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a b s t r a c t

While well chosen sampling schemes may substantially increase efficiency of

observational studies, some sampling schemes may instead decrease efficiency. Rules

of thumb how to choose sampling schemes are only available for some special cases. In

this paper we provide tools to compare efficiencies, and cost adjusted efficiencies, of

different sampling schemes, in order to facilitate this choice. The method can be used

for both categorical and continuous outcome variables. Some examples are presented,

focusing on data from ascertainment sampling schemes. A Monte Carlo method is used

to overcome computational issues wherever needed. The results are illustrated in

graphs.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

A well chosen sampling scheme can substantially increase the efficiency of a study. However, it is not always obvious
how to sample well. Neyman (1938) presents the possibility of two-stage sampling to increase efficiency in field sampling,
and concludes that two-stage sampling sometimes, but not always, reduces the variance of estimates of means. Since then
various authors have investigated the effects of two-stage and multistage sampling in different settings, most of which
focus on binary outcome variables. In some special cases, such as case-control studies, there are rules of thumb to follow
with regards to efficiency, see for example Maydrech and Kupper (1978), but in most other settings more elaborate
calculations are necessary to discriminate between different options. Multistage sampling is described in the context of
genetic epidemiology by, among others, Whittemore and Halpern (1997): Case-control status of prostate cancer is first
ascertained and then more expensive measures such as family history of disease and DNA samples are collected.
Asymptotic variances of Horvitz–Thompson estimates are derived. Reilly (1996) investigates optimal allocation of available
resources for two-stage data with binary outcomes. Complete information is there available from variables sampled in
Stage 1, while Stage 2 variables are sampled more sparsely with probabilities determined by Stage 1 data. Cost is allowed
to differ between sampling in Stage 1 and sampling in Stage 2. The author emphasizes the usefulness of pilot studies to
obtain information needed to find the optimal allocation. Zhou et al. (2007) investigate outcome dependent sampling
where the outcome variable is continuous. Power of tests based on a semi-parametric estimator are compared with the
power of an inverse probability weighted estimator and the power of a maximum likelihood estimator based on a simple
random sample.
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The aim of this paper is to provide tools for comparing sampling schemes with respect to efficiency of maximum
likelihood estimates, in order to facilitate study design in observational studies. A general theory of the efficiency
calculations for multistage designs is presented in Grünewald and Hössjer (2010), while in this paper we will focus on
what is often referred to as ‘‘the ascertainment problem’’. Selection is made on one or more variables, both categorical and
continuous distributions are accommodated. The case-control design, where sampling probabilities are determined by the
outcome of a binary outcome variable, is a special case of this design. The data can be thought of as originating from a two
stage design, where initially, all individuals in the study are sampled for some variables (Stage 1) and then a subset of
individuals are sampled for remaining variables (Stage 2). In particular, in an observational study response variables are
collected at Stage 1 and explanatory variables (or covariates) at Stage 2. Selection in reverse order, starting with
explanatory variables, yields a setting which is similar to experimental design, an area that has been thoroughly
investigated, see for example Melas (2006) for an overview.

The ascertained sample arises when there is failure to record data on individuals sampled only in Stage 1, so that only
those with data from both Stages 1 and 2 remain in the sample. The ascertainment probability

pðzÞ ¼ PðJ¼ 2jZ ¼ z; yÞ

is the probability of being sampled at Stage 2, where J denotes sampling stage, Z data, and y are the model parameters. Data
resulting from this scenario would be similar to that which may emerge for example when the study is hospital-based, and
the study base is ill defined. External sources may then have to be used to uncover the population distribution of the
disease.

The failure to record individuals with incomplete data means that the likelihood will be different from that of the usual
two-stage design. A possible way to handle ascertainment, pursued in this paper, is to condition on the ascertainment
event. With experimental design, or when selecting on an explanatory variable, the ascertainment event is ancillary when
the main goal is to estimate or test hypothesis for response variable parameters, such as the effect of the explanatory
variable. Therefore, the ascertained data can be analyzed without correcting for the selection scheme. However, this is an
exception in contrast to, for instance, response variable selection, where ascertainment has to be corrected for. Fisher
(1934) provides an early example in the context of segregation analysis of ascertainment correction by means of
conditioning. The resulting likelihood is expressed in terms of weighted distributions, using weights proportional to
ascertainment probabilities. Patil (2002) gives an overview of weighted distributions. They are useful for meta analysis,
truncation, missing data, damaged observations, analysis of family data, and when no proper sampling frame is available
(Patil and Taillie, 1989). In Patil et al. (1973), the efficiency of weighted distributions are compared with that of un-
weighted distributions by studying the difference of information matrices.

