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Abstract

Outcome-dependent sampling probabilities can be used to increase efficiency in
observational studies. For continuous outcomes, appropriate consideration of sampling design in
estimating parameters of interest is often computationally cumbersome. In this article, we suggest
a Stochastic EM type algorithm for estimation when ascertainment probabilities are known or
estimable. The computational complexity of the likelihood is avoided by filling in missing data so
that an approximation of the full data likelihood can be used. The method is not restricted to any
specific distribution of the data and can be used for a broad range of statistical models.
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1 Introduction

1.1 Complex ascertainment - background

Most standard statistical tools for analyzing data from observational studies assume
that simple random sampling is used. Outcome dependent sampling may however
increase study efficiency. The case-control design (Breslow, 1982), for example,
has been widely used in epidemiology. An attractive feature of the design is that un-
biased estimates of relative risks can be obtained by performing statistical analysis
on the data using a logistic regression model, as if the data were from a prospective
study. More complex sampling designs may further increase efficiency. In the two-
stage case-control design some covariate information is recorded on all subjects
included in a study (Stage 1) whilst other covariate information, e.g. more expen-
sive covariates, is gathered only on a subset of samples (Stage 2); the probability
that the subject is included in Stage 2 is dependent on Stage 1 covariates. There is
a large literature dealing with how to analyze outcome dependent, and two-stage,
samples when the outcome is categorical, using a pseudo or semi-parametric like-
lihood (Breslow and Cain, 1988, Breslow and Holubkov, 1997, Breslow and Chat-
terjee, 1999, Chen, 2003). In general, there is less written about how to deal with
continuous outcomes under complex sampling designs, although some of the above
mentioned literature does touch on the topic.

Outcome dependent sampling based on continuous outcomes is common in
genetic epidemiology. In an ongoing study (www.biobanks.se/cardiovascular.htm)
at the second author’s institute individuals in the upper and lower tertiles of choles-
terol distributions are selected from a cohort study of 60 year old men in Stockholm,
for genotyping. This particular study has a two-stage cohort design and hence the
study base is clearly defined. For such designs outcome variables Y are known for
the entire cohort sample – unbiased estimation of regression parameters is possible
and computationally straightforward via application of the EM algorithm. Often
study bases are instead ill-defined, e.g. hospital-based studies; it is these study
designs which we focus on in this article. One example is the genetic associa-
tion study of type II diabetes described by Gu, Abulaiti, Ostenson, Humphreys,
Wahlestedt, Brookes, and Efendic (2004) where sampling probabilities are directly
dependent on continuous outcomes, which define the diabetes phenotype. Para-
meter estimation in regression models with continuous outcomes measured in such
samples, i.e. obtained under outcome dependent sampling, will be biased unless
the ascertainment scheme is accounted for. Another example of a study in which
a continuous outcome is studied under a complex sampling scheme is provided by
Prince, Zetterberg, Andreasen, Marcusson, and Blennow (2004), where association
between variants in the ApoE gene and cerebrospinal fluid levels of Aβ42 (the 42-
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amino acid fragment of β -amyloid) is studied in Alzheimer’s patients and healthy
controls. An analysis of the Alzheimer’s disease data set is reported in Section 3.3.

Various inference procedures for complex ascertainment schemes have been
proposed. We start by reviewing some of these.

1.2 Full likelihood approach

Although not fitting fully into the classical framework of missing data problems
(Little and Rubin, 1987), ascertainment can still be viewed as a missing data prob-
lem. In missing data problems data are partitioned into observed data, Zobs, and
missing data Zmis, and there is typically a well-defined set of subjects for which
some variables have missing values, while there is partially complete information,
Zobs, on remaining variables. In our setting all variables can be viewed as be-
longing to Zmis when a subject is not ascertained. In more detail, we let Zcom =
(Z1, ...,Zncom) denote the complete data set before ascertainment, where Z j =(X j,Yj)
contains explanatory variables (X j) and response variables (Yj) of individual j. We
assume that Z j are independent and identically distributed, parameterized by θ and
that either Z j are completely observed (A j = 1) or not observed at all (A j = 0),
where A j is the ascertainment or sampling indicator of individual j. Individuals are
sampled independently, with sampling probabilities not depending on data on other
individuals, so that

P(A j = 1|Zcom,θ) = P(A j = 1|Z j,θ) (1)

for all j. In all examples, we also assume that P(A j = 1|X j,Yj,θ) = P(A j = 1|Yj),
i.e. the probability of ascertainment is independent of θ and X j given observed data
for individual j. However, this restriction is not needed to define the method.

Put Acom = (A1, . . . ,Ancom). The likelihood of complete data,

Lcom(θ ,Zcom,Acom) =P(Zcom,Acom|θ ,ncom)

=
ncom

∏
j=1

P(Z j|θ)P(A j|Z j) ∝
ncom

∏
j=1

P(Z j|θ) (2)

is not known, since not all Z j are observed. The full likelihood of observed data
is obtained by integrating (2) over the missing variables ncom and Zmis, weighted
by their joint probability distribution. This means in particular that we must put a
’prior’ distribution Qncom = P(ncom) on ncom, assumed not to depend on θ . Without
loss of generality, we assume that the first nobs individuals are ascertained and de-
compose Zcom = (Zobs,Zmis) into observed data Zobs = (Z1, . . . ,Znobs) and missing
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data Zmis = (Znobs+1, . . . ,Zncom). Then Acom becomes a known function of Zobs and
Zmis and can be dropped in the notation. The full likelihood can be written

L(θ ;Zobs) = P(Zobs|θ)

=
∞

∑
m=0

Qnobs+m

(
nobs +m

m

)∫

nmis=m
P(Zobs,Zmis|θ ,nmis)dZmis

=
∞

∑
m=0

Qnobs+m

(
nobs +m

m

)
(1−Pθ )m

nobs

∏
j=1

P(A j = 1|Z j)P(Z j|θ), (3)

where nmis = ncom−nobs is the number of missing observations, i.e. the dimension-
ality of Zmis and

Pθ = P(A j = 1|θ) =
∫

Y j

∫

X j

P(A j = 1|Y j)P(X j,Yj|θ)dX jdY j. (4)

A particular feature of the ascertainment problem is that nmis is unknown,
making (3) an intractable sum of terms.

Indeed, the intractability of (3) is in some sense explained by the fact that
data are ’not missing at random’ (NMAR, Little and Rubin, 2002), and sampling
probabilities cannot be determined from Zobs alone.

1.3 Conditioning on ascertainment

A second general approach for correcting for ascertainment is to base inference on
observed data conditional on ascertainment, giving a conditional likelihood

Lcond(θ ;Zobs) =
nobs

∏
j=1

P(Z j|A j = 1,θ) =
nobs

∏
j=1

P(A j = 1|Yj)P(Z j|θ)
Pθ

∝
nobs

∏
j=1

P(Z j|θ)
Pθ

=
Lnaive(θ ;Zobs)

Pnobs

θ
, (5)

where

Lnaive(θ ;Zobs) =
nobs

∏
j=1

P(Z j|θ)

is the naive likelihood, not taking ascertainment into account, or equivalently, as-
suming P(A j|Z j)≡ 1. However, this form of the likelihood also makes likelihood-
based estimation computationally difficult. The computational problem arises when
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(4) is intractable. For continuous Y some examples of such settings are: if X is
continuous or a mixture of discrete and continuous variables, or if ascertainment
probability is a continuous function of Y , which could be the case in size biased
sampling, see Patil (2002). When analytical solutions are not available, methods for
numerical integration, such as importance sampling, can be used. This approach is
investigated here as a comparison to the SEM type algorithm described in Subsec-
tion 2.1.

