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their structure, the assumed genetic model, marker 
denseness, and marker informativity. This means that a 
constant critical limit of Z max  leads to tests associated 
with different signifi cance levels. Because of the above-
mentioned problems, from the statistical point of view 
the maximal lod score should be supplemented by a
p-value when results are reported. 

 Copyright © 2004 S. Karger AG, Basel 

 Introduction 

 The aim of linkage analysis is to infer the position (lo-
cus) along one or several chromosomes, of a gene under-
lying or contributing to a certain trait, often related to a 
certain disease. Based on trait phenotype and DNA mark-
er data from a number of families, this is done by estimat-
ing the relative positions of the trait loci along the 
chromosome(s). The DNA marker data give information 
about occurrence of crossovers at the regions close to the 
trait locus during meioses; markers cosegregate with the 
trait phenotypes in the families. Statistically, linkage 
analysis can be formulated as a hypothesis testing prob-
lem for testing the null hypothesis ( H  0 ) that the trait locus 
is unlinked to the chromosomal region(s) of interest 

 Key Words 
 Linkage analysis  �  Lod score distribution  �  Pointwise/
genomewide p-value

  Abstract 
 Parametric linkage analysis is usually used to fi nd chro-
mosomal regions linked to a disease (phenotype) that is 
described with a specifi c genetic model. This is done by 
investigating the relations between the disease and ge-
netic markers, that is, well-characterized loci of known 
position with a clear Mendelian mode of inheritance. As-
sume we have found an interesting region on a chromo-
some that we suspect is linked to the disease. Then we 
want to test the hypothesis of no linkage versus the al-
ternative one of linkage. As a measure we use the maxi-
mal lod score Z max . It is well known that the maximal
lod score has asymptotically a (2 ln 10) –1   !  (1/2  �  2 (0) + 
1/2  �  2 (1)) distribution under the null hypothesis of no 
linkage when only one point (one marker) on the chro-
mosome is studied. In this paper, we show, both by sim-
ulations and theoretical arguments, that the null hypoth-
esis distribution of Z max  has no simple form when more 
than one marker is used (multipoint analysis). In fact, the 
distribution of Z max  depends on the number of families, 
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against the alternative ( H  1 ) that it is located on one of the 
chromosomes. One can use either parametric or nonpara-
metric methods. In this paper, a parametric method is 
one where the genetic model (mode of inheritance and 
disease allele frequency) is assumed to be known. (Al-
though there are parametric models that are mode of in-
heritance free, cf.  [1] .) It is traditionally based on loga-
rithms of likelihood ratios, so called lod scores, for testing 
 H  0  against  H  1 . The nonparametric methods are typically 
based on allele sharing statistics and do not require knowl-
edge of the genetic model. It is well known that paramet-
ric linkage analysis is more powerful than nonparametric 
when the underlying genetic model is known and true. On 
the other hand nonparametric linkage analysis is more 
robust against misspecifi cation of the genetic model. 

 This paper addresses theoretical and practical aspects 
of parametric linkage analysis when we use the maximal 
lod score Z max  as test statistics. It is statistically important 
that the  H  0  distribution of Z max  is (asymptotically) inde-
pendent of a number of nuisance parameters such as ge-
netic model, pedigree structures, marker data informativ-
ity and trait phenotypes. Otherwise, there is no natural 
correspondence between p-values and Z max , rendering 
statistical conclusions more diffi cult to draw when knowl-
edge of the genetic model can be questioned. It is well 
known that the maximal lod scores have a well defi ned 
asymptotic limit distribution when only one marker is 
studied (two-point linkage analysis), cf.  [2] . In this paper 
we show, both by theoretical arguments, simulations and 
a real data set, that the situation is completely different 
for maximal lod scores with many markers (multipoint 
linkage analysis). In this case, the relation between Z max  
and the p-value depends a lot on several factors, such as 
number and form of pedigrees, marker informativity, and 
the assumed genetic model. The reason for the different 
statistical properties of Z max  in two-point and multipoint 
linkage analysis is that the parameter space for the param-
eter of interest is the recombination fraction   �   in two-
point analysis and disease locus position  x  in multipoint 
analysis. In the former case the parameter space is the 
interval [0, 0.5], with the  H  0  parameter 0.5 as right end 
point. In the latter case the parameter space is not con-
nected, and the H0 parameter is an isolated point. 

