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Abstract

Spatial data sets are analysed in many scientific disciplines. Kriging, i.e. minimum mean squared error linear prediction, is
probably the most widely used method of spatial prediction. Computation time and memory requirement can be an obstacle for
kriging for data sets with many observations. Calculations are accelerated and memory requirements decreased by using a Gaussian
Markov random field on a lattice as an approximation of a Gaussian field. The algorithms are well suited also for nonlattice data
when exploiting a bilinear interpolation at nonlattice locations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Kriging is a methodology for spatial prediction which the interest in and applications for have been increasing during
recent decades. The development originated in mining, where spatial prediction was used to estimate changes in ore
grade within a mine. Nowadays the methods are used in a variety of areas in geology and other scientific disciplines.
Applications include designing environmental monitoring networks, road and tunnel planning, management of soil
resources in agriculture and forestry, etc. While the mining applications of kriging often had few observations, today’s
applications can have thousands or tens of thousands of data, a fact that must be addressed by the evaluation methods.

Kriging methodology is part of the least squares linear regression framework. In addition to linear kriging methods
such as simple, ordinary or universal kriging, the methodology has been enlarged to account for models where the best
predictor (in LS-sense) is not linear. Moyeed and Papritz (2002) compare both linear and nonlinear kriging methods with
respect to precision and success in modelling prediction uncertainty for a data set of metal concentrations. Regarding
precision, they found that linear kriging was as good as any of the nonlinear methods. For skewed data, however, some
of the nonlinear methods performed better in estimating prediction uncertainty. This article focuses on computationally
effective models for linear kriging.

One drawback of kriging is the computational cost for large data sets. A common way (Goovaerts, 1997; Isaaks
and Srivastava, 1989) to deal with this is to use local neighbourhood kriging where only the closest observations are
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used (for each prediction). Although computationally attractive when predicting at a limited number of locations, the
methods require a local neighbourhood for each location where a prediction is made, and predicting at a fine grid is
still computationally demanding. Another drawback is discontinuity in prediction and standard error surfaces.

As an alternative to local models, Barry and Pace (1997) used models for which the covariance matrix is sparse
(e.g. spherical correlation) together with sparse matrix techniques. Furrer et al., 2006 have a more general approach in
which covariance matrices are tapered to obtain zero covariance for large distances. Kammann and Wand (2003) and
Nychka and Saltzman (1998) use reduced knot or low-rank kriging, where by means of a space-filling algorithm, they
introduce knots and reduce computation. A linear mixed model based on (hypothetical and unknown) observations at
the knots is fitted to all data points.

Another field of spatial statistics that received much attention in recent years is Markov field approximations of
random fields (especially applied in the context of simulation, e.g. MCMC analyses). In Rue and Tjelmeland (2002),
Gaussian random fields are approximated with two-dimensional Gaussian Markov random fields (GMRFs). Even for
small Markov neighbourhoods (such as 5× 5) the fit to the non-Markov covariance functions is remarkably good.

In this article we suggest a method for kriging large data sets where global features are of interest. Instead of
approximating the kriging predictor of a given field (as in local neighbourhood kriging) the approach in this paper is
to develop an exact kriging predictor for a GMRF that approximates the given field. We can then exploit the GMRF’s
natural specification via its precision (inverse covariance) matrix to make kriging computationally effective even for
large data sets. We further suggest using a bilinear interpolation that combines the strength of lattice GMRF with the
generality of a continuous spatial index (which is common in geostatistical data sets). Compared to nearest neighbour
interpolation, bilinear interpolation yields better predictions and coverage with (almost) no extra computational cost.

2. Linear kriging

Linear kriging is often divided into simple kriging (known mean), ordinary kriging (unknown but constant mean)
and universal kriging (the mean is an unknown linear combination of known functions), depending on the mean value
specification. For clarity of the following discussion we describe the benefits of a Markov approximation for ordinary
kriging, although the principles apply also for universal kriging, see Section 7.

Let therefore

Z(t)= �+ �(t)+ ε(t), t= (t1, t2) ∈ D ⊂ R2 (1)

be a stochastic field in the area D with mean value �, zero-mean intermediate-scale variation �(·) and white noise error
ε(·) with variance �2

ε . Given observations (Z(t1), . . . , Z(tn))T = Z, a common task is to predict Y (t)= �+ �(t), often
at a grid of locations, and to calculate the prediction error variance at each such location.

In ordinary kriging linear predictors are used, i.e.

Ŷ (t0)=
n∑

i=1

aiZ(ti )= aTZ, (2)

where a= (a1, . . . , an)
T are weights such that

∑n
i=1ai = 1, in order for the predictor to be unbiased.

Let �= (Cov(Z(ti ), Z(tj )))i,j = Cov(Z) denote the covariance matrix of the observations, and let the vector

�= (Cov(Z(t1), Y (t0)), . . . , Cov(Z(tn), Y (t0)))T = Cov(Z, Y (t0))

contain the covariances between observations and the value at an arbitrary location t0, where we want to predict the
process.

The best linear predictor is found by minimizing the mean squared prediction error. The resulting weights (Cressie,
1993, p. 123) are

a= �−1

(
�+ 1n

(
1− 1T

n�−1�

1T
n�−11n

))
, (3)

where 1n = (1, . . . , 1)T is a column vector of size n.



L. Hartman, O. Hössjer / Computational Statistics & Data Analysis 52 (2008) 2331–2349 2333

The unconditional kriging variance, i.e. the variance of the prediction error r(t) = Y (t) − Ŷ (t), is (Cressie, 1993,
pp. 123, 128)

�2
r (t0)= �2

�(t0)+
1− 1T

n�−1�

1T
n�−11n

−
(

�+ 1n

(
1− 1T

n�−1�

1T
n�−11n

))T

�−1�

= �2
�(t0)− �T�−1�+ (1− 1T

n�−1�)2

1T
n�−11n

, (4)

where �2
�(t0) is the variance of the intermediate-scale variation at t0.