An attractive approach to estimation for study designs where samples are
drawn with different probabilities in different regions of the space of a contin-
uous outcome, Y , is described by Zhou, Chen, Rissanen, Korrick, Hu, Salonen,
and Longnecker (2007). They describe a semi-parametric empirical likelihood ap-
proach to analyze data that consist of both a simple random sample and supplement
samples from strata that are presumed highly informative based on their values of
Y . Features of the approach are that no parametric assumptions are required for
covariates and that ascertainment probabilities are not required to be known or esti-
mated. Often it is advantageous not to make parametric assumptions for covariates,
although in genetics it can be advantageous (Chen and Chatterjee, 2007). Compar-
ison with the approach by Zhou et al. (2007) is included in one of the examples in
Section 4.

1.4 Retrospective likelihood approach

A third alternative to (3) and (5) is to use the retrospective likelihood P(X |Y,A),
utilizing the fact that ascertainment probabilities cancel out of the likelihood when
A is independent of X |Y , leaving P(X |Y,A) = P(X |Y ). However, Y is typically not
ancillary. This implies loss of information when conditioning on Y, and often the
set of parameters describing the relationship between X and Y is not identifiable
(Liang, 1983). Some, but not all of the parameters may however be identifiable.
See Chen (2003) for a discussion of parameter identification for the general odds
ratio function.

1.5 Summary of the paper

When inference is based on (3), it is useful to consider algorithms used in missing
data problems, such as the Expectation Maximization (EM) algorithm (Dempster,
Laird, and Rubin, 1977) and its extensions. Wacholder and Weinberg (1994) used
the EM algorithm to obtain Maximum Likelihood estimates in case-control studies
with complex ascertainment. If calculating the expected complete data likelihood
in the EM algorithm requires computationally demanding numerical integration,
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one way to side-step the problem is to simulate the missing data, and use the value
of the observed sample mean instead of the calculated expectation. In this spirit
we describe a novel approach for parameter estimation for data with ascertainment
on one or more variables, when sampling probabilities are known/estimable. As-
certainment is allowed to depend on explanatory and/or outcome variables, which
may be continuous and/or categorical. The algorithm is similar to a Stochastic EM
(SEM) algorithm (Celeux and Diebolt, 1985). This approach is general in the sense
that it is not restricted to a particular design. The SEM algorithm has been shown to
be useful in a wide range of missing data problems such as time-to-event data with
censoring data sets (Ip, 1994) and haplotype estimation (Tregouet, Escolano, Tiret,
Mallet, and Golmard, 2004). The basic idea of the method is to regenerate the miss-
ing data. Combined with the observed data, an artificial random sample from the
targeted population is then formed. Parameter estimates are obtained using using
the Maximum Likelihood approach for the artificial random sample. The effect of
randomness of the artificial sample on the model parameter estimates is reduced by
averaging over estimates from repeated generations. The SEM algorithm is known
to be more robust to poorly specified starting values than the deterministic EM al-
gorithm (Gilks, Richardson, and Speigelhalter, 1996), which is a highly attractive
feature in our setting. For further reading on the SEM algorithm see Gilks et al.
(1996) and McLachlan and Krishnan (1997).

We will first, in Section 2.1, present the SEM type algorithm for use in the
ascertainment problem as described above. Two other approaches, a data augmen-
tation method due to Clayton (2003), and a method based on importance sampling
are presented in Section 2.2 for comparison. Some examples are presented in Sec-
tion 3. Analysis of the example data sets are presented in Section 4, evaluating the
SEM type algorithm and comparing it with other methods. The results are discussed
in Section 5.

2 Methods

2.1 A SEM type algorithm for the full likelihood approach

2.1.1 The SEM algorithm for incomplete data

Suppose interest is in estimating θ in a data set where some data are missing. If the
incomplete data can be augmented to resemble complete data, an approximation
of the full likelihood (3) can be used. The essential idea is to inflate the observed
sample, using simulated observations.
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1. Select a starting parameter value θ̂0 = θ ∗. Put i = 1.
2. (Simulation-step)

Simulate N = 1 set of missing data Zmis
i = (Zi(nobs+1), . . . ,Zincom

i
)

∼ Zmis|Zobs, θ̂i−1. Put Zcom
i = (Zobs,Zmis

i ) and compute the likelihood

Lappr(θ ;Zcom
i )

= Qncom
i

(
ncom

i
nobs

) nobs

∏
j=1

P(Z j|θ)P(A j = 1|Z j) ·
ncom

i

∏
j=nobs+1

P(Zi j|θ)P(Ai j = 0|Zi j)

∝
nobs

∏
j=1

P(Z j|θ) ·
ncom

i

∏
j=nobs+1

P(Zi j|θ) (6)

which can be viewed as a Monte Carlo approximation of the full likelihood
(3) of the observed data set, using a single imputed sample, and Ai j are the
ascertainment indicators of Zcom

i .
3. (Maximization-step)

Obtain new parameter estimates θ̂i = argmaxθ Lappr(θ ;Zcom
i ).

4. i→ i+1. If i≤ B+ I, go to Step 2, otherwise compute

θ̃ =
B+I

∑
i=B+1

θ̂i/I,

where B is the burn-in time and I the number of iterations after burn-in.

The required size of the chain, I, is determined both by the specific problem
at hand and by how much extra variability is accepted. Gilks et al. (1996) suggest,
in the setting of Markov chain Monte Carlo, that parallel chains are run, so that
comparison can be made. For large I estimates from a converged SEM algorithm
will be similar to estimates from a converged EM algorithm.

As mentioned above, the SEM algorithm can be viewed as an iterative sin-
gle imputation method within a likelihood framework. By using N = 1 missing data
sets per iteration, the ascertainment probabilities enter into the Simulation-step like-
lihood as a multiplicative constant, and hence can be dropped in the Maximization-
step. As a result, regression and covariate distribution parameters can be estimated
separately in the Maximization-step, as for a simple random sample.

2.1.2 Applying a SEM type algorithm to the ascertainment problem

We now discuss in more detail how to generate missing data in the simulation step

The resulting algorithm is iterative, and can be summarized as follows:

of the SEM-algorithm. The non-ascertained component is considered missing and
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is imputed as Z mis
i in Iteration i of the algorithm. It thus remains to specify how

to simulate from P(Zmis|Zobs,θ) for any parameter vector θ . Normally when the
SEM algorithm is used to fill in missing data there is a fixed sample size and data
are filled in for those observations where data are missing. Here we assume that
the sample size, ncom, of the representative data, is not known, as it would be in a
two-stage cohort design.