Another possibility is to consider the joint likelihood of Stage 2 data and ascertainment, using missing data methodology.
Grünewald et al. (2010) use the stochastic EM-algorithm to evaluate the resulting likelihood. Missing data techniques may also
be used for multistage designs without ascertainment. A major distinction from the classical missing data setting is that data
are missing by design. Little and Rubin (2002) give a thorough description of how to handle missing data.

We investigate asymptotic efficiencies of parameter estimates of ascertained data sets compared to the corresponding full
data sets, where all individuals sampled at Stage 1 are also sampled at Stage 2. For comparison, the efficiencies of prospective
and retrospective versions of the conditional ascertainment likelihood are also considered, as well as the efficiency of two-stage
sample designs. A smaller efficiency may be acceptable if the sampling cost is considerably reduced compared to the full
sample. For this reason, a cost-adjusted efficiency is introduced, which gives the efficiency per unit cost of sampling. To quantify
the cost-efficiency tradeoff, we plot the efficiency and cost-adjusted efficiency as functions of the ascertainment probability.

This paper is organized as follows: In Section 2 notation to describe data under ascertainment is introduced. Likelihoods
under ascertainment, two-stage data and full data are presented in Section 3. Fisher information matrices resulting from
these are presented in Section 4, and a Monte Carlo method to overcome computational issues in the calculations is
described in Section 5. In Section 6 efficiency, and cost adjusted efficiency, is expressed in terms of the Fisher information.
To illustrate the tools presented in the paper some examples are provided in Section 7. Usefulness of the methods, and
possible extensions, are discussed in Section 8.

2. Model

Let Z=(X,Y) be a set of random variables, where X are explanatory variables, and Y response variables. Let Z1 be an
incomplete version of Z, representing data collected in Stage 1, and A¼ fJ¼ 2g be the event that data is ascertained, i.e. that
all of Z is collected. Then

pðz1Þ ¼ PðAjZ1 ¼ z1; yÞ ¼ PðAjZ1 ¼ z1Þ

is the selection probability, assumed to depend only on the Stage 1 variable z1 and not the model parameters y. We will
focus on retrospective designs, where Z1=Y, so that pðyÞ ¼ PðAjY ¼ yÞ is the selection probability. The model parameters
y¼ ðyX ; yY Þ consist of regression parameters yY and remaining parameters yX , that affect the distribution of X. Typically yY

are the structural parameters of main interest, whereas yX are nuisance parameters. This corresponds to a two stage design
with Y collected at Stage 1 and X at Stage 2. We also assume that no information is available about subjects that were not
ascertained at Stage 2.
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M. Grünewald, O. Hössjer / Journal of Statistical Planning and Inference 140 (2010) 2078–2088 2079



Author's personal copy

In the examples below X will be a binomially distributed variable while Y will be either a binomially distributed
variable, a normally distributed variable or two interdependent normally distributed variables. The framework is, however,
flexible to other choices of distributions and data structures. We will use P( � ) to denote both probability density functions
and probability mass functions.

We will assume pðyÞ to be known. To calculate the efficiency of the sampling scheme the parameter values, y, must also
be specified. Sometimes knowledge from previous studies can be used, but if no such data are available a pilot study is
highly recommended.

3. Choice of likelihood

To correct for ascertainment we condition the likelihood on the fact that the data is ascertained. This likelihood can be
constructed in different ways, depending on whether we also impose conditioning on response variables (retrospective
likelihood) or explanatory variables (prospective likelihood). It is well known that conditioning the likelihood on non-
ancillary statistics affects the efficiency of estimates, see for example Liang (1983), and it may also influence how the
ascertainment scheme affects the efficiency. A comparison of the efficiency of different ascertainment corrected likelihoods
in family based case-control studies is provided by Kraft and Thomas (2000). Of the four likelihoods investigated the joint
likelihood was confirmed to be the most effective and the conditional likelihood for stratum-matched case-control data
was the least efficient. The relative efficiency of the prospective and the retrospective likelihoods varied depending on data
structure and genetic model.