Using the quantiles of the predictors, prediction intervals can be obtained. E.g. if Z(t) is Gaussian, so is the predictor,
and thus the 1− � prediction interval is obtained as

IY (t0)= [Ŷ (t0)± z�/2�r (t0)], (5)

where z� is the (1 − �)-quantile of the standard normal distribution. Alternatively the conditional prediction error
variance, calculated without the last term of (4), could be used for prediction intervals, see Sjöstedt-de Luna and Young
(2003).

Any covariance function (i.e. any nonnegative definite function) is valid for kriging. To be able to estimate model
parameters, however, most applications use a model where the covariance function is stationary (though possibly
anisotropic) and of standard form, such as exponential, spherical, Gaussian, pure nugget or a linear combination of
such models, see Goovaerts (1997, p. 88).

If a parametric model, Cov(Z(t1), Z(t2))=CZ(t1, t2; �), for the covariance function is given, where � is a vector of
unknown parameters, a common procedure is as follows: Estimate � and then predict Y (t0) with (2) and (5) replacing
� by a plug-in estimate �̂ in �−1 and �. When plug-in of estimated covariance parameters is used, the prediction error
variance (4) does not reflect the uncertainty of the estimate and the plug-in prediction interval will therefore not have
the prescribed coverage. Sjöstedt-de Luna and Young (2003) handle this with bootstrap calibration.

3. Kriging and GMRF

After parameter estimation, ordinary kriging requires solving a linear system (3) of size n × n, an operation for
which operation count and memory requirement increase by order n3 and n2, respectively. This implies that kriging
large data sets on a global basis is very slow, or even impossible due to memory limitations.

However, for models with a sparse precision matrix Q = �−1, the algorithms can be greatly improved. The idea
of this paper is to obtain those computational benefits by approximating the given stochastic field with a field with a
sparse precision matrix. As the kriging weights are determined by the covariance matrix (3), the key is to find a field
with covariance matrix similar to the original one, while maintaining a sparse precision matrix. Turning our attention
to Gaussian fields (for which the best linear unbiased predictor is optimal) this could be obtained by approximating
with a GMRF, described below.

Let � be a lattice in R2 with coordinates t̃1, . . . , t̃N . The field �̃ defined on � is a GMRF if it is Gaussian and satisfies
the Markov property

�̃i |�̃(−i)
d= �̃i |�̃N [i] ∼ N

⎛
⎝ N∑

j=1

wij �̃j , 	
2

⎞
⎠ for i = 1, . . . , N , (6)

where �̃=(�̃1, . . . , �̃N)T, and N [i] is the neighbourhood of lattice point i. With W=(wij )
N
i,j=1 where wij=0, j /∈N [i],

the joint distribution of �̃ is

�̃ ∼ N(0, (IN −W)−1	2), (7)

provided that (IN −W)−1 exists and is symmetric and nonnegative definite. Note that 	2 is the conditional, not the
unconditional, variance of �̃i .
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Fig. 1. Parameters for a stationary isotropic GMRF with 5× 5 neighbourhood. Since the GMRF is stationary, each parameter determines the value
of the precision matrix between a grid point and the corresponding neighbour. The parameters are defined as �kl =Q(00,kl), where the double digit

index refers to the grid point with the corresponding coordinates. As the precision matrix Q= (IN −W)	−2, the parameters � specifies the weight
matrix W.

The Markov property induced by the neighbourhood system N [i], i ∈ � thus imposes a zero-pattern structure in the
precision matrix Q= (IN −W)	−2 viz. that Qij = 0 unless i and j are neighbours. As the inverse covariance matrix
is essential in kriging, the GMRF model on a lattice is a model with considerable computational benefits for large data
sets, provided that neighbourhoods are small in comparison to grid size.

Although the Markov model is seldom the most natural model for data it can be used as an approximation of the
model at hand. Rue and Tjelmeland (2002) show that even for fields with long correlation length, the Gaussian fields
most commonly used for kriging can be well approximated (on regular grids) using GMRFs with small neighbourhoods
(such as a rectangle of size 5 × 5 or 7 × 7 grid points). Compared to the error usually induced when estimating the
covariance parameters from data, the covariance function deviance between a Gaussian field and its fitted GMRF was
small even for neighbourhoods as small as 5× 5. This indicates that a GMRF approximation on a regular grid would
give competitive kriging results at a lower computational cost.

Following Rue and Tjelmeland (2002), let � be a N1×N2 square lattice in R2 with coordinates t̃1, . . . , t̃N , N=N1N2,
and cell width 
. Let �̃ = (�̃j )

N
j=1 = (�̃(t̃j ))Nj=1 be a GMRF that is fitted to the Gaussian field �(·) at lattice locations.

To avoid boundary effects, the lattice can be extended on a torus. The precision matrix Q of an isotropic GMRF with a
(2m+1)×(2m+1)-neighbourhood then requires only m(m+1) parameters. Fig. 1 displays the six parameters needed
with a 5× 5 neighbourhood. For a stationary �(·), we will approximate �(·) by �̃(·) at lattice locations by requiring

Var(�(t̃j ))= Var(�̃j ), j = 1, . . . , N , (8)

and then fitting the correlation function of �̃ to the correlation function of �(·) on the lattice. The conditional precision
�00 is thus fitted exactly to obtain the same variance as the Gaussian field and the other parameters are fitted to minimize
the distance between the correlation matrix of the GMRF and the corresponding correlation function of the Gaussian
field:

‖�− �(�)‖2� =
∑
ij

(�ij − �̃(�)ij )
2�ij . (9)