It follows from (1) that nmis and Zobs are conditionally independent given
nobs, and also that Zobs and Zmis are conditionally independent given nmis. Hence

P(Zmis|Zobs,θ) = P(nmis|Zobs,θ)P(Zmis|nmis,Zobs,θ)

= P(nmis|nobs,θ) ·P(Zmis|nmis,θ)

= P(nmis|nobs,θ) ·
ncom

∏
j=nobs+1

P(Z j|A j = 0,θ). (7)

Since the last product of (7) is obtained from the parametric model, it re-
mains only to specify P(nmis|nobs,θ). Let Pθ and Qn be as in (3). It follows from
Bayes’ Rule that

P(nmis = m|nobs = k,θ) = P(ncom = k +m|nobs = k,θ)

∝ P(nobs = k|ncom = k +m,θ)Qm+k

=
(

m+ k
k

)
Pk

θ (1−Pθ )mQm+k (8)

for m = 0,1,2, . . . where the proportionality constant does not depend on m. In
particular, with the improper ’prior’ Qn = 1/n we obtain

nmis = m|nobs = k,θ ∼ NegBin(k,Pθ ). (9)

Now (7)-(9) naturally give rise to a rejection algorithm for generating Zmis:

Simulate: Simulate data Zmis
j ,Amis

j , j = 1,2, . . . independently from P(A,Z|θ) =
P(Z|θ)P(A|Y ) and stop when |{ j;Amis

j = 1}|= nobs.
Reject: Throw away the observations Zmis

j with A j = 1 and keep those Zmis
j with

A j = 0.

Alternatively, given any Qm, we may use a standard simulation technique for
discrete random variables to first generate nmis from (8), and then sample Zmis

j ,Amis
j , j =
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1,2, . . . until |{ j;A j = 0}| = n . However, the rejection algorithm based on (9)
is particularly appealing, since we obtain, in each simulation, an ascertained data
set of correct size nobs. In the rest of the paper, we will use (9).

2.1.3 Variance calculation

An approximation of the variance of θ̃ can, according to Gilks et al. (1996), be
computed by utilizing the property that the observed data likelihood in the EM al-
gorithm can be specified in terms of the complete data likelihood (Louis, 1982), but
replacing the theoretical mean and variance with bootstrap estimates (Efron, 1992).
The bootstrap estimates are obtained as follows: Fill in the missing data with simu-
lated data K times, using θ̃ , to obtain pseudo complete data sets Zcom

1 ,Zcom
2 . . .Zcom

K .
The observed information is

−l′′(θ ,Zobs) = Eθ [−l′′(θ ,Zcom)]−Covθ [l′(θ ,Zcom)], (10)

where l = logL is the log likelihood and the expectation and covariance are calcu-
lated over the K pseudo samples. The covariance matrix is then obtained by taking
the inverse of the information matrix as usual. The variance is scaled with respect
to nobs.

2.2 Importance sampling and data augmentation

We now summarize two alternative strategies to obtain parameter estimates in data
with non-random ascertainment. These approaches, in common with the SEM type
algorithm, are simulation based and use Maximum Likelihood for estimation. Both
approaches yield parameter estimates that can be viewed as Monte Carlo approxi-
mations of the Maximum Likelihood estimates obtained from the conditional like-
lihood (5).

2.2.1 Importance sampling

As mentioned above the difficulty in calculating the likelihood of the ascertained
data lies in the integration of (5). Importance sampling (Hammersley and Hand-
scomb, 1964) is a Monte Carlo method used for numerical integration. The basic
idea is to sample from one distribution to obtain the expectation of another. This
is advantageous for sampling efficiently but also when drawing samples from the
target distribution is difficult. In general terms, for a random variable X which has
density f1(x), the expectation of some function g of X can be written as

mis
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µ = E f1 [g(X)] =
∫

g(x) f1dx =
∫ f1

f2
g(x) f2dx = E f2[

f1

f2
g(X)]

for f2 > 0 whenever the support of f2 includes that of g f1 > 0. This means that sam-
ples can be drawn from f2 to obtain the expectation of g(x) under f1. We can apply
the importance sampling technique to approximate (5). One way to implement im-
portance sampling in this context is to draw observations from a distribution which
has the same parametric form as the target distribution P(Z|θ), but in the place of θ ,
use naı̈ve guesses of the values of θ , which we call θ ∗, in analogy with the starting
values for the SEM type algorithm. In this case P(A = 1|θ) is estimated by noting
that

P(A = 1|θ) =
∫

P(A = 1|Z)P(Z|θ)dZ =
∫

[P(A = 1|Z)
P(Z|θ)
P(Z|θ ∗)]P(Z|θ ∗)dZ.

If we draw Ṅ observations from P(Z|θ ∗) which we denote as Z∗1 , . . . ,Z∗̇N , we
can estimate P(A = 1|θ) by

P̂(A = 1|θ) =
1
Ṅ

Ṅ

∑
j=1

P(A = 1|Z∗j )
P(Z∗j |θ)
P(Z∗j |θ ∗)

. (11)

As a consequence, the contribution of individual i to the logarithm of the
likelihood (5) is, up to a constant,

log(P(Zi|θ))− log(P(A = 1|θ)),

and can be approximated by replacing P(A = 1|θ) by (11), thereby obtaining

log(P(Zi|θ))− log(
1
Ṅ

Ṅ

∑
j=1

P(A = 1|Z∗j )
P(Z∗j |θ)
P(Z∗j |θ ∗)

). (12)

Since the approximation of the likelihood is expressed in terms of θ an
approximation of the information matrix can be computed as minus the second
derivative of the log likelihood as usual.

2.2.2 Data augmentation

Clayton (2003) derives an ascertainment corrected likelihood by using an analogy
to the conditional likelihood for matched case-control data. The idea behind this
approach is to simulate a number of ascertained pseudo-observations Zi1, . . . ,ZiN̈
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for each real observation Zi and use these in combination with the real data to build
the likelihood. As in the importance sampling method the true parameter values
θ are unknown and are substituted by guesses, θ ∗. This means that {Zi j}N̈

j=1 are
drawn from P(Zi|θ ∗,Ai = 1).

Given the pseudo-observations the log likelihood contribution of individual
i can, up to a constant, be written as

log(P(Zi|θ))− log(
N̈+1

∑
j=1

P(Zi j|θ)
P(Zi j|θ ∗)) (13)

where Zi,N̈+1 = Zi. It is easy to see that (13) equals the log conditional likelihood
contribution of individual i. The reason is that the ascertainment probabilities then
cancel out. Clayton shows that the derivative of (13) with respect to θ yields a
score function which can be interpreted as a Monte Carlo approximation of the
score function obtained from (5).

Since an expression for the likelihood is available, parameter estimates can
be obtained using Maximum Likelihood. Variances of these estimates are obtained
as usual by calculating the information matrix from the likelihood. The likelihood
(13) is similar to the likelihood approximated with the importance sampler, (12),
especially when ascertainment probabilities are 0/1. The essential differences are
that

• Data are drawn under ascertainment in (13), using the data augmentation
method, while they were drawn from the population distribution in (12), using
the importance sampler.