We will here investigate likelihoods for three types of data: full data (1), data from a two stage design (2), and data
under ascertainment (3)–(6). In likelihoods (1) and (2) variables X and Y will be modeled jointly. For data under
ascertainment the focus will be on a conditional ascertainment likelihood (3), where X and Y are modeled jointly
conditioned on A, but we will also outline a likelihood where X,Y and A are modeled jointly (4), a retrospective likelihood
(5), and a prospective likelihood (6). The retrospective likelihood has the attractive feature that the ascertainment cancels
out of the formula. However, due to the loss of information in conditioning on the non-ancillary statistic Y, this likelihood
turns out to be ill-conditioned, so that the parameters describing Y as dependent on X usually are not identifiable unless
some of the parameter values are assumed known. An exception to this is the effect parameter in logistic regression model,
for which the prospective and retrospective likelihood give the same profile likelihood, see for example Kagan (2001) or
Chen (2003). Calculations for the retrospective likelihood were performed for some, but not all, of the examples in Section
7. Calculations for the two-stage design will be presented in one of the examples.

The likelihoods are written as

LfullðyÞ ¼
Yn

i ¼ 1

PðzijyÞ; ð1Þ

Ltwoðy;pÞ ¼
Y

i;Ji ¼ 1

PðyijyÞð1�pðyiÞÞ
Y

i;Ji ¼ 2

PðzijyÞpðyiÞp
Y

i;Ji ¼ 1

PðyijyÞ
Y

i;Ji ¼ 2

PðzijyÞ ¼
Yn

i ¼ 1

PðyijyÞ
Y

i;Ji ¼ 2

Pðxijyi; yÞ; ð2Þ

Lcondascðy;pÞ ¼
Y

i;Ji ¼ 2

PðzijAi;y;pÞ; ð3Þ

Lascðy;pÞ ¼
Y

i;Ji ¼ 1

PðAijy;pÞ
Y

i;Ji ¼ 2

PðzijyÞpðyiÞp
Yn

i ¼ 1

PðAijy;pÞ
Y

i;Ji ¼ 2

PðzijAi; y;pÞ; ð4Þ

LretrðyÞ ¼
Y

i;Ji ¼ 2

Pðxijyi;Ai; yÞ ¼
Y

i;Ji ¼ 2

Pðxijyi; yÞ; ð5Þ

Lprðy;pÞ ¼
Y

i;Ji ¼ 2

Pðyijxi;Ai; y;pÞ; ð6Þ

where n is the number of individuals and zi=(xi, yi), Ai and Ji represent full data, ascertainment, and number of stages of
data collection for individual i. Compared to (3), the likelihood (4) involves additional information about the number of
unascertained observations jfi; Ji ¼ 1gj, although their values are still unknown. However, we will focus more on (3), since it
corresponds to a situation more likely to occur in practice.

4. Information matrices

Assuming y¼ ðy1; . . . ; ypÞ, we define the score function as the 1� p vector cðz; yÞ ¼ @logPðzjyÞ=@y for fully observed data,
z. Let us further introduce the six information matrices

IZðyÞ ¼ CovðcðZ;yÞÞ;

IY ðyÞ ¼ CovðEðcðZ; yÞjYÞÞ;

IAðy;pÞ ¼ CovðEðcðZ; yÞÞjJÞ;
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IXjY ;Aðy;pÞ ¼ E½CovðcðZ; yÞjYÞjA�;

IYjX;Aðy;pÞ ¼ E½CovðcðZ; yÞjX;AÞjA�;

IZjAðy;pÞ ¼ CovðcðZ; yÞjAÞ:

With overall ascertainment probability PðAjy;pÞ ¼ PðJ¼ 2Þ ¼
R
pðyÞPðy; yÞ dy, the Fisher information matrices resulting from

likelihoods (1)–(6) can be expressed as

IfullðyÞ ¼ nIZðyÞ;