Here �ij is the correlation of the original Gaussian field between the lattice point with coordinates {i, j} and the
lattice point with coordinates {0, 0}, and �̃(�)ij is the counterpart for the GMRF. The positive weights �ij determine
which part of the correlation function is given most weight in the fitting, e.g. if d(·, ·) is the distance, the weights
�ij ∝ 1/d((i, j), (0, 0)) for ij �= 00, give more weight at shorter distances, see Rue and Held (2005, Chapter 5.1.2)
for details. If the Gaussian field is anisotropic, the fitting procedure is preceded by a linear transformation such that
isotropy is obtained. Considering untransformed coordinates, this will imply that the lattice is rotated, and that the
original cell widths may be different in the two directions. In the new coordinate system, the range can be expressed in
cell widths. Thus in the old coordinates, the cell width is proportionally longer in the direction in which the range was
longer.
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However, many geostatistical applications have nonlattice data, and as suggested by Diggle and Lophaven (2006), a
regular design is often not the best choice for spatial sampling when both efficient parameter estimation and efficient
spatial prediction are considered. We therefore suggest a generalization where the model is extended to nonlattice
locations, while the computational benefits of the GMRF formulation are maintained. To extend the lattice model to
an arbitrary t ∈ D, let the intermediate-scale variation consist of two components

�(t)= �1(t)+ �2(t). (10)

At lattice locations let �1(t̃j )= �̃j , where �̃ is the GMRF fitted to the Gaussian field. For an arbitrary t ∈ D let

�1(t)=
N∑

j=1

k(t, t̃j ) �̃j , (11)

where k(t, ·) are interpolation weights fulfilling
∑

j k(t, t̃j ) = 1 and k(t̃i , t̃i ) = 1. Two interpolation schemes, nearest
neighbour and bilinear interpolation, are suggested in Section 3.1 and examined in Section 4. Due to computational
aspects, only lattice locations within the used Markov neighbourhood of the closest lattice location are used in the
interpolation.

For nonlattice locations, �1(·) within grid cells will be a weighted average of �̃. Thus, for interpolation schemes
where the weighted sum (11) consists of more than one nonzero term, the variance of �1(·) will be lower within grid
cells than at lattice locations. This entails that the approximation error �2(t) = �(t) − �1(t) will have larger variance
within grid cells.

In order to balance good approximation of �(·) with computational efficiency, we make the following approximate
assumptions for �2(t):

�2(·) and �1(·) are independent fields, (12)

�2(·) is a (possibly heterogeneous) white noise field (13)

and

Var(�2(t))= Var(�(t))−
∑

i

∑
j

kikj Cov(�(t̃i ), �(t̃j )). (14)

Note that Var(�2(t))= 0 at lattice locations.
Following from (10)–(13), the variance of �2 would be

Var(�2(t))= Var(�(t))−
∑
ij

kikj Cov(�1(t̃i ), �1(t̃j )), (15)

but (14) is chosen for computational reasons. Further, since the variance of � and �1 coincide on the lattice (Eq. (8)),
the covariances of the two fields for adjacent grid points will also be close. Thus the difference between (14) and (15)
is small in practise, see further discussion in Section 6.

For the purpose of comparison, in the simulations of Section 4 we will also consider the kriging quality when �2 is
set to 0, i.e. when the model does not compensate for the lower variance within grid cells.

The GMRF �̃ is fitted to approximate the Gaussian field �(·) at lattice locations and the lattice locations must be
chosen by the modeller. The grid size is a balance between computational cost and accurate results, as is apparent from
the simulations in Section 4. As the fitting criterion (8) only compares covariances at distances present in the regular
lattice, the chosen cell-width 
 must be small enough to achieve good approximations at short distances. A denser grid
admits fitting the GMRF to the Gaussian field at shorter distances, but will also imply heavier computations. For a
field with short range, short range behaviour is emphasized, and grid points must then be closer than for a field with
longer range. To avoid edge effects, the lattice is wrapped on a torus, and to avoid influence of the torus connections,
the lattice should be extended to cover an area larger than the area of interest (Rue and Held, 2005, Chapter 5.1.4).
When the observations or wanted predictions are from an area that is far from being rectangular, computational gains
will decrease as many extra grid points outside the area of interest will be needed, just as in the soil data example in
Section 5.
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Fig. 2. Areas determining the weights when averaging over the four nearest lattice points.

3.1. Interpolation schemes

When approximating a process with continuous spatial index with a process on a grid, nonlattice locations can
be associated with lattice locations through an interpolation scheme. This allows for kriging prediction for data with
continuous spatial index, as in Section 2, but with considerable gain in computational time if the Markov neighbourhood
is small.

3.1.1. Nearest neighbour interpolation
With this scheme, the value at each nonlattice location is set equal to the value at the closest lattice location, thus

giving rise to a field which is piecewise constant. This scheme is equal to interpolation (11) with

k(t, t̃j )=
{

1 t̃j is the grid location closest to location t,
0 otherwise.

(16)

With this scheme �2(·) ≡ 0 if �(·) is stationary. Applications using this scheme are found e.g. in Wikle et al. (1998)
and Rue and Held (2005, Chapter 5).

3.1.2. Bilinear interpolation
Nearest neighbour interpolation produces a discontinuous field that does not capture the behaviour of the full Gaussian

field within grid cells. More sophisticated is a bilinear interpolation, used in Werner Hartman (2006). Here the value
at a location inside a grid cell is equal to the mean value of the GMRF at the four surrounding grid points.

For k in Eq. (11) let k(t, t̃j )= 0 if j is not a corner of the lattice square that surrounds t, and calculate the remaining
four weights from the areas B1, . . . , B4 in Fig. 2: k(t, t̃(k,l))= B1/B, k(t, t̃(k+1,l))= B2/B, k(t, t̃(k,l+1))= B3/B and
k(t, t̃(k+1,l+1))= B4/B where B = 
2 = B1 + B2 + B3 + B4. For grid locations let k(t̃j , t̃j )= 1.

This makes �1(·) a continuous Gaussian process that equals the GMRF �̃ at grid locations. Elsewhere �1(·) is
the weighted mean value of the four closest lattice points. The variance of �1(·) is tuned to �(·) at lattice locations
(Eq. (8)), and thus the variance of �1(·) will be lower than that of �(·) within cells. The addition of �2(·) in (10) gives
the stipulated variances (though not covariances) even for locations within cells.

