bivariate quantiles
from simulations are computed according to function kde2d of the package MASS [19] in R [18].

over time. We see that both variances and covariances approach the
true value after only a few time steps. Only values from the first three
age classes are shown, however, the variances and covariances for the
other age classes follow a similar pattern.

For age classes 0 and 1, we have estimated the 10%, 25%, 50% , 75%
and 90% quantiles from the simulations, as shown in Fig. 2. We com-
pare the estimated quantiles of the bivariate distribution (N, N¢; ) af-
ter one and 20 time steps with the corresponding quantiles from the
bivariate normal distribution in (9). As expected, we obtain a good fit
if a longer burn-in time is allowed for.

5. Demographic and multilocus genetic simulation

It is straightforward to generate demographic and genetic data
{N¢j. Ztjgs j=0,....J—=1,a=1,...,A} jointly for time t=0,...,T
at one specific locus, according to the model of Section 2, keeping
track of which genes that have the different alleles. However, we will
present a different approach, by first generating all N;; and then con-
ditionally on them the allele counts Z,. As an intermediate step we
also need the total offspring numbers Ny of all age classes j at all
time points t. The simplest option is to generate all Ny, simultane-
ously with the Ny; variables, as described in Section 2. But in order
to allow also for prechosen scenarios, where N;; but not N are pre-
specified, one may obtain the offspring numbers Ny, conditionally on
{Ny}. For instance, if all

are Poisson distributed, addition of independent Poisson distributed
random variables implies Nyjg ~ Po(Ny;b;). Given the total number of
offspring N;, 1 ¢, children choose age of parents multinomially

(Nt41,005 - - - » New1j-1,0) INer1,0 ~ Mult(Nej1 05 Qo - -+, Qry1)  (13)

for t =0,...,T, with probabilities Q;j = N;jb;/ Zj,-;(l) Nib;. These
probabilities simplify to Q; =u;b;/(ugA) for a population in ex-
act demographic equilibrium N;; = Neu;. For other offspring distri-
butions we either use (13) as an approximation, or simulate from
the exact conditional distribution of {N; +1'0]-}]j;10 by first generating

{Nt+1,0j}1j;10 from the unconditional distribution of Yy, and then ac-
cept draws for which the lower equation of (1) holds.

The major advantage of generating {N;} before {Z;,} is that this
approach allows us to generate allele frequencies independently for
loci in linkage equilibrium in one single population, with the same
demographic history {Ny} at all loci. The price to be paid is a more

complicated algorithm for generating allele frequencies. In order to
allocate alleles to all age classes at all time points we startatt = 0, as-
suming that the weighted allele frequencies pg;., ..., pga are known,
for instance drawn from allele frequency spectrum data. Then we
generate {Zgj, }]j;]o’j‘]:1 according to (11) and derive a recursive scheme
for the allele frequency change in all age classes from time ttot + 1,
conditionally on {N;}, ;1 j. N1, jo- {tha}';‘:l}Jj_:lo, fort=0,....T—
1. To this end, we need to find the conditional distribution of survival

Zt+1,j+1‘a = Z Irjh (14)

hezjq

and reproduction

-1

Zt11,0a0 = ZZtJrl,jOa (15)
=0

where

Zivjoa= Y Yejn (16)
heZjq

is the number of offspring of individuals in age class j =0, ...
at time t = O that have allelea =1, ..., A.

Starting with survival from time ¢ to t + 1, the conditional distri-
bution

J=1

Ziiaji110 - Zev ji1.alNe Ner i Zeji -+ Zeja
Ziih Ziin
~ MultHyp(th, Nej1jiis %, R 1\;]) (17)
j j

follows a multivariate hypergeometric distribution for j =0,...,J —
2, since survival of individuals in each age class j are independent and
Bernoulli distributed random variables with the same probability s;.