Itwoðy;pÞ ¼ nIY ðyÞþ Iretrðy;pÞ;

Icondascðy;pÞ ¼ nPðAjy;pÞIZjAðy;pÞ;

Iascðy;pÞ ¼ nIAðy;pÞþnPðAjy;pÞIZjAðy;pÞ ¼ nIAðy;pÞþnIcondascðy;pÞ;

Iretrðy;pÞ ¼ nPðAjy;pÞIXjY ;AðyÞ;

Iprðy;pÞ ¼ nPðAjy;pÞIYjX;Aðy;pÞ:

Due to discrepancy in the amount of data contributing to the information, we may infer the inequalities

IfullðyÞZ Itwoðy;pÞZ Iascðy;pÞZ Icondascðy;pÞZ
Iprðy;pÞ

Iretrðy;pÞ;

where I1Z I2 means that I1� I2 is non-negative definite.

5. Monte Carlo estimation

In some situations, such as when Y is normally distributed, analytical solutions to the expectations described above
are not available. Monte Carlo simulations can then be used to overcome the computational difficulties. In the Monte Carlo
calculations the ascertainment scheme only enters the calculations in the simulation of the data, so even
complex ascertainment schemes are easily accommodated. The Monte Carlo samples are obtained by simulating data
according to the model and applying the ascertainment scheme. Assume that zk

* = (xk
*, yk

*), k=1,y,K, is a random sample
from Pð�;yÞ. Then

bIZðyÞ ¼ K�1
XK

k ¼ 1

cðz�k; yÞ
Tcðz�k; yÞ;

bIY ðyÞ ¼ K�1
XK

k ¼ 1

bEðcðZ; yÞjy�kÞTbEðcðZ; yÞjy�kÞ;
where bEðcðZ; yÞjyÞ is the sample mean of all cðz�k; yÞ; y

�
k ¼ y and T denotes vector transposition. We then get

bI fullðyÞ ¼ nbIZðyÞ;

bIcondascðy;pÞ ¼ nK�1
XK

k ¼ 1

pðy�kÞðcðz
�
k; yÞ�bmÞT ðcðz�k; yÞ�bmÞ;

bIascðy;pÞ ¼ nbIAðy;pÞþbIcondascðy;pÞ

bIprðy;pÞ ¼ nK�1
XK

k ¼ 1

pðy�kÞdCovðcðZ; yÞjx�k;AÞ;

bIretrðy;pÞ ¼ nK�1
XK

k ¼ 1

pðy�kÞdCovðcðZ; yÞjy�kÞ;

bI twoðy;pÞ ¼ nbIY ðyÞþbIretrðy;pÞ;
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where

bm ¼ XK

k ¼ 1

pðy�kÞcðz
�
k; yÞ

XK

k ¼ 1

pðy�kÞ;
,

dCovðcðZ; yÞjx;AÞ ¼
X

k;x�
k
¼ x

pðy�kÞðcðz
�
k; yÞ�bmðxÞÞT ðcðz�k; yÞ�bmðxÞÞ X

k;x�
k
¼ x

pðy�kÞ;
,

bmðxÞ ¼ X
k;x�

k
¼ x

pðy�kÞcðz
�
k; yÞ

X
k;x�

k
¼ x

pðy�kÞ;
,

bIAðy;pÞ ¼ bmT bmbPðAjy;pÞ=ð1�bPðAjy;pÞÞ;
and similarly, dCovðcðZ; yÞjyÞ is the sample covariance of all cðz�k; yÞ; y

�
k ¼ y.

6. Cost efficiency tradeoff

Efficiency, e, will be evaluated in terms of the Fisher information, I:

eðy;pÞ ¼ I�1
rr ðy;pÞ=I�1

full;rrðyÞ; ð7Þ

where Iðy;pÞ is the information of the selected sample, and IfullðyÞ is the information of a full size simple random sample
(SRS). Hence the efficiency is based on the asymptotic variance I�1

rr of the rth component of y, r=1,y,p. Other scalar
functions of the Fisher information than I�1

rr are discussed in Grünewald and Hössjer (2010). Note that Iðy;pÞ in (7) can be
any of the information matrices Itwoðy;pÞ, Icondascðy;pÞ, Iascðy;pÞ, Iretrðy;pÞ or Iprðy;pÞ, resulting in efficiencies etwoðy;pÞ,
econdascðy;pÞ, eascðy;pÞ, eretrðy;pÞ and eprðy;pÞ. In this paper the main focus will be on econdascðy;pÞ.