3.2. Prediction

This section contains an algorithm for efficient use of the suggested model when kriging large data sets.
Let K= (kij ) be the n×N matrix defined as kij = k(ti , t̃j ). Then from (7)–(13) we have

�= KQ−1KT + D. (17)

Here Q= (IN −W)	−2 is the precision matrix of �̃ and D is a (diagonal) matrix with the variance of �2(t)+ ε(t) at the
locations where the observations are collected. Thus, from (14) it follows that

D= �2
�In − diag(K�̃KT)+ �2

εIn, (18)
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where �̃= (Cov(�(t̃i ), �(t̃j )))i,j=1:N . In order to calculate K�̃KT only the diagonals corresponding to adjacent lattice

locations must be known in �̃.
For an arbitrary point t0, where we want to predict Y, define the vector of k-weights for the point, k= (k1, . . . , kN)T,

where ki = k(t0, t̃i ), to obtain

�= KQ−1k. (19)

In all equations it is assumed that the locations where predictions are wanted do not coincide with any location with an
observation used in the calculations unless such a location is also a lattice location. As the index t is continuous, this
restriction does not affect the usefulness of the method.

Should approximations other than (12)–(14) of �2(t) be used, Eqs. (17)–(19) would change.
Insertion of expressions (17)–(19) into (3) gives the interpolation weights for our model. While direct calculation

does not give any substantial computational gain, the following method of computation will considerably ease the
computational burden of calculating the kriging predictions for large data sets.

(1) Initially predict Y (·) on all grid points. Let therefore

�= (Cov(Z(ti ), Y (t̃j )))ij be a n×N matrix,

and Ŷ= (Ŷ (t̃1), . . . , Ŷ (t̃N))T.
Using Eqs. (2) and (3) for t0 = t̃1, . . . , t̃N we conclude

Ŷ=
(

�+ 1n

(
1T
N − 1T

n�−1�

1T
n�−11n

))T

�−1Z. (20)

(2) At an arbitrary point t0

Ŷ (t0)= kTŶ, (21)

see Appendix A for details.

From (20) and (21) we get Ŷ (t0) at any point t0. It is therefore enough to seek computationally effective expressions
for �−1� and �−11n.

The definition of the intermediate-scale variation gives

�= KQ−1 (22)

that together with (17) yields

�−1�= �−1�(Q+ KTD−1K)(Q+ KTD−1K)−1

=�−1�D−1K · (Q+ KTD−1K)−1

=D−1K(Q+ KTD−1K)−1. (23)

Further, since the row-sums of K equal 1,

�−11n = �−1K1N = �−1�Q1N . (24)

From (23) and (24) we can thus conclude that to calculate (20), it suffices to invert a band limited N × N matrix
Q + KTD−1K. When K interpolates only grid points within the Markov neighbourhood (as for nearest neighbour or
bilinear interpolation), the addition of KTD−1K adds no extra bandwidth to the GMRF precision matrix Q, and thus no
extra computational cost.

3.3. Prediction error

To calculate the prediction error variance for the Markov approach define

Cr(t1, t2)= Cov(r(t1), r(t2))
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to be the covariance function of the prediction errors. Let �̃i = Cov(Z, Y (t̃i )) be the ith column of �, and generalize
(4) to get

Cr(t̃i , t̃j )= C�(t̃i , t̃j )− �̃T
i �−1�̃j + (1T

n�−1�̃i − 1)(1T
n�−1�̃j − 1)

1T
n�−11n

.

As Var(�2(t̃j )) = 0, it follows that C�(t̃i , t̃j ) = C�1
(t̃i , t̃j ) = Cov(�̃i , �̃j ). Thus after some manipulations given in

Appendix B, the covariance matrix Cr̃ = (Cr(t̃i , t̃j ))ij is given by

Cr̃ = (Q+ KTD−1K)−1 + (1T
n�−1�− 1T

N)T(1T
n�−1�− 1T

N)

1T
n�−11n

. (25)

For the conditional prediction error the last term of (25) vanishes.
At nonlattice locations use r̃= (r(t̃1), . . . , r(t̃N)) and the independence assumptions (12) and (13) to obtain

r(t0)= Y (t0)− Ŷ (t0)= �+ �(t0)− kTŶ= �+ �1(t0)+ �2(t0)− kTŶ

= kT�1N + kT�̃+ �2(t0)− kTŶ= �2(t0)+ kT(�1N + �̃− Ŷ)

= �2(t0)+ kT r̃. (26)

Thus

�2
r (t0)= kTCr̃k+ Var(�2(t0)). (27)

Using an interpolation scheme where only grid points within a Markov neighbourhood are used, only terms of
C(r(t̃i ), r(t̃j )) where t̃i ∼ t̃j must be calculated to obtain the first term of (27). To do this we use the efficient algorithm
of Rue and Martino (2007) implemented in GMRFLib, where marginal variances and covariances for neighbours are
calculated with N log(N)2 operations.

3.3.1. Alternative prediction error variances for the bilinear interpolation
The independence assumptions (12)–(13) make �2(t) behave as a nugget effect. This gives a term Var(�2(t0)) in the

prediction error variance (27).
In many practical problems, predictions on a grid are wanted. Since at lattice locations Var(�2(t0))=0, the additional

variance term does not affect the prediction error variance as long as the GMRF is defined on that same grid. Thus,
for these problems, bilinear interpolation is only used to incorporate data (that are typically not collected on a grid).
Quality of predictions and prediction error variances on the grid are both better by this method than if each data point is
simply assigned to the closest grid point as in nearest neighbour interpolation, see results in Section 4. However, should
predictions and prediction error variances be calculated even at nonlattice locations, a deficiency with assumptions
(12)–(13) is that the prediction error variance will be overestimated. This is because Var(�2(·)) is defined directly from
the variance of the underlying field Y, which has larger variance than the prediction errors Ŷ − Y . As the prediction
error variance at lattice locations is well tuned to what it would be with the full Gaussian model, it follows that the
prediction error variance will be overestimated at locations within cells.