 We also briefl y discuss some alternatives to lod scores 
with asymptotic  H  0  distributions that are independent of 
nuisance parameters for multipoint analysis. These in-
clude extensions of affected pedigree methods (APM)  [3–
6]  and mod scores  [7–9] . 

          Parametric Linkage Analysis

One Marker
Let ψ be the assumed genetic model parameters (disease
allele frequency and penetrance parameters) and θ the re-
combination fraction between the marker and disease lo-
cus. Furthermore, let Y and M denote the collection of
disease phenotypes and marker data, respectively. Then
the lod score

Z(θ;ψ) = log10

P (Y,M |θ, ψ)
P (Y,M |0.5, ψ)

is used for testing H0 : θ = 0.5 against alternatives θ <
0.5. The composite hypothesis testing problem uses the
alternative H1 : θ ∈ [0, 0.5). The total parameter space
can be depicted as

with �indicating H0. Thus H0 is a boundary point of
the parameter space. The maximal lod score

Zmax(ψ) =

sup
0≤θ≤0.5

Z(θ;ψ) = (2 ln 10)−12 ln
supθ P (Y,M |θ, ψ)
P (Y,M |0.5, ψ)

(1)

has asymptotically a (2 ln 10)−1 × ( 1
2χ

2(0) + 1
2χ

2(1)) dis-
tribution under H0 as the number of pedigrees grows and
when the genetic model is correctly specified. This is asymp-
totically independent of pedigree structure, marker infor-
mativity and disease phenotypes, although for finite sam-
ples the distribution will usually depend on such quantities
to some extent, cf. Section 4.4 and 4.6 in [2]. Mixture of χ2

distributions typically arise for log likelihood ratios under
the null hypothesis when the H0 parameter is a boundary
point of a connected parameter space, cf. [10]. In (1) the
same asymptotic limit distribution also appears when ψ is
misspecified, cf. [11] and [12]. Hence the significance level

α(T ) = PH0(Zmax(ψ) ≥ T ) (2)

is asymptotically independent of the nuisance parameter
ψ as well as ψtrue, the true value of the genetic model
parameters. It is common practice to use a maximal lod
score as a measure of significance rather than a p-value,
cf. [2] and [1]. Since the asymptotic distribution of (1) is
robust to model misspecification, there is asymptotically a
one-to-one correspondence between Zmax and the p-value
α(Zmax) in the single-marker case. Under mild regularity
conditions, this is true also if the pedigrees are different,
although larger sample sizes may then be required for the
asymptotic approximation to be accurate, cf. [12].
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Multipoint Linkage Analysis

Simultaneous analysis of several linked markers (multi-
point analysis) is preferable to the single marker analysis
when at least two markers are available on a chromosome,
cf. [6]. The parameter of interest in multipoint analysis is
the disease locus x measured in Morgans, and we write

Z(x;ψ) = log10

P (Y, M |x, ψ)
P (Y, M |∞, ψ)

(3)

where x = ∞ corresponds to H0. The parameter space is
no longer connected but can be depicted as

where K is the number of chromosomes and li the genetic
length of chromosome i. The maximal lod score

Zmax(ψ) = maxx∈H 1Z(x; ψ) (4)

does no longer converge to a limiting distribution under
H0 as the number of pedigrees grows. The reason is that
the parameter space is no longer connected. This implies
that the maximal lod score (4), as opposed to (1), has a
degenerated limit distribution at −∞ as the number of
families N −→ ∞. For multipoint linkage analysis the
significance (2) for a given threshold T depends heavily on
ψ, the number of pedigrees, their structure, and the disease
and marker phenotypes. In multipoint analysis, we need
not consider ψtrue when computing p-values. The reason
is that the H0 distribution of Zmax depends only on ψ, not
on ψtrue, since H0 is an isolated point in parameter space.