If represented graphically with ascertainment probability, PðAjy;pÞ, on the x-axis and efficiency, eðy;pÞ, on the y-axis,
the efficiency of a SRS, i.e. a sample with pðyÞ � a, 0oar1, will give a straight line with equation P(A)=e. A beneficial
ascertainment scheme will give an efficiency above that line. This graphical representation is useful for example when
there is a limited number of cases to select, and we want to ensure that we loose no more than a certain percentage of the
total efficiency by sampling the controls more sparsely.

If there are no restrictions with regard to available subjects to sample, interest may instead be in the cost efficiency
tradeoff. One way to formulate this is via the cost adjusted efficiency

CEðy;pÞ ¼ eðy;pÞ=RACðy;pÞ;

where RACðy;pÞ is the relative average cost of the sample compared to a full sample. With C1Z0 the cost of sampling
individuals at Stage 1, and C24C1 the total cost of sampling individuals at Stages 1 and 2, we write

RACðy;pÞ ¼ C�1
2

Z
ðC1ð1�pðyÞÞþC2pðyÞÞPðy; yÞdy¼

C1

C2
þ

C2�C1

C2
PðAjy;pÞ:

The cost adjusted efficiency thus quantifies how cost efficient the present design p is compared to a SRS design. A beneficial
sampling scheme will give CEðy;pÞ41, and the most cost efficient sampling scheme is identified as the highest point on the
curve. Depending on what efficiency is used we use notation CEtwoðy;pÞ, CEcondascðy;pÞ, etc. For examples of how CEtwoðy;pÞ
can be used to evaluate efficiency in a two-stage design see Thomas et al. (2004), and in regression analysis with
incomplete covariate data see Reilly and Pepe (1995).

For ascertainment samples we put C1=0, implying that the cost of sampling first stage data not used in the analysis is
ignored, and hence RACðy;pÞ ¼ PðAjy;pÞ. For two-stage data it may be relevant to put C140, and adjust C1/C2 to reflect the
relative cost of first and second stage sampling, in order to accommodate different data collection scenarios.

7. Examples

In this section three models will be investigated with respect to how the ascertainment scheme affects the efficiency of
the maximum likelihood estimates. The ascertainment schemes compared in the examples are chosen as illustrations, but
other ascertainment schemes may be more relevant, or more efficient, in a specific study. All calculations are made in the
software R (R Development Core Team, 2005).

7.1. Model i: Logistic regression

Logistic regression is frequently used in case-control studies in epidemiology. A property of the logit link function is that
sampling probabilities cancel out of the effect estimates (Anderson, 1972), which facilitates analysis. Often an equal
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number of cases and controls are sampled, and interest is in estimating the effect parameter. See Maydrech and Kupper
(1978) for calculations of cost and sample size is case-control studies.

For simplicity we use a binomial distribution for X as well as Y:

X � Bin 1;
expðaXÞ

1þexpðaXÞ

� �
;

Y jfX ¼ xg � Bin 1;
expðaYþbXY xÞ

1þexpðaYþbXY xÞ

� �

and y¼ ðaX ;aY ;bXY Þ. We here sample all observations with outcome y=1, and a proportion a of observations where y=0.
That is

pðyÞ ¼
a; y¼ 0;

1; y¼ 1:

(

Since Y is discrete, Monte Carlo simulations were not necessary in this example.
For the conditional ascertainment likelihood the efficiency was calculated for all three parameters y¼ ðaX ;aY ;bXY Þ,

whilst for the prospective likelihood the efficiency was only calculated for yY ¼ ðaY ;bXY Þ, since the likelihood was
conditioned on aX . When all parameters were included in the calculations for the retrospective likelihood the model turned
out to be ill conditioned, the information matrix was positive semidefinite and had rank 2 instead of 3. Further
investigation indicated that aX and aY could not be estimated simultaneously. To overcome this problem we assumed aX to
be known in the calculations presented for the retrospective likelihood in Model i.