• The sum in the second term is over the pseudo-observations only in (12) while
the real observation are also included in (13).

• In (13) a separate correction term for ascertainment is calculated for each real
observation while in (12) P(A = 1) is calculated only once.

The last of these differences means that while Ṅ pseudo-observations are produced
in the importance sampler, for a sample size of nobs real observations, N̈ × nobs

pseudo-observations are produced in the data augmentation method.

2.3 Comparison of full and conditional likelihood

In Subsection 2.1 we introduced a new computational approximation of the full
likelihood and in Subsection 2.2 we reviewed to approximations of the conditional
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likelihood. It is then of interest to compare the two likelihoods. It follows from (3)
that

L(θ ;Zobs) ∝ Lnaive(θ ;Zobs)
∞

∑
m=0

Qnobs+m

(
nobs +m

m

)
(1−Pθ )m.

Note that this holds since P(A j = 1|Z j) is assumed known, and therefore is indepen-
dent of θ . However, for the particular choice Qn = 1/n adopted in Subsection 2.2,
it is possible to show (using e.g. the probability distribution of a negative binomial
random variable) that

∞

∑
m=0

Qnobs+m

(
nobs +m

m

)
(1−Pθ )m =

1

nobsPnobs

θ
.

From (5) we obtain the conclusion

L(θ) ∝ Lcond(θ). (14)

That is, when Qn = 1/n, the full and conditional likelihoods are equivalent. Thus
our SEM type algorithm can also be viewed as a computational approximation of
the conditional likelihood (1.5). However, the equivalence (14) does not hold for
general ’priors’ Qn.

3 Examples
To illustrate the performance of the methods described above we will look at two
simulated data examples, and one real data example. The simulated data examples
are included to allow comparison of the results with true answers. Sensitivity to
poorly specified starting values and ascertainment probabilities is investigated. The
first simulation example is based on a univariate continuous outcome and the second
simulation is based on a more complex example with a multivariate outcome. For
this example we found that our method provides valid parameter estimates while
the importance sampler and the data augmentation method fail when θ ∗ is poorly
specified. Both examples are based on a single explanatory variable X .

The simulations are inspired by genetic epidemiology, where non-random
ascertainment is widely used for the reason that genetic data have traditionally been
more expensive to collect than response variable measurements. In particular the
outcomes are thought of as traits representing the metabolic syndrome (Agardh,
Ahlbom, Andersson, Efendic, Grill, Hallqvist, Norman, and Ostenson, 2003). The
metabolic syndrome comprises many health related outcomes that can affect each
other in complex ways. In our simulation studies we represent only simplified mod-
els of the metabolic syndrome, using outcome variables only to represent BMI and
plasma glucose level.
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In the examples ascertainment probabilities are assumed known. In reality,
these quantities will usually have to be either estimated from data, or inferred from
external sources, adding an extra source of uncertainty that has not been taken into
account here. In the second real data example ascertainment probabilities are calcu-
lated from age stratified prevalences of Alzheimer’s disease published in Fratiglioni,
Grut, Forsell, Viitanen, Grafstrom, Holmen, Ericsson, Backman, Ahlbom, and Win-
blad (1991).

3.1 Simulation Model i

X(Genotype)→ Y (BMI)→ A (Ascertainment).

Figure 1: Data structure in simulation Model i .

For the first simulation model we use a single categorical covariate, X . The model
is based on a genetics example where X = (0 ,1 ,2) represents the genotypes (AA,Aa,aa)
of a single nucleotide polymorphism (SNP) with alleles A and a and a minor
allele frequency of exp(β0X)/(1 + exp(β0X)) ≈ 0.2 (β0X = −1.4), so that
genotypes AA,Aa and aa have approximate population frequencies 0.64, 0.32 and
0.04. The distribution of the univariate outcome, conditional on X = x is Gaussian
with mean β0Y + βXY × x and variance σ2

Y . We use values β0Y = 24,βXY = 4 and
σY =

√
2, chosen so that Y loosely represents BMI. Individuals with a BMI of 30

or more are defined as obese (as according to the WHO definition). About 10 per-
cent of the Swedish population in the ages of 25-64 have such a BMI according
to the WHO MONICA project (Tolonen, Kari, and Ruokokoski, 2000). Ascertain-
ment probabilities are dependent on outcome/phenotype values: P(A|y ≥ 30) = 1,
P(A|y < 30) = 0.067, giving approximately equal numbers of obese and non-obese
subjects. Sampling is continued until the required total sample size is obtained (we
based simulations on sample sizes of 300 and 3000). This sampling procedure is
similar to the one used by Gu et al. (2004). The difference is that in our simulation
subgroup sample sizes are not fixed, whereas in Gu et al. (2004) they are. In sim-
ulating data we generate samples with random subgroup sample sizes, since this
corresponds directly to the way the data are analyzed. The asymptotic equivalence
of estimators, whether the subgroup sample sizes are regarded as fixed or random,
has been discussed by Breslow, Robins, and Wellner (2000) in the case-control set-
ting. The simulation model can be represented graphically as depicted in Figure 1.
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Y1 (BMI)
↗ ↘

X (Genotype) ↓ A (Ascertainment).
↘ ↗

Y2 (Plasma Glucose)

Figure 2: Data structure in simulation Model ii.

In this example, due to the simplicity of the model, evaluation of the integral (4)
would actually be straightforward.

3.2 Simulation Model ii

In the second simulation we again assume a single categorical covariate, X , repre-
senting a SNP genotype. Instead of a single outcome as in Model i, we here use
two, Y1 and Y2, considered to represent BMI and plasma glucose level, respectively.
Obesity, measured in terms of BMI, is a co-morbid disease of plasma glucose level;
BMI is dependent on genotype and, in turn, affects plasma glucose level. The
genotype is assumed to have an additive effect on both outcomes, and Y1 has an
additive effect on Y2. Given X = x, Y1 has distribution N(β0Y1 + βXY1 × x,σY1) and
Y2, given X = x and Y1 = y1 has distribution N(β0Y2 +βXY2×x+βY1Y2×y1,σY2). Pa-
rameter values are chosen to represent outcomes accordingly; β0Y1 = 24, βXY1 = 4,
σY1 =

√
2, β0Y2 = 3, βXY2 = 1, βY1Y2 = 1/15 and σY2 = 0.5. The ascertainment prob-

ability is dependent upon both outcomes, as specified in Table 1. Model ii can be
illustrated graphically as in Figure 2.

Y1 < 30 Y1 ≥ 30
Y2 < 7.8 0.1 0.3
Y2 ≥ 7.8 0.3 1

Table 1: Ascertainment probabilities in Model ii.
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Y1 (Aβ42)
↗

X (ApoE) ↓ A (Ascertainment)
↘ ↗

Y2 (AD)

Figure 3: Data structure in Alzheimer’s disease data example.