For the conditional distribution of reproduction, we need to gen-
erate newborns at time t + 1 in each age class j. We first assume
that p; = 0, and in order to obtain an explicit distribution we need
to make further assumptions on the distribution of Y. If Yy, are
Poisson distributed (12), reproduction follows a Wright-Fisher model
within each age class, with

1 1
(Yejrs o Yejng ) INejs Nega jo ~ MU1t<Nt+1.jo; N N) (18)
tj tj
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Together with (16) this implies

(Zes10j1- -+ Zev1.0ja) INg Nev jos Zejas - -+ Zgja
Zij1 Ziia
~Mult Npjq io; =22, ... =22 ). 19
u ( t+1.j05 ij? th ( )

Alternatively, in order to allow for overdispersion, we may assume
that all offspring numbers

Y:jn ~ NegBin(mj, q;)

have a negative binomial distribution, with expected value

m;(1—q;)
E(Yjn) = ——- =b;
q;
and variance
m;(1—q;)
Var(Ytjh) = 172] = 0.1_2

j
in age class j. Since Y, ~ Po(Ap) has a mixed Poisson distribution
with a gamma distributed mean A, ~ I'(m;, (1 — q;)/q;), it follows
that the offspring numbers of age class j and time t have a Dirichlet
multinomial distribution

(Yt - - Yy, ) INex1.jos Py ~ Mult(Ne.q jo. Py).

) (20)
Pt]|NC] ~ Dlr(mj, ey mj),

where P = (Bj1,..., Pth[j), see for instance [9] and references
therein. By the marginalization property of the Dirichlet distribution,
(16) implies

(Zrﬂ,jm, . -Zt+1.jOA) [Nes1,jo. Py ~ MUlt(Nm,jo, T’rj)7

- . (21)
Ptj|th,th1, . ?thA ~ Dlr(th]mj, . ,thAmj),

with P;j = (B, ....Pja). and Pjq = Yhez,, Pijn- The Poisson case
(19) corresponds to q; — 1 and m; — oo while b; is kept fixed. Then,
sz = bj/q; converges to b; and P_‘tjathj, Z;jq converges in probability
to Zjq/Nyj, the non-random probabilities of the multinomial distribu-
tion in (19).

Suppose q; = q (and hence also the amount of overdispersion)
is the same in all age classes j, whereas m; (and hence also the ex-
pected number of offspring b;) varies. Then the total offspring num-
bers within each age class can be generated from a distribution

- Niz1j-1,0) INes1,0 ~ Mult(Ney1 0. Pr)
P. ~ Dir(Nﬂ mq, ..

(Nt41,00 -
. NmmA).

that generalizes (13).

When p; # 0 things are much more complicated. Formula (17),
describing survival, will be unchanged but reproduction will be
conditioned on survival, and a simulation method is presented in
Appendix C.

To generate multiple loci, we use the same N;; and Ny at all loci.
If they are in linkage equilibrium, we may either repeat the above
procedure and generate all Z; and Z;, independently at each lo-
cus. Alternatively, in order to mimic a diploid situation more accu-
rately, we employ the same Yy, and I, at all loci, and then pick
the sets Zj, randomly and independently between loci, accord-
ing to the allele frequencies at time t for each age class and locus
combination.

6. Discussion

In this paper, we present a method to simulate demographics and
DNA for an age structured population at loci in linkage equilibrium.
By specifying the initial population size and aged averaged allele fre-
quencies we first derive novel formulas for the initial approximate
age distribution of the total population as well as how the alleles dis-
tribute over age classes independently at different loci. Given that the

[ Choose Zgl, Cey ZUA }

i
[Simulate No|No, N_4 k[ Simulate Zo1, ..., Zoa|No. {Zoa}ios j
1 v
[ Simulate N1|Ng ]—»[

[ Choose NU and N_; ]

Simulate Z11,...,Z14|N1,No, Zo1,...,Zoa }

4

v v
[ Simulate N;|N;,_y ]_>[Simnlate Zy,....ZiAlINy,Ny_1,Z_ 11, .., Zt,l‘,q}

Fig. 3. Schematic overview of how the demography of a population and its genetic
variation is simulated over time. The left part shows how the demography is generated
and the right part describes simulation of genetic data at one locus. Only the right part
is repeated in order to generate data at multiple loci.

initial age distribution is known, it is straightforward to generate fu-
ture generations of the population according to the method described
in Section 5. In Fig. 3, we give a schematic overview of the simulation
process.