Fig. 1 illustrates the efficiency, eðy;pÞ, for the estimates of a set of parameters y: ðaX ¼�1;aY ¼�2;bXY ¼ 2Þ. With this
set of parameters PðY ¼ 1Þ 	 0:22 in the SRS. In the other ascertainment schemes individuals with y=1 are over-sampled.
The efficiency of a SRS of the same size is included for comparison and a vertical line is drawn at the ascertainment
probability that gives equally many cases (y=1), and controls (y=0). The efficiencies using the conditional ascertainment
likelihood and the prospective likelihood were so similar that they could not be distinguished. The retrospective likelihood
gave a lower efficiency in the estimation of aY but cannot be distinguished from the ascertained and prospective
likelihoods in the estimation of bXY . The prospective and retrospective likelihoods generate the same profile likelihood for
the estimation of bXY (Chen, 2003), so it is not surprising that those estimates have the same efficiency. Focusing on the
conditional ascertainment likelihood, the gain in efficiency, compared to a SRS, is mainly present in the estimation of aY

and bXY , while aX is relatively unaffected.
The benefit of a specific ascertainment scheme will depend on the parameter values in the model. Fig. 2 exemplifies

how changing one parameter affects econdascðy;pÞ in Model i. The parameter values are as above but with aY taking the
values 0, �2 and �4. In the full SRS this gives PðY ¼ 1Þ 	 0:60;0:22 and 0.045, respectively. Fig. 2 includes both efficiencies
and cost adjusted efficiencies, for comparison. Our calculations confirm that an equal number of cases and controls is an
efficient choice when interest is in estimating bXY .
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Fig. 1. Model i. Efficiency, eðy;pÞ, for estimation of parameters for different ascertainment schemes in logistic regression. aX ¼�1; aY ¼�2;

bXY ¼ 2; 0oar1: Conditional ascertained likelihood and prospective likelihood are represented by a solid line and retrospective likelihood is

represented by a dashed line. aX is not estimated using the retrospective likelihood, while for bXY the solid and dashed lines overlap.
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7.2. Model ii: Linear regression

Even though response variables in epidemiological studies often are dichotomized to fit into the logistic regression
model, the true nature of many variables, such as body mass index (BMI), blood pressure and plasma glucose, are
continuous. Categorizing continuous variables often lead to a loss in efficiency, see for example Vargha et al. (1996). While
preserving the continuous nature of the response variable it is still possible to use non-random ascertainment to increase
efficiency. In this example a normal distribution is assumed for the response variable, and a linear regression model is
used,

X � Bin 2;
expðaXÞ

1þexpðaXÞ

� �
;

Y jfX ¼ xg �NðaYþbXY � x;s2
Y Þ

and y¼ ðaX ;aY ;bXY ;sY Þ. Ascertainment probabilities depend on the value of Y. We here choose to specify a cut-off value t,
to let

pðyÞ ¼
a; yot;

1; yZt;

(

and vary the value of a.
In this example the efficiency of a two stage likelihood was calculated as a comparison to the efficiency in the

ascertainment sample. For the conditional ascertainment likelihood and the two-stage likelihood the efficiency was
calculated for all parameters y, while for the prospective likelihood the efficiency was calculated for all parameters but aX .
The efficiency in calculating aY , bXY and sY was the same for the prospective likelihood as for the conditional
ascertainment likelihood. The retrospective likelihood suffered from problems similar to those in Model i, the information

ARTICLE IN PRESS

α̂X

P(A|θ,π)

Ef
fic

ie
nc

y

α̂Y

P(A|θ,π)

Ef
fic

ie
nc

y

β̂XY

P(A|θ,π)

Ef
fic

ie
nc

y

α̂X

P(A|θ,π)

Co
st

 a
dj

us
te

d 
ef

fic
ie

nc
y

α̂Y

P(A|θ,π)