2

H

H0

1
3

. .
 .

l

l

l }1

lk

Pointwise Distribution

ternal and maternal meioses. They are set to 0 or 1 if the
ith nonfounder’s allele at position x originate from a grand-
father or a grandmother. The probability distribution over
possible inheritance vectors given marker data is referred
to as the inheritance distribution. In the absence of any
genotype information, the probability distribution of v(x)

The number of founders in the pedigree is denoted by
f and the number of nonfounders by n − f , where n is
the number of individuals in the pedigree. We also as-
sume that founders are unrelated and carry 2f alleles that
are not IBD (identical by descent). At one locus x in
the genome the inheritance pattern can be represented
by a binary inheritance vector, v(x), defined as v(x) =
(p1,m1, p2,m2, ..., pn−f ,mn−f ). The coordinates of the in-
heritance vector pi and mi describe the outcome of the pa-

is uniform over the set V of all 22(n−f) possible inheritance
vectors (Puniform). More details about inheritance vectors
can be found in [6].

For two-point analysis (one marker and disease), we
define the inheritance vector slightly differently. Let v(θ)
be the inheritance vector of a locus at recombination frac-
tion θ from the single marker. Although this locus is not
unique (there are often two loci having the same recom-
bination fraction to the marker), the marker gives exactly
the same information about both of these inheritance vec-
tors. Hence, as we will see below, this definition makes
sense when defining two-point lod scores.

Parametric and nonparametric linkage analysis is de-
fined in a unified framework in [6] using inheritance vec-
tors. A scoring function S that depends on inheritance
vector v (= v(x) or v(θ)) and the observed phenotypes Y
is specified. It is a measure of compatibility between v and
Y , i.e. the extent to which the phenotype vector Y can be
explained by an inheritance vector v at the disease locus.
In parametric linkage analysis, when the inheritance vector
is known, P (Y |v) is the likelihood of observed phenotypes
Y in the pedigree conditioned on the inheritance vector v.
The scoring function for one family with m meioses is

S(v) =
P (Y |v)∑

w∈V Puniform(w)P (Y |w)
=

P (Y |v)∑
w∈V 2−mP (Y |w)

,

(5)

where for simplicity, we omit the assumed genetic model
parameters ψ in the notation. For two-point analysis, we
define the distribution

Pθ(w) = P (v(θ) = w|M),

which quantifies the information the single marker yields
at a recombination fraction θ away from it. Then the two-
point lod score Z(θ) and likelihood ratio LR(θ) can be
rewritten ([13]) as

Z(θ) = log10 LR(θ) = log10

∑

w

S(w)Pθ(w).

For multipoint analysis we let

Px(w) = P (v(x) = w|M)

quantify the information that the marker data gives about
inheritance at locus x. Then the multipoint lod score and
likelihood ratio can be written as
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Z(x) = log10 LR(x) = log10

∑

w

S(w)Px(w). (6)

The total multipoint lod score for N families, finally, is
obtained by summing the individual family lod scores,

Z(x) =
N∑

i=1

Zi(x), (7)

where Zi is the ith family score. For two-point analysis,
(7) remains true if we replace x by θ.

The two extreme cases of marker informativity are per-
fect marker data (LR(x) = S(v(x)) for one pedigree) and
no marker information at all (Puniform for one pedigree). If
we let E denote the expectation and LRp(x) the likelihood
ratio for perfect marker data we see from (6) that

LR(x) = E(LRp(x)|M).