However, if high-quality prediction error variances are wanted at nonlattice locations, a heuristically sound alternative
could be to calculate the prediction error variance as the weighted average of the prediction error variances at the grid
points surrounding t0,

�2
r (t0)=

N∑
j=1

kj�
2
r (t̃j )= kTVr̃ , (28)

where Vr̃=diag(Cr̃ ) is a diagonal matrix containing the prediction error variances on the grid. This alternative, although
quite ad hoc, stems from prediction error variances being well tuned at grid points to those of a Gaussian model, and
in the same way prediction error variance being continuous, just as with a continuous Gaussian model.

For approximations with nearest neighbour interpolation where the weight kj = 1 for the closest grid point t̃j , the
used approximation (14) produces Var(�2(t))= 0 everywhere, and thus (27) and (28) are equal.
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4. Simulation study

In order to study the performance of GMRF kriging, we conducted a simulation study in two parts with calculations
done in Matlab and GMRFLib, a c-library of routines for GMRFs on graphs (Rue, 2001). Due to the large memory
requirements of kriging with the full model, the simulated data sets are smaller than the sample size that the GMRF
approach can handle. The intention with the paper is, however, to argue for the usefulness of the Markov approach
when kriging a data set that is too big to evaluate with a full model. The simulations serve as a small scale study that
verifies the quality of the method.

Although all Gaussian fields cannot be fitted well by a GMRF, Rue and Tjelmeland (2002) found that the Gaussian
fields most commonly used in kriging could. As an example of such fields, we have used a stationary isotropic Gaussian
field with an exponential covariance function both for data generation and estimation in our study.

Following (1), we simulated several samples z with different values of the variables (n, r, �2
�, �

2
ε). The simulations

were done in R (R Development Core Team, 2003) with the routine GaussRF in package RandomFields. For each
realization z, new positions were simulated from a uniform density. For the intermediate-scale variation �(·) we used a
stationary Gaussian field with exponential covariance function C(|h|)=Cov(�(t), �(t+ h))= �2

� exp(−3|h|/r) where

r is the practical range, i.e. C(r)= 0.05 · C(0). The nugget term ε(·) was Gaussian white noise with variance �2
ε . The

sample was divided at random into an estimation set of size n and a validation set of size M. Thus both the estimation
set and the validation set had nonlattice positions uniformly spread in the area.

As an adjustment between good fit and reasonable computational cost related to the GMRF as reported in Rue and
Tjelmeland (2002), we choose a 5× 5 Markov neighbourhood for the GMRF approximation.

For each sample z we performed kriging with four different models:

(1) Using the full model, i.e. a Gaussian random field with exponential covariance function and added measurement
error.

(2) GMRF with bilinear interpolation and added measurement error, with �2(t) as in (12)–(14).
(3) GMRF with bilinear interpolation and added measurement error, with �2(t) ≡ 0, i.e. without compensation for the

lower variance within grid cells.
(4) GMRF with nearest neighbour interpolation and added measurement error.

For the GMRF approximations above, we used a GMRF with 5 × 5 neighbourhood on a
√

N ×√N -grid, i.e. filling
a square with side length 
 = 


√
N . The precision parameters of the inverted correlation matrix were fitted in Rue

and Tjelmeland (2002) to match an exponential correlation with range r. The precision matrix was then scaled with
�−2

� to fulfil (8). (As the correlation structure is fitted, the variances will not be exactly equal, although in practise

the difference is negligible.) For the nugget, the known variance �2
ε was used. In order to use pre-calculated precision

parameters, the fitted parameters must not depend on the torus, at which they are calculated. In accordance with the
suggestions of Rue and Held (2005, Chapter 5) we accomplished this by ensuring that the grid side was at least 6 times
the range. Further, in order to avoid edge effects, the grid was extended to cover an area larger than the area where
observations were taken and predictions were wanted. The frame used was 0.5 times the range at all four sides of the
lattice, following Rue and Held (2005).

To measure the performance of the kriging predictors, the prediction error sum of squares (PRESS)

PRESS=
M∑
i=1

(yi − ŷi )
2 (29)

was calculated for all approaches. Here yi is the simulated value of the Y-field at location number i in the validation set
and ŷi is the prediction ofY in the same point calculated by (2)–(3) and (20)–(21) for PRESSexponential and PRESSMarkov,
respectively.

In Section 4.1 we used the known covariance parameters when computing the kriging weights, whereas in Section 4.2
we estimated the covariance parameters from the estimation set and then used the plug-in of the estimated covariances
in the kriging computations.



2340 L. Hartman, O. Hössjer / Computational Statistics & Data Analysis 52 (2008) 2331–2349

1000 2000 3000 4000 5000
0.8

1

1.2

1.4

1.6

1.8

r/δ=12, σε
2/σγ

2=0.1, N=5184

Nbr of Observations (n)

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

P
R

E
S

S
M

a
rk

o
v
/P

R
E

S
S

e
x
p

P
R

E
S

S
M

a
rk

o
v
/P

R
E

S
S

e
x
p

r/δ=12, σγ
2=1, n=3000, N=5184

0 5 10 15
0.8

1

1.2

1.4

1.6

1.8

σε
2/σγ

2=0.1, n=3000

Range (r/δ)

P
R

E
S

S
M

a
rk

o
v
/P

R
E

S
S

e
x
p

0 2 4 6 8

x 104

0.8

1

1.2

1.4

1.6

1.8

r/δ=√N/6, σε
2/σγ

2=0.1, n=3000

Grid size (N)

P
R

E
S

S
M

a
rk

o
v
/P

R
E

S
S

e
x
p

BI

BI (γ2=0)

NN

σε
2/σγ

2

Fig. 3. Quotient of prediction error sum of squares, PRESSMarkov
PRESSexponential

, for different parameter values and number of observations, etc. The known

covariance parameter values were used for the exponential Gaussian field, while fitted precision parameters were used for the GMRF. There was
M= 2000 observations in the validation set. Each run was iterated three times. Individual results are shown for (i) GMRF with bilinear interpolation
and �2(·) as in (12)–(14) [BI], (ii) GMRF with bilinear interpolation and �2(·) ≡ 0 [BI (�2=0)] and (iii) GMRF with nearest neighbour interpolation
[NN]. The respective means are indicated by a line. In each subplot, the parameters displayed at the x-axis were varied while the others were kept
constant at values displayed above each graph.