Co
st

 a
dj

us
te

d 
ef

fic
ie

nc
y

β̂XY

P(A|θ,π)

Co
st

 a
dj

us
te

d 
ef

fic
ie

nc
y

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

Fig. 2. Model i. Efficiency, econdascðy;pÞ, and cost adjusted efficiency, CEcondascðy;pÞ, for estimation of parameters for different ascertainment schemes in

logistic regression. aX ¼�1; aY ¼ 0 (solid line), �2 (dashed line) and �4 (dashed and dotted line), bXY ¼ 2; 0oar1. Vertical lines at PðY ¼ 1jAÞ ¼ 0:5,

except for set of parameters with aY ¼ 0 where PðY ¼ 1jAÞ40:5 for the range of values plotted. Cost is proportional to PðAjy;XÞ, i.e. C1=0.
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matrix here had rank 3 instead of 4, and was positive semidefinite. As in Model i the parameters aX and aY could not be
estimated simultaneously. We will not present any results for the prospective and retrospective likelihood for Model ii.

In Fig. 3 the cost adjusted efficiency is presented for parameter values ðaX ¼�4; aY ¼ 0; bXY ¼ 2; sY ¼ 1Þ and cut-of t=2.
For this set of parameters PðYotÞ ¼ 0:96 in the SRS. A vertical line in the graph indicates the ascertainment scheme where
PðYotjAÞ ¼ 0:5. In the figure three different costs are investigated for the two stage sample: (C1, C2)=(0,1) illustrates a
situation where Y can be observed free of cost, (C1, C2) = (1/3,1) means that, per individual, sampling Y is associated with
half of the cost of sampling X, and (C1, C2)=(1/2,1) implies that Y is as expensive to observe as X. It would also be possible to
choose C141=2 if Y is more expensive to sample than X, even though this is not the typical situation where outcome
dependent sampling is considered. The two stage sample where (C1, C2)=(0,1) is more cost efficient than the ascertainment
sample, meaning that the free of cost first stage data does contribute with information. The discrepancy is most
pronounced in the estimation of aY and sY . When (C1, C2)=(1/3,1) the two stage sample is more cost efficient than the
ascertainment sample for the estimation of aY and sY , but not for the other parameters. When (C1, C2)=(1/2,1) the two
stage sample is more efficient estimating aY , and also more efficient estimating sY for some ascertainment schemes.

7.3. Model iii: Selection on more than one variable

Ascertainment probabilities can be based on the outcome of more than one variable. In this example we have included
two normally distributed variables Y1 and Y2, that both affect the ascertainment probability, and let the explanatory
variable be binomially distributed. The ascertainment scheme is

pðy1; y2Þ ¼
a; y1ot1 \ y2ot2;

1 otherwise;

(
where 0oar1 is varied. A dependence between Y1 and Y2 is also included in the model. In this case
y¼ ðaX ;aY1

;bXY1
;sY1

;aY2
;bXY2

;bY1Y2
;sY2
Þ, with

X � Bin 1;
expðaXÞ

1þexpðaXÞ

� �
;
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Fig. 3. Model ii. Cost adjusted efficiency, for estimation of parameters for different ascertainment schemes in linear regression, using an ascertainment

likelihood and a two stage likelihood. For the two stage likelihood different costs C1=(0,1/3,1/2), C2 = 1 are applied. A vertical line indicates the

ascertainment scheme where PðYotjAÞ ¼ 0:5. aX ¼�4; aY ¼ 0; bXY ¼ 2; sY ¼ 1; t¼ 2; 0oar1; K ¼ 10 000. Monte Carlo simulations were used for

computation.
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Y1jfX ¼ xg �NðaY1
þbXY1

� x;s2
Y1
Þ;

Y2jfX ¼ x;Y1 ¼ y1g �NðaY2
þbXY2

� xþbY1Y2
� y1;s2

Y2
Þ:

For Model iii only the results for the conditional ascertainment likelihood will be presented. The efficiencies for the
prospective likelihood gave results that could not be distinguished from the conditional ascertainment likelihood. The
efficiencies for the retrospective likelihood were not calculated, the information matrix was positive semidefinite and had
rank 3 instead of 8, and no more than three parameters could be estimated simultaneously. We could not see any obvious
pattern of which variables could be estimated together for the retrospective likelihood.