From this and the fact that the H0 distribution of v(x) (in
a population of many pedigrees) is Puniform we get

EH0(LR(x)) = EH0(LRp(x)) = 1 (8)
VarH0(LR(x))≤VarH0(LRp(x)) when the variances exist,

(9)

where (9) follows from Jensen’s inequality (cf. [14]). Simi-
larly, we let Zp(x) = log LRp(x) be the lod score for perfect
marker data. Then

EH0(Zp(x)) ≤ EH0(Z(x)) ≤ 0, (10)

is also deduced from Jensen’s inequality. We also conjec-
ture that in most cases

VarH0(Z(x)) ≤ VarH0(Zp(x)), (11)

as a natural consequence of (9), although we have no gen-
eral proof of the second inequality. In other words, there is
less variation of the H0 distribution of the lod score around
the mean value for imperfect marker data. In the extreme
case of no marker data Z(x) = 0.

For two-point analysis, there is no marker information
at θ = 0.5 (Z(0.5) = 0), whereas perfect marker informa-
tion can arise only at θ = 0 if the marker is fully polymor-
phic. Hence, Zmax is derived quite differently in two- and
multipoint analysis. In the former case Z(θ) will be nega-
tive for most values of θ away from 0.5 under H0 but Zmax
is never negative. For multipoint analysis we maximize a
function Z(x) whose mean value under H0 is negative for
all x (unless there is no marker information somewhere),
and this often implies that Zmax is negative as well.

Genomewide Signifi cance Levels

The most straightforward method is to use Monte Carlo
simulations, that is

α(T ) ≈ 1
NR

NR∑
i=1

I(Zi
max ≥ T ) (12)

where Zi
max are independent copies of Zmax under H0 and

NR is the number of generated copies. Methods for simu-
lating Zi

max are described for example in Section 9.7 of [2].
The Monte Carlo method is very general, but can some-
times be slow, especially for large pedigrees and low marker
informativity.

For perfect marker data (Z = Zp) we can use ana-
lytical methods based on Gaussian extreme value theory
to approximate α(T ) as described for example in [15] and
[16]. Notice first that Z(x) as well as family scores Zi(x)
are stationary processes under H0 when marker informa-
tion is perfect. We start assuming P (Z(x) = −∞) = 0
at all x under H0. This is typically true for most genetic
models except for those with complete penetrance and no
phenocopies. Let µi and σi denote the mean and standard
deviation of the ith family score Zi(x) under H0. Then

µ =
∑N

i=1 µi and σ =
√∑N

i=1 σ2
i are the mean and stan-

dard deviation of Z(x) under H0. Further

Z(x) = µ + σZ̃(x), (13)

where Z̃(x) =
∑N

i=1 σiZ̃i(x)/
√∑N

i=1 σ2
i and Z̃i(x) = (Zi(x)−

µi)/σi. Notice that Z̃ and all Z̃i are stationary processes
under H0 with mean zero and variance one. For large
sample sizes the central limit theorem implies that Z̃ ap-
proaches a Gaussian process with mean zero and unit vari-
ance. For this reason the genomewide significance level

α̃(T ) = PH0(Z̃max ≥ T ) (14)

of the Z̃ process, with Z̃max = maxxZ̃(x), is much more
stable with respect to variations of genetic model, pedigree
structures, and number of pedigrees. Because of (13) we
have

α(T ) = α̃((T − µ)/σ). (15)

If the data set is more informative, µ < 0 typically de-
creases and σ > 0 increases. The reason is that LR(x) =
10Z(x) under H0 becomes more spread out around the ex-
pected value 1 for an informative data set. This happens,
for instance, if the genetic model gets stronger, the number
of pedigrees increases, the pedigrees become more informa-
tive or the marker informativity increases. (In latter case

In this section we describe methods for approximating the
genomewide significance level α(T ) for multipoint lod scores.
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Results

Standardized lod scores Z̃(x) turned out very useful when
calculating p-values in parametric linkage analysis. We
calculated p-values using Monte Carlo simulations (12),
and for perfect marker data also the normal approximation
formula (16), and adjusted normal approximation formula

the process Z is no longer stationary, so that µ = µ(x) and
σ = σ(x) depend on x making (15) a bit oversimplified.
For a fixed x however, we have the desired inequalities for
µ(x) and σ(x) for perfect versus imperfect marker data in
(10) and (11).) Therefore, (15) implies that the p-value
curve as function of T is flatter the more informative the
data set is. Depending on T and the relation between µ
and σ, a more informative data set has smaller or larger
p-value than a less informative one.