4.1. Known covariance parameters

To compare GMRF kriging to kriging with the full model, the quotient PRESSMarkov/PRESSexponential was calculated
both for bilinear interpolation (with and without nonzero �2) and for nearest neighbour interpolation, see Fig. 3. Although
the full Gaussian approach is clearly favoured as it uses the correct model with known parameters, whereas the Markov
approach only uses an approximation of the correct model, the Markov model manages well. The better quality of the
bilinear interpolation is appreciable when compared to the nearest neighbour interpolation, except in the case of very
large grids. The difference when using nonzero �2 is almost negligible to when �2(·) ≡ 0.

We calculated conditional prediction error variances for both exponential and Markov models following (4) and
(25)–(27), respectively, and the corresponding 95%-prediction intervals (5). Fig. 4 shows that the coverage for the
GMRF approximation with bilinear interpolation and nonzero �2(·) is appreciably better than for nearest neighbour
interpolation or for bilinear interpolation with �2(·) ≡ 0. The coverage for the full Gaussian model is displayed to show
the variation between different simulations. The coverage of the GMRF approximation with bilinear interpolation is
close to the prescribed value (95%) for most of the parameter values (although somewhat overestimated, as discussed
in Section 3.3.1). Although the prediction quality (Fig. 3) is similar regardless of whether �2(·)=0 or not, the deficit of
�2(·)= 0 is apparent here. This is natural as bilinear interpolation with �2(·)= 0 by definition produces lower variance
within grid cells. �2(·) was introduced to compensate for this.
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Fig. 4. Coverage of 95%-prediction intervals for kriging with Gaussian and GMRF models. For the bilinear interpolation, the original prediction
error variance (27) was used. For each subplot, the same parameter values as in Fig. 3 were used. Each run was iterated three times, the individual
results are shown, with their respective means indicated by a line. Legends are explained in Fig. 3, except [Exponential] which amounts to kriging
with a Gaussian field with exponential covariance function.

Fig. 5 shows the coverage when the prediction error variance for the bilinear interpolation is calculated as in
Section 3.3.1. Here the coverage of the GMRF approximation with bilinear interpolation and nonzero �2(·) is in quality
almost indistinguishable from the coverage using the full Gaussian model. The model with nonzero �2(·) produces
better prediction error variances than with �2(·) = 0, even though the prediction error variance is here the weighted
mean over the prediction error variances at the grid points (without addition of Var(�2(·))). For the more commonly
used nearest neighbour interpolation, the results are not of as high a quality as for the bilinear interpolation. In fact, in
our study, in order to get coverage reasonably close to 95%, such dense grids are required that the computational gain
of the Markov model is lost (Fig. 8).

4.2. Estimated covariance parameters

When kriging real data it is rare to know the model parameters, and consequently they must be estimated from the
data set. Plug-in of estimated parameters into the kriging equations is a common approach, which we use here to test
the performance of the Markov model kriging. To do this, the same data sets as in the previous section are used for
kriging, but here the covariance parameters are estimated from data. The performance of the two models regarding
prediction intervals is calculated and assessed just as if parameters were known. It should, however, be kept in mind
that the prediction error variance is then underestimated (both for the full and the Markov model), which will cause
prediction intervals that are too narrow. This can be rectified by bootstrap calibration (Sjöstedt-de Luna and Young,
2003).

Regarding parameter estimation, Cressie (1993, pp. 69–73) argues that variogram estimation is preferable to covari-
ance estimation because of its lower bias and because the variogram is defined for some processes that are not second
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Fig. 5. Coverage of 95%-prediction intervals for kriging with Gaussian and GMRF models. For the bilinear interpolation the alternative prediction
error variance (28) was used. In each subplot, the same parameter values as in Fig. 3 were used. Each run was iterated three times, the individual
results are shown, with their respective means indicated by a line. Legends are explained in Fig. 3, except [Exponential] which amounts to kriging
with a Gaussian field with exponential covariance function.

order stationary. When, as in the models we investigate, the covariance is defined there is a simple relationship between
covariance and variogram, such that the variogram can be used for estimation while the covariance formulation is used
for the kriging equations as in Eq. (3).

From the empirical variogram calculated for points in the estimation set separated less than half the maximal distance,
we estimated the parameters r and �2

� for the exponential model, and the nugget variance �2
ε , by means of the package

geoR (Ribeiro and Diggle, 2001). Although the GMRF-parameters could also be estimated directly from data, we used
a simpler solution where the GMRF-parameters where chosen to fit an exponential model (as we did in Section 4.1)
but now with estimated range parameter r̂ . This issue is discussed further in Section 6.

The comparison of PRESSMarkov and PRESSexponential when parameters are estimated from data (see Fig. 6) was
similar to the results achieved with known parameters, in Section 4.1. Naturally, a larger variability in the results occurs
when parameters are fitted from data. The GMRF kriging results were good compared to kriging with the full model,
and the better quality of bilinear interpolation (compared to nearest neighbour interpolation) was still appreciable.

Regarding coverage with estimated parameters (Fig. 7), the quality of the GMRF-approximation is similar to that of
the full Gaussian model. The higher quality of the bilinear, when compared to nearest neighbour interpolation, is still
perceivable although not as marked as for known parameter values.

4.3. Computation times

The computations were performed on a 2.7 GHz Intel Xeon with 2 GB RAM. Matlab’s solvers are well optimized for
dense linear systems. Therefore, all calculations for the full Gaussian field were done in Matlab. For the GMRF model
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Fig. 6. Quotient of prediction error sum of squares, PRESSMarkov
PRESSexponential

, for different parameter values and number of observations, etc. For the exponential

Gaussian field, estimated covariance parameter values were used while for the GMRF the precision parameters were chosen to fit an exponential
with the above estimated range. PRESS is calculated from the kriging result in M = 2000 validation points distributed in the area according to a
uniform distribution. Legends are explained in Fig. 3.

the sparse systems were setup and solved in a c-routine utilizing the library GMRFLib (Rue, 2001). Initial work (such
as reading the data and calculating the interpolation matrix) and plots of results were done in Matlab. All simulations
and parameter estimations were done in R, and the package R.matlab (Bengtsson, 2004) was utilized to automatize the
procedures.