3.3 Alzheimer’s disease data

Prince et al. (2004) examine the relationship between the ApoE gene, levels of
Aβ42 in cerebrospinal fluid (CSF), and Alzheimer’s disease (AD). Allele ε4 of
the ApoE gene is a well-documented risk factor for AD. Several studies have also
found reduced levels of Aβ42 in CSF in AD patients. The relationship between
ApoE and Aβ42 is however less documented. Prince et al. (2004) investigated the
relationship in 563 AD patients and 118 healthy controls separately, and reported a
statistically significant association between ApoE variants and Aβ42 levels in both
groups. Under an assumption of rare disease, regressing Aβ42 levels on ApoE
genotypes in controls provides approximately unbiased estimates of the effect of
ApoE genotypes on Aβ42 levels in the population. Since, however, there are con-
siderably more cases than controls there will be precision gain from incorporating
all subjects in the regression analysis. To do so requires appropriate handling of the
ascertainment scheme. Levels of Aβ42 in cerebrospinal fluid are thought to play
a key role in mediating neurodegeneration in Alzheimer’s disease and hence the
causal relationship between ApoE variants, Aβ42 levels, AD and ascertainment is
likely to be as depicted in Figure 3, where Y2 = 1 for AD patients and Y2 = 0 for
healthy controls. We apply the SEM type algorithm to obtain ascertainment cor-
rected estimates of the effect of ApoE genotypes on Aβ42 levels in the population,
using both controls and cases from the Prince et al. (2004) study. The number of ε4
alleles is here assumed to have an additive effect on both outcomes, and Y1 has an
additive effect on Y2. Given X = x, Y1 has distribution N(β0Y1 + βXY1 × x,σY1) and
Y2, given X = x and Y1 = y1, has distribution Bin(1, p) where

p =
exp(β0Y2 +βXY2 × x+βY1Y2 × y1)

1+ exp(β0Y2 +βXY2 × x+βY1Y2 × y1)
.

Ascertainment probabilities are inferred from age specific prevalences of AD
(Fratiglioni et al., 1991) to obtain AD expected prevalence in a population with an
appropriate age distribution. Due to sparse information on prevalences for young

14

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 1, Art. 23

http://www.bepress.com/ijb/vol6/iss1/23
DOI: 10.2202/1557-4679.1222



subjects our analysis is restricted to subjects 75 years old or older, even though
cases as young as 52 years old are available in the Prince et al. (2004) data set.
We note that an inverse-probability- of-sampling weighted regression approach has
recently been proposed for parameter estimation for the model described above, in
the context of a genome-wide association scan for breast density, analysed as a sec-
ondary trait from breast cancer case-control samples (Monsees, Tamimi, and Kraft,
2009).

4 Results
All calculations were performed using the software R (The-R-Development-Core-
Team, 2001). In the analysis below N̈ = 50 is used in the data augmentation method
and Ṅ = 30000 is used in the importance sampler. Clayton (2003) points out that
the information loss in the data augmentation method appear to be of the order
N̈/(N̈ + 1). Grünewald (2004) investigates the choice of N̈ and Ṅ in a simulation
example similar to Model i described below, and conclude that the statement by
Clayton (2003) holds, while the importance sampler needs a larger simulated data
size.

4.1 Results for Model i

4.1.1 Parameter estimates and variance estimates when θ ∗ = θ

Estimates from the SEM type algorithm, the importance sampler and the data aug-
mentation method using θ ∗ = θ are presented in Table 2, as well as naı̈ve estimates,
calculated by optimizing the likelihood of the data without ascertainment correc-
tion. Estimates using the method by Zhou et al. (2007) and inverse probability-
weighted (IPW) estimates are also presented in Table 2. The Zhou et al. (2007)
estimates and IPW estimates were calculated using code provided by Zhou et al.
(2007), which was modified slightly to fit Model i. The Zhou et al. (2007) estimates
did not need specification of θ ∗. Standard errors of the means of the estimates are
presented in parentheses. For the SEM type algorithm we calculated the variance
estimate of Gilks et al. (1996) based on (10) for each of the 1000 simulations, us-
ing K = 5000. The means of these standard errors across the 1000 simulations are
presented in Table 3. For comparison standard errors based on observed variability
in simulations are also presented. The standard errors by Gilks et al. (1996) appear
to estimate this variability well. The standard errors calculated using (10) were
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True Naive Importance Data SEM type Weighted Zhou ODS
values estimates sampling augmentation algorithm estimates estimates

β̂0X -1.4 -0.107 -1.394 -1.394 -1.393 - -
( 0.0028) (0.0023) (0.0023) (0.0022)

β̂0Y 24 24.426 24.006 24.004 24.006 24.000 24.002
(0.0044) (0.0039) (0.0039) (0.0039) (0.0044) (0.0041)

β̂XY 4 4.141 3.997 3.998 3.998 4.004 3.998
(0.0031) (0.0035) (0.0034) (0.0034) (0.0052) ( 0.0034 )

σ̂Y
√

(2) 1.591 1.411 1.412 1.410 - -
≈ 1.41 (0.0017) (0.0018) (0.0018) (0.0017)

Table 2: Model i. Comparison of estimates when θ ∗ = θ . Results based on 1000
simulations with nobs = 300, Ṅ = 30000, N̈ = 50 and I = 2000. Standard errors are
reported in parentheses.

also used to construct 95% confidence intervals around the estimates obtained us-
ing the SEM type algorithm. The empirical coverage probabilities, based on 1000
simulations, were 0.96, 0.95, 0.95 and 0.95 for β0X , β0Y , βXY and σY respectively.

Standard errors Standard errors
based on observed calculated using method

variability in simulations in Gilks et al. (1996)
β̂0X 0.0022 0.0023
β̂0Y 0.0039 0.0039
β̂XY 0.0034 0.0035
σ̂Y 0.0017 0.0017

Table 3: Model i. Comparison of standard errors calculated using method in Gilks
et al. (1996) and standard errors reflecting observed variation between simulations.
θ ∗ = θ . Standard errors are calculated for mean estimates, based on 1000 simula-
tions with nobs = 300, I = 2000 and K = 5000.

The variability of the estimates appear to be similar for all methods except
the IPW estimates, for which standard errors were larger. It is worth noting that the
Gilks et al. (1996) method of calculating standard errors does not take into account
the chain length of the SEM, so it is advisable to run a long chain to avoid variability
that is unaccounted for. The chain length, I, in Model i was 2000.

Except naı̈ve estimates, all methods compared provide estimates which are
appropriately corrected for ascertainment. The bias in the naı̈ve estimates was not
very large in this specific example.
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4.1.2 Parameter estimation when θ ∗ is poorly specified

To investigate the behavior of the simulation based methods under poorly specified
θ ∗ simulations were run for β ∗XY = 0 and 2, while remaining starting values were
specified as their true parameter value counterparts. We first used sample sizes
of 300. The running time of the SEM type algorithm was longer when θ ∗ was
misspecified, to allow for convergence. As for Markov Chain Monte Carlo simu-
lations, an appropriate burn in period has to be identified. When the algorithm has
converged to a distribution around the parameter estimates, the standard errors of
the estimates after burn in are the same as for correctly specified starting values.
In our simulations the SEM type algorithm always converged and gave the same
parameter estimates for poorly specified θ ∗ as for correctly specified θ ∗, presented
in Table 2.