Let T̃ = (T −µ)/σ. An approximate formula

α̃(T̃ ) ≈ 1 − e−µ(T̃ ) (16)

based on extreme value theory forGaussian processes,was
suggested in [15] (see also [17]). Here µ(T̃ ) = (1−Φ(T̃ ))(K+
2ρZ̃ ltotT̃

2) approximates the average number of upcross-
ings of Z̃ over the level T̃ , Φ is the cumulative distribution
function of a standard normal N(0, 1), ρZ̃ the crossover
rate of Z̃ and, ltot = l1 + . . . + lK the total genomic
length. The factor (1 − Φ(T̃ )) approximates the point-
wise significance level αpt(T ) = PH0(Z(x) ≥ T ) (assum-
ing that Z̃(x) ∼ N(0, 1)) and C = exp(K + 2ρZ̃ ltotT̃2)
is a factor correcting for multiple testing. In [16], (16)
was generalized in two ways. Firstly, a formula for the
crossover rate ρZ̃ was derived for arbitrary pedigree struc-
tures. Secondly, an adjustment for non-normality in (16)
was provided as follows: Let F̃ be the marginal distri-
bution of Z̃ and g = F̃−1 ◦ Φ. The transformed process
Y (x) = g−1(Z̃(x)) then has marginal distribution Φ. The
main idea of the adjusted normal approximation is that
better accuracy is achieved if (16) is applied to Y rather
than Z̃. With Ymax = maxxY (x), the adjusted normal
approximation becomes

α̃(T̃ ) = PH0(Ymax ≥ g−1(T̃ )) ≈ 1 − e−µadj(g
−1(T̃ )), (17)

where µadj(g−1(T̃ )) = αpt(T )Cadj , αpt(T ) = PH0(Y (x) ≥
g−1(T̃ )) = 1−Φ(g−1(T̃ )) is the pointwise significance level
defined below (16) and Cadj = exp(K + 2ρY ltot(g−1(T̃ ))2)
is an adjusted multiple testing factor.

In case ε = P (Z(x) −∞) > 0, we proceed by defining
(13) as well as µi and σi conditionally on the event Z(x) >
−∞. The procedure is similar except that we multiply
µ(T̃ ) and µadj(g−1(T̃ )) by a factor (1 − ε) to account for
the fact that the average number of upcrossings is reduced
by this factor.

(17). We present some figures with the p-values from the
multipoint analysis of a real data set containing pedigrees
ICEL80002 and ICEL80004, cf. Figure 3 and 4. These
are two Icelandic breast cancer families that were part of
the BRCA2 linkage studies, cf. [18] and Figure 2. For the
simulated data set we used four different pedigree struc-
tures and five different genetic models, cf. Figure 2 and
Table 1, in the study. Figures 5-6 and Figure 7 display the
calculated genomewide p-values for Model 3 and Model 4,
respectively for Pedigrees 1 - 4 as a function of threshold
T . It is assumed that the genome scan consists of the
22 autosomes, with sex-averaged chromosome lengths as
in [2], Table 1.2. As discussed in Section 4, formula (15)
suggests that a more informative data set has a flatter p-
value curve α(T ). Comparing models in the Figure 3, we
find that the stronger Model 1 with a lower rate of phe-
nocopies flattens the p-value curve compared to Model 2.
Genetic models 3 and 4 with the same penetrances but
different disease allele frequencies are compared in Fig-
ures 5 and 7. The changed disease allele frequency has
a little effect on the small Pedigrees 1 and 2 with only
two founders. The reason is that it is very unlikely with
more than one disease allele among the founders, even for
the weaker Model 4 with larger disease allele frequency
0.1. For Pedigrees 3 and 4, there are several unaffected
founders of low age. This makes the inheritance pattern
more uncertain for Model 3, since several founders may be
disease allele carriers. The analogous conclusions are valid
for models 1 and 5 and the real data set containing large
pedigrees, cf. Figure 3. Comparing Figures 5 and 6, with
two different sample sizes (N = 60 versus N = 180), we
find that increased sample size results in a flatter and lower
p-value curve for all four pedigrees. It is also seen that the
multigenerational Pedigree 3 results in much lower p-value
curve (that is, a smaller α(T )).