An advantage of knowing the distribution of the age composi-
tion is that the need for a burn-in time is eliminated in the simula-
tions. For populations in which the population size fluctuates, it en-
ables us to draw the initial distribution of the age composition and
ensures that each simulation starts with the same total population
size.

For age structured populations with constant age class sizes, it is
easy to apply a burn-in time to ensure that the distribution of alleles
has reached its stationary distribution. However, with a burn-in time
it is harder to choose an exact allele frequency to start with. With
the proposed method, the initial allele frequency can be specified for
each allele at a given locus, and the method can be used regardless
of the scenario by which the population was generated, as long as
the assumptions (2) and (5) of a time invariant expected projection
matrix and demographic noise are reasonable.

The method to generate DNA for loci in linkage equilibrium gives a
more realistic and efficient simulation procedure compared to if age
class sizes and number of offspring for each individual were simu-
lated at each locus. This method has recently been used to simulate
data in order to illustrate the performance of a multilocus estimator
of the variance effective population size [16].

Itis also possible to extend the demographic simulation method to
a model where all reproduction and survival parameters b; = b;(N),
ojz = 0].2 (N),sj =s;(N) and p; = p;(N) depend on the current popu-
lation size vector N; = N. This incorporates populations with a finite
carrying capacity. Recursion (2) then generalizes to

Nepr = F(N) + €41
~ f(n) +g(N: —n) + €4 (22)

ifn=(ng.....nj_q) is a fix point f(n) = n, and g = Df(n) the non-
negative derivative matrix at the fix point. If the fix point is sta-
ble, and if g is irreducible and aperiodic, g has a unique real-valued
largest eigenvalue A = Ay < 1. It is then possible to apply (9) with
Nt = v(N; — n) rather than N, so that

Nt|Nt ~ N(n + Ntu, Tlv),

where v and u are the left and right eigenvectors of g correspond-
ingtoi, n= Z]j_:]o n;, Vis given by (7), but X is defined differently,
with n;/n replacing u; everywhere. In Appendix D, we give an example
of a population for which the carrying capacity affects the offspring
distribution.

On the other hand, it is not as straightforward to generalize the
allele frequency distribution (11) when the carrying capacity is finite.
The reason is that different alleles do not change independently, as in
(10). Finding this allele frequency distribution is an interesting topic
for further research.



50 E Olsson, O. Hossjer / Mathematical Biosciences 268 (2015) 45-51

Acknowledgments

Financial support from the Swedish Research Council, contracts
nr. 621-2008-4946 and 621-2013-4633, and the Gustafsson Founda-
tion for Research in Natural Sciences and Medicine to Ola Hossjer is
acknowledged. We also wish to thank a reviewer for helpful com-
ments on the manuscript.

Appendix A. Derivation of (3)

Starting with N;, 1 — N;u, we apply recursion (2) and have that
Nip1 — Neyqtt = gN; + €141 — Nejqu
=gN, — NAu + €,,1 — (N — AN
= g(N; — Neut) + €1 — (Newq — AN)u
= g(N; — Neut) + Ty €1 + M1 — (Neyr — ANDu
= g(N; — New) + Toe 1,
where IT; = QI;Q ! and I; = diag(1,0, ...,0) are J x J matrices. In
the third step we used that gu = Au and in the last step that
0 = (N1 — Neyqu)
= AM(N; — Newt) + vIT €41 + VIo€0, 1 — V(Neyq — ANDu
= V[M€1 — (Neyy — AN u).
By definition of the matrix Iy, M€, 1 — (Ny.; — ANy)u = cu for
some constant c. The normalization of u and v implies that
V[ €41 — (N¢y1 — ANo)u] = cvu = c. Therefore V[ € 41 — (NH] —

AN¢)u] = 0 leads to ¢ = 0 and hence also I €, — (N;,; — ANp)u =
0.