When the data augmentation method was run with poorly specified θ ∗ para-
meter estimates were unbiased but had large standard errors, as can be seen in Table
4. As Clayton (2003) suggests, running a moderate amount of iterations of the data
augmentation method improves the performance when θ ∗ is poorly specified. That
is, the standard error estimates become smaller, approaching values that would be
obtained if true/population parameter values were used as starting values.

In Table 4 parameter estimates and standard errors of mean estimates for
the importance sampler are presented. The importance sampler yields incorrect
parameter estimates. For example, when β ∗XY = 2 the mean estimate of β̂0X was
−1.164, with a standard error of 0.0091; for a true value of −1.4. The highly de-
viant results when β ∗XY = 0 were mainly driven by the results in four of the 1000
simulations. The inflation of the standard errors appears to be more pronounced
in the importance sampler than in the data augmentation method. Since the im-
portance sampler estimator is claimed to be unbiased it may seem surprising that
the parameter estimates in the example are biased. A condition for the importance
sampler is that the sampling distribution f2 should be positive whenever g f1 > 0.
This condition is fulfilled in the simulations above, but when θ ∗ is misspecified f2
may be so small in some regions where g f1 is large, that no observations are actu-
ally sampled. The performance of the method may be improved by a better choice
of sampling distribution, for example by using a mixture distribution (Hesterberg,
1995), or by iterating the choice of θ ∗.

17

Grünewald et al.: A Stochastic EM Type Algorithm for Parameter Estimation

Published by Berkeley Electronic Press, 2010



True β ∗XY = βXY = 4—— β ∗XY = 2 β ∗XY = 0

DA IS DA IS DA IS
β̂0X -1.4 1.394 -1.394 -1.386 -1.164 -1.320 4.15

(0.0023) (0.0023 ) (0.0028) (0.0091) (0.0102) (0.1222 )
β̂0Y 24 24.004 24.006 24.001 23.838 24.002 36877.65

(0.0039) (0.0039) (0.0043) (0.0072) (0.0046) (29518.79 )
β̂XY 4 3.998 3.997 4.008 4.316 4.079 -52721.59

(0.0034) (0.0035) (0.0046) (0.0122) (0.0132) (36968.86 )
σ̂Y

√
(2)≈ 1.41 1.412 1.411 1.411 1.41 1.409 41888.25

(0.0018) (0.0018) (0.0021) (0.0051) (0.0029) (25869.27)

Table 4: Model i. Data augmentation method (DA) and importance sampling (IS)
with β ∗XY misspecified, and the remaining parameters at ideal starting values. Re-
sults based on 1000 simulations with nobs = 300, N̈ = 50 and Ṅ = 30000. Standard
errors for mean estimates are reported in parentheses.

4.1.3 Incorrect specification of ascertainment probabilities

A simulation study was performed to investigate the effect of incorrect specification
of ascertainment probabilities in the SEM type algorithm. Parameter estimates were
calculated for different incorrect values Passumed(A|y < 30). For these simulations
we used a sample size of 3000. The algorithm was run for 500 steps after a burn
in of 50 steps. Results are summarized in Figure 4. The dashed lines represent
naive estimates, Passumed(A|y < 30) = 1, and the solid line is drawn at the correct
parameter value. In this specific example estimates differed the most from true
parameter values at Passumed(A|y < 30) = 1.

4.1.4 Incorrect specification of error term distribution

In Model i we assume the error terms of Y to be Gaussian. There are multiple ways
in which the error terms may be misspecified. We performed a simulation study
investigating one type of misspecification, where the true error terms is a mixture
of two Gaussian distributions with different variances. X was generated as in Model
i and Y |X was generated as follows: conditional on X = x and s, Y has mean β0Y +
βXY × x and variance σ2|s = (

√
(2)× s)2 where s is stochastic with distribution

P(s = 1) = 0.5 and P(s = 6) = 0.5. We simulated data with βXY = (1,2,3,4,5,6,7).
We used ascertainment probabilities P(A|y < 30) = 0.2 and P(A|y ≥ 30) = 1, and
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Figure 4: Model i. Effect of misspecification of ascertainment probability
Passumed(A|y < 30) when P(A|y < 30) = 0.067 in the SEM type algorithm. The
naı̈ve estimates are represented by dashed lines and the correct estimates are repre-
sented by solid lines. Estimates are based on a simulation with nobs = 3000.
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a sample size nobs = 10.000. Parameter estimates were obtained using the SEM
type algorithm, with chain length I = 2000, and using the naive approach. For
comparison, parameter estimates were also obtained for data generated under the
assumed Y |X Gaussian distribution, using P(s = 1) = 1 and P(s = 6) = 0. Results
are presented in Figure 5. The estimates from the SEM type algorithm were biased
when the error term distribution was misspecified. For most values of βXY the size
of this bias was smaller than the bias of the corresponding naive estimates, but
somewhat larger than the bias of the naive estimates with the distribution for the
error term distribution correctly specified.

4.2 Results for Model ii

When using θ ∗ = θ for Model ii the importance sampler, the data augmentation
method and the SEM type algorithm all gave reasonable estimates. The method by
Zhou et al. (2007) was not used for Model ii, since it does not allow a multivariate
outcome.

The methods were also used with poorly specified θ ∗. The value of θ ∗
was (β ∗0X = 0, β ∗0Y1

= β0Y1 , β ∗XY1
= 0, σ∗Y1

= σY1 , β ∗0Y2
= β0Y2 , β ∗XY2

= 0, β ∗Y1Y2
= 0,

σ∗Y2
= σY2). This value was chosen to investigate the robustness of the methods un-

der extreme misspecification of θ ∗ in a complex model. As can be seen from Table
5 under this value of θ ∗ neither the data augmentation method nor the importance
sampler obtain adequate parameter estimates. To investigate whether iterating the
data augmentation method compensates for poorly specified θ ∗ a few exploratory
runs were made. However, even after several iterations, the estimates behaved er-
ratically, and we did not observe convergence towards true parameter values.

The SEM type algorithm did converge to appropriate parameter estimates
but took longer to converge than it did in Model i. A run of the SEM type algorithm
on a single data set is shown in Figure 6. Since the algorithm is run on a data-
set, which in itself contains some uncertainty, convergence will be seen towards
the estimated parameter values corrected for ascertainment, rather than towards the
true/population parameter values.