The model was run for three different sets of cut-offs, (t1, t2)=(1,1), (2,2) and (3,3). For these values PðY1ot1 \ Y2ot2Þ

was 0.68, 0.88 and 0.96, respectively in the SRS. The results are presented in Fig. 4 for one set of parameter values. Vertical
lines mark the ascertainment schemes where PðY1ot1 \ Y2ot2jAÞ ¼ 0:5. Most of the parameter estimates benefit from
ascertainment schemes with ao1, while baY1

and baY2
do not. In this example the largest benefits from small values of a are
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Fig. 4. Model iii. Cost-adjusted efficiency, CEcondascðy;pÞ, where pðy1 ; y2Þ ¼ a is varied for y 2 ðy1 ot1 \ y2 ot2Þ. Three different sets of (t1, t2) are used.

Vertical lines indicate the ascertainment schemes where PðY1 ot1 \ Y2 ot1jAÞ ¼ 0:5. aX ¼�3; aY1
¼ 0; bXY1

¼ 2;sY1
¼ 1;aY2

¼ 0; bXY2
¼ 1;

bY1 Y2
¼ 1;sY2

¼ 1, 0oar1;K ¼ 500 000. Cost is proportional to PðAjy;XÞ. Monte Carlo simulations were used for computation.
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for high values of (t1, t2), that is, when a large proportion of data in the SRS is in the range Y1ot1 \ Y2ot2. The setting in
this example was chosen to illustrate that the effect of ascertainment on efficiency can be large even in complex models.
For other values the benefit may be less obvious.

8. Discussion

In this paper we have presented tools for comparing ascertainment schemes with respect to efficiencies and cost
adjusted efficiencies. The efficiencies are expressed in terms of Fisher information matrices. Three examples were
examined, and the results were presented in graphs.

From the examples investigated it is apparent that non-random ascertainment schemes sometimes increase efficiency
compared to a SRS, but also that they sometimes perform worse. Note that the slope of the efficiency curve is often steep,
so that the value of PðAjy;pÞ that results in the highest efficiency is close to values with low efficiency, see for example the
efficiency of bbXY1

in Fig. 4. It is therefore important to investigate the efficiency in the specific study setting before
collecting data. Similarly to power analysis and local experimental designs, the calculations require specifying parameter
values, which in reality are unknown. Pilot studies are therefore a valuable tool to acquire more knowledge about the data.
It is also advisable to calculate the efficiency for some different sets of parameter values.

In the efficiency calculations in this paper it is assumed that the cost of sampling is the same for all subjects within the
same sampling design. In reality the cost of sampling can differ depending on the outcome of one or more of the sampled
variables. For example the cost of sampling cases can differ from the cost of sampling controls in a case-control study. To
obtain a sampling scheme that is cost-efficient differential costs can be incorporated in the calculations. An example of this
can be found in Maydrech and Kupper (1978) where cost functions are presented for cohort and case-control studies.

Here maximum likelihood estimation has been used, based on likelihoods conditioned on ascertainment. In reality, due
to computational issues, these parameter estimates are not always straightforward to obtain. Other estimation procedures
might then be preferable. Reilly and Pepe (1995) use a mean score method for regression analysis with incomplete or
auxiliary covariate data. Other methods to correct for ascertainment are also available. Neuhaus (2000) describes how
adjusting link functions can correct for ascertainment in binary regression models. Simulation based methods to estimate
parameters in data with ascertainment have been described for example by Clayton (2003) and Grünewald et al. (2010).
When the estimation procedure differs from what was used in this paper, comparison of the efficiency of the
ascertainment schemes can still be carried out analogously, using asymptotic variances appropriate to the estimation
procedure rather than the inverse Fisher information matrix.

While case-control designs are frequently used in for example epidemiology, selection on continuous outcomes, or on
multiple outcomes, is not as common. This may be due to the added complexity in the analysis of data, but also because it
is not transparent which designs are efficient. Plotting efficiencies, or cost adjusted efficiencies, as suggested in this paper,
may aid in the choice of design.
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