Computation times for kriging with the full model are in Fig. 8 compared to the times yielded by exploiting a Markov
approximation (for the same samples as in Fig. 3). The times include the calculation of prediction error variances at
all predictive locations. This, the most time consuming part of the calculations for the GMRF approximation, was not
reported in Furrer et al. (2006). The computation demand is of order n3 for kriging with the full model, while for the
GMRF-approximation, it is of order N3/2 for the predictions and N log(N)2 for the prediction error variances. Thus,
even grids with many more nodes than the number of observations are useful. The computation time for the Markov
approach does only increase slightly with n. If the number of grid points is chosen so as to be proportional to the
number of observational points, i.e. N ∝ n, the computational complexity for predictions is still only of order n3/2 (as
compared to n3 for the full system).

5. Application to soil data

We apply the methods from the preceding sections to a data set of elemental composition of forest soil. The data
consist of 9606 data points of magnesium oxide concentrations measured by the soil geochemical mapping programme
of the Geological Survey of Sweden. Collection was done at irregular forest locations, with roughly 1 observation
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per 6–7 km2, and covered all of southern Sweden, from the southern coast up to about the latitude of Stockholm.
(The coastal line is apparent in the sampling locations displayed in Fig. 10, upper left.) The total size of the area is about
300×400 km. The samples were taken at the C-horizon, i.e. at approximately 1 m’s depth, and the elemental composition
was analysed by X-ray fluorescence spectroscopy (XRF) of the fine fraction of the moraine. More information regarding
the data is found in Akselsson et al. (2004).

A preliminary analysis of data showed that after taking the logarithm, the data could be fitted well with a Gaussian
distribution. After subtraction of a linear trend estimated by least squares, we analysed residuals of log(MgO-content).
Inspection of omni-directional empirical variograms showed no apparent anisotropy. We will illustrate our methods by
performing kriging of de-trended logarithm of MgO-content, under the assumption that detrended data are stationary
and isotropic. To do this, the empirical variogram calculated using every fifth data point with distances up to half the
maximal distance was fitted to an exponential variogram (Fig. 9), as described in Section 4.2. The fitted parameters
were range r = 1.19× 105 m, partial sill �2

� = 0.138 and nugget �2
ε = 0.087.

We calculated kriging predictions on a fine grid of size 300× 300 using GMRF-kriging with bilinear interpolation.
To avoid edge effects, as discussed in Section 4.1, the grid was extended outside the measurement area.

The observations, predictions and prediction error variances are displayed in Fig. 10. The upper right subplot displays
predictions for all grid locations, and thus indicates the extension of the grid outside the measurement area. The lower
subplots display predictions and prediction error variances in the area of interest. The excluded gridpoints reside outside
the measurement area, most of them in the sea. Calculation of the 300×300=90, 000 predictions and prediction error
variances took about 100 s, on a 2.7 GHz Intel Xeon with 2 GB RAM. If predictions and prediction error variances
are wanted at nongrid locations this is done at (essentially) no extra cost by following the methods presented in
Sections 3.2 and 3.3 or 3.3.1.
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Fig. 10. Observations, i.e. detrended log(MgO), and the predictions and prediction error variance calculated on a 300 × 300 grid covering the
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taken (mainly at sea and in lakes). In order to decrease image size, images were down sampled, i.e. not all observations or predictions are displayed.)

6. Discussion

In this article we have suggested using GMRF approximations of Gaussian fields as a computationally effective
means of kriging. The fundamental course of the analysis is as follows: establish a reasonably dense grid, approximate
the Gaussian field with a GMRF on this grid, and then obtain kriging predictions on the grid. Predictions between
grid locations are then found through interpolation of the kriging predictions at grid locations. By fitting a stationary
field, which is approximated by a GMRF on a regular grid, we obtain the computational benefits of a Markov field,
but avoid the disadvantages (pointed out by Wall, 2004) of conditional autoregressions for irregularly spaced data.
Further note, that although we use an approximate field to obtain sparse precision matrices, we do not change the
formula of the kriging weights (3). Thus, the predictions will fulfil all properties that are general for kriging. These
include, for example, kriging to the mean and screening of distant observations when there are closer observations in
the same direction. Moreover, since we assume nonlattice locations, and since the basis of the analysis is a Gaussian
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field on continuous coordinates, the estimation of the nugget and the covariance parameters can utilize the important
information extracted from closely positioned observations. However, in the actual fitting of the GMRF to the Gaussian
field, the respective correlations are compared only at distances present in the lattice. For distances shorter than one
gridcell, the interpolation determines the correlation. The approximate assumptions on �2(t) are chosen as a balance
between good approximation of the Gaussian field and computational efficiency. That �2(t) is modelled as white noise
gives computational efficiency, but, as argued in Section 3.3.1, the accompanying addition of Var(�2(t0)) produces
overestimated prediction error variance at locations within cells. In many practical problems, predictions are wanted
on a grid, but data are collected at arbitrary locations. The problem with overestimation of the prediction error variance
is then eliminated if one chooses the grid on which predictions are wanted, as the lattice for the GMRF. Bilinear
interpolation is then employed to better utilize the data collected at nonlattice locations. This yields predictions and
prediction error variances of higher quality than with nearest neighbour interpolation.

The assumptions also include formulation of Var(�2(t)), where two possibilities were mentioned in Section 3. To
calculate the GMRF covariances in (15) the precision matrix, Q, must be inverted, while for the covariances of the
Gaussian field in (14) no such (computationally demanding) matrix inversion is needed. Further. Var(�2(t)) as in (15)
runs the risk of being negative. Another possibility is to define Var(�2) directly from the GMRF, i.e.