4.3 Results for Alzheimer’s disease data

The results of the analysis of the Alzheimer’s disease data are presented in Table 6.
We included 392 subjects in our analysis, of which 39 were controls and 353 were
cases. From fitting a standard linear regression model, to controls only, we obtained
an estimate of -164.99 (SE=52.81) for the (additive) effect of the ApoE ε4 allele on
Aβ42 level. By including all 392 subjects and applying our SEM type algorithm,
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Figure 5: Model i. Estimation of βXY under misspecification of the distribution
of error terms in the SEM type algorithm, as described in Section 4.1.4. Estimates
assume Gaussian error terms and are based on a simulation with P(A|y < 30) = 0.2,
nobs = 10.000 and I = 2000. Correct parameter values are represented by the 45◦
solid line.
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Figure 6: Model ii. The first 400 iterations in the SEM type algorithm for misspec-
ified θ ∗. True parameter values as solid lines. nobs = 300.
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True θ θ ∗ DA IS
β̂0X -1.4 0 -0.520 -1.040

(0.036) (0.034)
β̂0Y1 24 24 23.660 24.427

(0.036) (0.028)
β̂XY1 4 0 0.354 0.608

(0.015) (0.030)
σ̂Y1

√
(2)≈ 1.41

√
(2) 1.744 1.668

(0.005) (0.013)
β̂0Y2 3 3 4.828 4.982

(0.008) (0.016)
β̂XY2 1 0 0.591 0.648

(0.006) (0.012)
β̂Y1Y2 1/15≈ 0.067 0 0.062 0.015

(0.001) (0.001)
σ̂Y2 0.5 0.5 0.071 0.004

(0.003) (0.001)

Table 5: Model ii. The data augmentation method (DA) and importance sampling
(IS) under misspecified θ ∗. Results based on 1000 simulations with nobs = 300, Ṅ =
30000 and N̈ = 50. Standard errors for mean estimates are reported in parentheses.

using an ascertainment probability of P(A = 1|Y2 = 0) = 0.039, we obtained an
estimate of -106.56 (SE=13.98) for the (additive) effect of the ApoE ε4 allele on
Aβ42 level (p-value=2.5×10−4 based on a normal approximation). As can be seen
from Table 6 we were however not able to establish significant evidence of a direct
effect of ApoE ε4 on the risk of AD. This may be a result of restricting the age span
to 75+ year olds, so that young AD cases, who may be highly informative about
βXY2 , were excluded from the analysis.

5 Conclusions
In this paper we have presented an algorithm that can be used to correct for ascer-
tainment. The computational complexity of the likelihood under ascertainment is
avoided by filling in missing data so that the full data likelihood can be used. An
advantage of the method is that it is not restricted to any specific statistical model
-some of the traditional methods to correct for ascertainment handle only specific
sampling schemes/statistical models. Also, the complexity of the ascertainment
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Estimate SE
β0X -0.931 0.1044
β0Y1 737.904 11.7508
βXY1 -106.565 13.9833
σY1 184.335 10.5104
β0Y2 5.045 0.5567
βXY2 -0.110 0.2056
βY1Y2 -0.011 0.0009

Table 6: Alzheimer’s data example: Parameter estimates, and standard errors of
estimates.

scheme hardly affects the complexity of the calculations, since the ascertainment
probabilities are used only when simulating data, and not in the likelihood.

In order to illustrate some key points about performance of the algorithm we
have kept the simulation examples fairly simple in terms of ascertainment schemes.
The real data analysis was based on a model structure which has recently received
attention in Genetic Epidemiology, for analyzing secondary traits from breast can-
cer case-control samples (Monsees et al., 2009). For other diseases (e.g. type II
diabetes) it is desirable to study multivariate phenotypes (e.g. fasting insulin, fast-
ing glucose, BMI) on which sample selection probabilities can be dependent. More
complex ascertainment schemes may slow down the algorithm somewhat since the
simulation of data under ascertainment is likely to involve a larger number of oper-
ations. The maximization step will however not be affected, as mentioned above.
One possible complication with complex ascertainment schemes is that they may
be harder to infer from external data than more simple schemes.

For well specified starting values the SEM type algorithm, as well as the
two other simulation based methods investigated, perform well. For poorly speci-
fied starting values the SEM type algorithm seems to perform better than the other
methods, when only a single iteration is used, both with regards to bias and to vari-
ability of the estimates.

The SEM algorithm may be sensitive to distributional assumptions on the
response and explanatory variables, especially if the ascertainment probability is
low, so that a large proportion of data are filled in. In the sensitivity analysis of
specification of error term distribution in Section 4.1.4, the SEM estimates were
biased, although less biased than the corresponding naive estimates. The outcomes
in the examples are assumed to be normally distributed given genotype scores, but
since real data often do not follow standard distributions, nonparametric extensions
of the method would be of interest. The Aβ42 variable in the AD data set may
benefit from a non-normal distributional assumption, or from a log-transformation.
For categorical X , such as the genetic variables in our examples, specification of
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the distribution is unproblematic, while for continuous variables specification may
be more difficult.

Whilst the distribution of the pseudo-complete data set can be checked using
a standard QQ-plot (or similar), this may be misleading since the combined data are
a mixture of data from the population distribution and data simulated according to
the distributional assumptions. Deviations from normality, for example, are easier
to detect if only the ascertained data are plotted, using an adjusted version of the
QQ-plot. Some preliminary results regarding this adjustment exist, but are not pre-
sented here. If the ascertainment scheme is extreme, for example if only the tails of
the distribution are sampled, so that P(A = 1|Y = y) = 0 for some y, distributional
assumptions cannot be verified in such regions, and an analysis of sensitivity (to the
distributional assumptions) is worthwhile. Also, the extremes of a distribution may
accumulate outliers, which may distort the observed distribution. In such data one
might consider to categorize the outcome to allow analysis using logistic regres-
sion, since not much information is lost by categorizing when the observed range
of the continuous outcome is small. Note however that if the sampled data have a
high proportion of outliers, the efficiency of the ascertainment scheme may also be
reduced (Allison, Heo, Schork, Wong, and Elston, 1998).

The algorithms described in Section 2 require specification of sampling
probabilities given the data. These probabilities are often not known and approxi-
mations may have to be made using, for example, registry data or prior knowledge
about disease occurrence. For ill-defined study designs sensitivity analysis may
be informative, with ascertainment probabilities as sensitivity parameters. A sen-
sitivity analysis for the SEM type algorithm was performed on simulated data in
Section 4.1.3. This analysis indicates that misspecification of ascertainment proba-
bilities may indeed bias the estimates. A small simulation study, not included here,
indicates that the sensitivity of the data augmentation method to misspecification
of ascertainment probabilities is similar to what is shown for the SEM method.
An alternative strategy for the SEM type algorithm is to maximize Lappr for each
of a number of different sampling probability functions. Then the maximum of
these maxima yields the final parameter estimate. This approach is more robust
towards misspecification of sampling probabilities, when identifiable. A disadvan-
tage though is that the variance calculations of Subsection 2.1.3 are complicated.

The estimator of Zhou et al. (2007) is attractive since it does not require
specification of any covariate distribution nor of any sampling probabilities. It
would be interesting to compare the two approaches for more simulated and real
data sets.

An interpretation of the equivalence of the conditional and full likelihood
when Qn = 1/n is that this choice of Qn corresponds to no prior information about
ncomp. When additional information about ncomp is available the full likelihood will
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differ from the conditional one. An extreme case, Qn = 1n=ncomp , occurs when ncomp

is known. In Grünewald and Hössjer (2010) the efficiencies of the ML-estimators
based on these two versions of the likelihood are compared.

Our choice of sampling distribution for the importance sampler used here
did not perform well when θ ∗ was poorly specified. Although some general rec-
ommendations for improving the sampling distribution can be made we believe that
the choice will also depend on the specific analysis to be performed. This may
prove problematic in real applications, where competence in such choices may not
be available.