Appendix B. Mean vector and covariance matrix in (11)

Let X and Y be two jointly multivariate normal vectors such that

() () (32)) o

The conditional distribution X|Y = y is also multivariate normal
with mean vector fy, = px + Zxy Xy, 1 (y — ny) and covariance ma-
trix Exb, = Yyx — ExyE ny

In order to derive (11) from (10), we apply (B.1) with

X=(Zn,....Z20) {Z)2_ AZ 1},

Y = Ne|Ne, Ny,
y=N,
My = (ZnWl,.... Za'),
Ry = Neu,
T = Ne_rdiag(par. ... pa) @V,
Ty =NV,
Zyx = E)/cy = Nt—l (ptla cees ptA) ® V.

We also use that, for any square matrices Aand B, AQV)(BeV) =
(AB®V) and ifAis also invertible, then (A®@ V)~! = A1 @ V-1. Note
also that we made the approximation p; 1 4 = prq in (10) and (11), for
a=1,...,A. O

Appendix C. Simulation of populations with correlation between
reproduction and survival

Assume Yy, ~ NegBin(my, ;) has a negative binomial distribution
and that survival conditionally on offspring numbers follows a logis-
tic regression model
(eﬂo;‘+51,‘J’){X=1}

P(jn = x[Yejn =y) = 15 cPortPy

for x =0, 1. There is a one-to-one correspondence between the re-
gression parameters Bo; and B;; for age class j and s;, pj, the survival
probability and correlation coefficient. Note in particular that B;; = 0
is equivalent to p; = 0.

When p; # 0, we can still generate survival variables I, according
to (17). But then we must generate offspring numbers conditionally
on survival as

P(Yejh =yllijn=x) < P(Isjn = x|Yjn = Y)PYejn =)
_ exp(Boj+Bry) ¥=1 <m1+}’—1> 1—gm
= TrewGo oy \ oy )TN
=: fi(yx). (C1)

and condition on the total number of offspring of individuals in age
classj as well, so that

N;

=Yy D Yejn
het

P(Ym =Y1..... Yejn,

Nij

=CITfiGnlxn). (c2

= Nev1jo. Iej1 = X1, - I, :XNU)
h=1

where Cis a normalizing constant assuring that the conditional prob-
abilities in (C.2) sum to 1. One possibility is to simulate from another
conditional distribution, where the constraint Zh‘:’l Yijn = Net1,j0
is removed, so that all Y;jq, ..., YfJ'th are conditionally independent
with distributions fi( - |I)- .

Then, in the end, only draws with Zh;jl Yijn = Neg1,jo are ac-

cepted. Finally, the allele frequencies are updated in all age classes
according to (14)-(16).

Appendix D. Demography example with linear decrease in
expected value of the offspring distribution

Here, we give an example of a population with a carrying capacity
K and how it affects the offspring distribution. Suppose that the Pois-
son assumption (12) holds, but let the expected number of offspring
of a parent in age class j

I N
b; = b;(N;) = b) |:max<0,1 - ngf)]

and the corresponding variance ojz (Nt) = b;j(Nt), depend on the cur-
rent population size, where b’j is a constant. Then, if survival s; and
correlation p; between survival and reproduction for any age class j
do not depend on the population size, we can apply recursion (22)
with

Jo(Ny) Z]j;:) b;(Ne)N;;
fi(N) soNto
f(Ny) = . = ) ,
fi-1(Ne) S;2Nj2
so that
ly
h
n=ng

by
is the stable fix point, with
K[l—(ZJ 0 J )" ]
Yo '

ng =
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