Var(�2(t))=
∑
j

kj Var(�1(t̃j ))−
∑
ij

kikj Cov(�1(t̃i ), �1(t̃j ), (30)

where kj = k(t, tj ). Also here Q must be inverted to calculate Var(�2(t)).
Using nearest neighbour interpolation both (14) and (30) give Var(�2(t))= 0 and thus �2(t) ≡ 0 everywhere.
In a small unpublished kriging simulation study with Var(�2(t)) as in (14), (15) and (30), respectively, the difference

in PRESS and coverage was found to be marginal. Regarding the GMRF not as a first hand model, but rather as a
computationally effective approximation of a Gaussian field, the used definition (14) is natural, and fast and easy to
calculate.

When unknown parameters were used, the GMRF-parameters were fitted in a two-step procedure: (1) Fit the param-
eters of a Gaussian field with nugget and exponential covariance function. (2) Fit the parameters of the GMRF to match
the covariance function in (1). In the second step Rue and Tjelmeland (2002) have precalculated GMRF parameters
fitted to the most common covariance functions, ensuring that the GMRF has a valid covariance matrix. As these fitted
parameters are available in GMRFLib, the implementation is easy. Further, the definition (14) of �2(t) requires that for
bilinear interpolation the parameters of the full Gaussian model are estimated even for GMRF kriging. For (15), only
the variance of �(t) is needed, while for (30) only GMRF parameters are used. Although the nugget and exponential
covariance function are always fitted using all distances present among the observations (thus also close pairs), it is
important that the grid is dense enough so that even correlations on small distances are used when fitting the GMRF to
the Gaussian field. However, as the results are surprisingly good even for quite small N (see Fig. 3 bottom right), the
bilinear interpolation seems to capture the correlation structure well enough to produce accurate results. The drawback
of the two-step fitting procedure is that the GMRF could theoretically get a better fit to data if it was fitted directly,
and thus the Markov model is somewhat handicapped in the simulation study. Still we believe that the difference is
minimal.

Although we used ordinary kriging in this article to exemplify the use of GMRFs for kriging, the method is not
restricted to a setting in which the mean is constant. In universal kriging, the mean is an unknown linear combination
of known functions, i.e. Z(t)=X�+�(t)+ε(t) where X= (fj (ti ))i,j is an n×p-matrix of known quantities. Since the
mean value specification can take care of large scale variability in the area and the related departure from stationarity,
a global model can more often be fitted than if using a model with constant mean.

The predictor at point t0 (Z(t0)= fT
0 �+ �(t0)+ ε(t0)) has kriging weights (see e.g. Cressie, 1993, p. 154)

a= �−1(�+ X(XT�−1X)−1(f0 − XT�−1�)),

where f0 = (f1(t0), . . . , fp(t0))T. The unconditional prediction error variance is then

�2
r (t0)= �2

�(t0)− �′�−1�+ (f0 − X′�−1�)′(X′�−1X)−1(f0 − X′�−1�).

Thus, to accomplish fast calculations with the Markov approach we must now find a good expression for �−1� and
�−1X when predicting simultaneously on the grid on which the GMRF is defined. However, �−1� is still calculated
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as in (23). In analogy with (24) �−1X simplify if KXN = X to

�−1X= �−1KXN = �−1�QXN ,

where XN is an N × p-matrix (fj (t̃i ))ij .
The interpolated Markov model is thus suitable for fast universal kriging (at least) as long as KXN = X. This is

true for K defined in Sections 3.1.1 and 3.1.2, not only for X = 1 (ordinary kriging), but also when a linear trend in
two dimensions is assumed such that Xi· = (1 ti1 ti2) where ti = (ti1 ti2), or when a bilinear term is added such that
Xi· = (1 ti1 ti2 ti1ti2). For some other definitions of X it will be possible to ensure KXN = X by modifying the choice
of interpolation matrix K.

7. Conclusions

We argue that for kriging applications with large data sets where global features are of interest, a GMRF model
approximation is useful in reducing computational burden and memory requirements. The resulting predictor is an
exact kriging predictor, though it be calculated from an approximated covariance function. The resulting predictions
will thus fulfil all general kriging properties, such as kriging to the mean. The simulations in which data from a Gaussian
process with exponential covariance function are kriged with a GMRF model show that the quality of the predictions is
comparable to the results of kriging with the full model. The intended field of application is, however, for data sets that
are too large to handle with the full model. The largest reduction in computational demand is found for applications in
which only kriging predictions are needed. But even when prediction error variances are calculated, the reduction in
computational demand is considerable.

We also argue that when a GMRF is used to approximate a Gaussian field with continuous spatial index, a bilinear
interpolation within grid cells produces predictions and prediction error variances with appreciably better quality. This
is accomplished at the same computational cost, as the more commonly used nearest neighbour interpolation.
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Appendix A. Motivation of Eq. (21)

Let a be the vector of weights (Eq. (3)) for prediction at location t and ãi the corresponding vector at (grid) location
t̃i obtained by �← �̃i = Cov(Z, Y (t̃i )). It suffices to show that

a =
N∑

i=1

ki ãi . (A.1)

This follows immediately from (3), (12), and that
∑N

1 ki =1 and
∑N

1 ki�̃i =� (as long as locations where predictions
are wanted do not coincide with an observation used in the calculation).

Appendix B. Motivation of Eq. (25)

At lattice locations Var(�2(·)) = 0. Thus, the covariance matrix of the prediction errors on the lattice, Cr̃ =
(Cov(r(t̃i ), r(t̃j ))ij , from Section 3.3 is

Cr̃ = Q−1 −�T�−1�+ (1T
n�−1�− 1T

N)T(1T
n�−1�− 1T

N)

1T
n�−11n

.
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Insertion of expressions (22) and (23) gives us Eq. (25):

Q−1 −�T�−1�= (Q−1 − Q−1KTD−1K(Q+ KTD−1K)−1)

=Q−1(IN − KTD−1K(Q+ KTD−1K)−1)

=Q−1((Q+ KTD−1K)− KTD−1K)(Q+ KTD−1K)−1

=Q−1Q(Q+ KTD−1K)−1

= (Q+ KTD−1K)−1.

Appendix C. Supplementary data

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.csda.2007.09.018.
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