The SEM type algorithm was slower to run than the other methods dis-
cussed. The speed of the algorithm may be a problem if ascertainment probability
is low for some portion of data, since large sets of data will then have to be filled
in. An alternative to sampling the whole set of missing data is to simulate only a
portion, nobs/q, where q is a fixed number, of the data and weigh up the likelihood
contribution of the simulated data. Data can for example be simulated as above
until nobs/q observations from Zmis

j with Amis
j = 1 are obtained. Too small values

of nobs/q will however cause too large variability in parameter estimates. Ripatti,
Larsen, and Palmgren (2002) suggest a rule for increasing the number of samples
in a Monte Carlo EM (Wei and Tanner, 1990) algorithm when approaching con-
vergence. The basic idea of altering the number of samples when approaching the
estimate could be used also in our setting. If the size of the missing data is small it
is possible to reduce the variability per simulation step by choosing N > 1, giving
an algorithm similar to the Monte Carlo EM, although this complicates the maxi-
mization step. Even if the running time can be shortened somewhat by sampling
techniques as this, due to the distributional assumptions discussed above, the SEM
type algorithm is best suited for data where sampling probabilities are not extremely
small.

Other sampling strategies, e.g. two-stage designs, where some information
is retained on all individuals, may in some cases be handled by a slightly modified
version of the algorithm. This sampling scheme is on the other hand more similar
to the classical missing data setting, with a known number of observations missing
at random (MAR). Then methods such as multiple imputation (Little and Rubin,
1987) may be useful.

Another possibility is to consider Bayesian inference, letting θ be random
with a prior distribution P(θ). It turns out that our SEM approach can be modified
to a Bayesian inference with small modifications. If {(Zmis

i ,θi)}B+I
i=1 are simulated

from the posterior Zmis,θ |Zobs we could use a blockwise Metropolis-Hasting algo-
rithm and alternate between updating Zmis and θ . The resulting algorithm is very
similar to the SEM algorithm. The Simulation-step can still be used for updating
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Zmis, whereas the Maximization-step has to be modified. Rather than maximiz-
ing a likelihood, the updated θi is drawn from the blockwise posterior distribution
θ |Zobs,Zmis. A related iterative Bayesian procedure is data augmentation (Tanner
and Wong, 1987, Tanner, 1991), where N > 1 missing data sets are imputed within
each iteration.
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Grünewald, M. and O. Hössjer (2010): “Efficient ascertainment schemes for maxi-
mum likelihood estimation,” Journal of Statistical Planning and Inference,
140, 2078 – 2088.

Grünewald, M. (2004): Genetic association studies with complex ascertain-
ment, Licenciate thesis 2004:5, Stockholm University, Department of
Mathematics, Stockhom University, 10691 Stockholm, Sweden.

Gu, H., A. Abulaiti, C. Ostenson, K. Humphreys, C. Wahlestedt, A. Brookes, and
S. Efendic (2004): “Single nucleotide polymorphisms in the proximal pro-
moter region of the adiponectin (APM1) gene are associated with type 2
diabetes in Swedish caucasians.” Diabetes, 53, Suppl 1:S31–5.

Hammersley, J. M. and D. C. Handscomb (1964): Monte Carlo methods, London:
Methuen.

Hesterberg, T. (1995): “Weighted average importance sampling and defensive mix-
ture distributions,” Technometrics, 37, 185–194.

Ip, E. H. S. (1994): “A stochastic EM estimator in the presense of missing data
-theory and applications.” Technical report, Department of Statistics, Stan-
ford University.

Liang, K.-Y. (1983): “On information and ancillarity in the presence of a nuisance
parameter,” Biometrika, 70, 607–612.

Little, R. J. A. and D. Rubin (1987): Statistical analysis with missing data, Hobo-
ken, N.J.: John Wiley & Sons.

Little, R. J. A. and D. Rubin (2002): Statistical analysis with missing data, Wiley
series in probability and statistics, New York; Chichester: John Wiley &
Sons, Inc.

Louis, T. A. (1982): “Finding the observed information matrix when using the EM
algorithm,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 44, 226–233.

28

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 1, Art. 23

http://www.bepress.com/ijb/vol6/iss1/23
DOI: 10.2202/1557-4679.1222



McLachlan, G. J. and T. Krishnan (1997): The EM algorithm and extensions, John
Wiley & sons Inc, chapter 6.

Monsees, G., R. Tamimi, and P. Kraft (2009): “Genome-wide association scans
for secondary traits using case-control samples,” Genetic Epidemiology, 33,
717–728.

Patil, G. (2002): “Weighed distributions,” Encyclopedia of Environmetrics, 4,
2369–2377.

Prince, J. A., H. Zetterberg, N. Andreasen, J. Marcusson, and K. Blennow (2004):
“Apoe ε4 allele is associated with reduced cerebrospinal fluid levels of
aβ42,” Neurology, 62, 2116–2118.

Ripatti, S., K. Larsen, and J. Palmgren (2002): “Maximum likelihood inference
inference for multivariate frailty models using an automated monte carlo
EM algorithm,” Lifetime Data Analysis, 8, 349–360.

Tanner, M. (1991): Tools for statistical inference. Observed data and data augmen-
tation methods., Berlin: Springer.

Tanner, M. A. and W. H. Wong (1987): “The calculation of posterior distributions
by data augmentation,” Journal of the American Statistical Association, 82,
528–540.

The-R-Development-Core-Team (2001): “R,” Version 1.4.0.
Tolonen, H., K. Kari, and E. Ruokokoski (2000): “Monica population survey

data book,” WWW-publications from the WHO MONICA Project ”http:
//www.ktl.fi/publications/monica/surveydb/title.htm”.

Tregouet, D., S. Escolano, L. Tiret, A. Mallet, and J. L. Golmard (2004): “A new
algorithm for haplotype-based association analysis: the Stochastic-EM al-
gorithm,” Annals of Human Genetics, 68, 165–177.

Wacholder, S. and C. R. Weinberg (1994): “Flexible maximum likelihood methods
for assessing joint effects in case-control studies with complex sampling,”
Biometrics, 50, 350–357.

Wei, G. C. G. and M. A. Tanner (1990): “A Monte Carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithms,” Journal of the
American Statistical Association, 85, 699–704.

Zhou, H., J. Chen, T. H. Rissanen, S. A. Korrick, H. Hu, J. T. Salonen, and M. P.
Longnecker (2007): “Outcome-dependent sampling: An efficient sampling
and inference procedure for studies with a continuous outcome,” Epidemi-
ology, 18, 461–468.

29

Grünewald et al.: A Stochastic EM Type Algorithm for Parameter Estimation

Published by Berkeley Electronic Press, 2010


	The International Journal of Biostatistics
	A Stochastic EM Type Algorithm for Parameter Estimation in Models with Continuous Outcomes, under Complex Ascertainment
	A Stochastic EM Type Algorithm for Parameter Estimation in Models with Continuous Outcomes, under Complex Ascertainment
	Abstract