Table 1. Summary of details about the models. Affection status 
locus type is autosomal disease. The penetrance value fi is the con-
ditional probability that an individual is affected given the geno-
type with i disease alleles at the disease locus.

Model Disease allele
frequency

Penetrance values

f0 f1 f2

1 0.1 0.001 0.5 0.8
2 0.1 0.2 0.5 0.8
3 0.0033 age dependent penetrance
4 0.1 age dependent penetrance
5 0.0033 0.001  0.5 0.8

Penetrance values from the standard genetic model for breast 
cancer presented in [24], see table 2.
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Fig. 1. The total parameter space corresponds 
to the shaded area in the fi gure and  H  0  to the 
line [0,  l  ]  !  { �   0 }.

1)
 1 1

109

2)
1 1

9 1 9 3

1 1

111 1 1

15

5 510

1012 10

9

13

4

1

ICEL80002)

111

111

1

10 13 5 1411 1

5

10

6

9

10 9

7

3)
1 10

1 1 11 10 1 3

2 99

− unaffected

− affected

− unknown

Squares: males
Circles: females

4)
9 1

6 1 1 3

8 8

ICEL80004)

*

* Monozygotic twins are replaced by a single contrived individual

Fig. 2. Pedigrees used in the study. Each indi-
vidual is assigned to one of 15 liability classes, 
indicated in the fi gure, depending on age and 
affection status. Individuals whose parents are 
members of the pedigree are called nonfound-
ers and those whose parents are not members 
of the pedigree are known as founders. Pedi-
grees ICEL8002 and ICEL80004 are family 2 
and reduced family 4, respectively on page 751 
in  [18] .

The effect of marker informativity is a bit more delicate
to interpret. In Figures 8-9, the effect of marker heterozy-
gosity and marker spacing is shown for Models 1, 2, and
5, and Pedigree 1. For all three models, the p-value curve
is wider the more informative marker data is. The p-value
curve essentially gets lower with increased marker infor-
mativity for the strongest Model 5, whereas the opposite
is true for the other two Models 1 and 2. This shows that
perfect marker data approximations for lod score p-values
can be either conservative or anticonservative, depending
on the genetic model. The effect of marker informativity

is stronger for the larger Pedigree 4 in Figure 10. A dif-
ference compared to Figure 8 is that Pedigree 4 is more
informative than Pedigree 1 for Models 1 and 5, making
the p-value curve flatter and lower.

It follows from (17) that the genomewide p-value at
least for perfect marker data is approximately a function of
the pointwise p-value αpt(T ). For this reason, we also stud-
ied how αpt(T ) depends on the informativity of the data
set. The results are analogous to those for genomewide
p-values. A technical report with results and figures can
be obtained from the authors.
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Fig. 3. Comparisons between the p-val-
ues in a multipoint linkage analysis plot-
ted against the maximal lod score for the 
normal approximation (––––), the simu-
lation procedure (– – –) given by (12) us-
ing 100,000 replicates and the adjusted 
normal approximation (· · · · ·) for a 
data set containing families ICEL80002 
and ICEL80004 and four different mod-
els. Marker data is perfect and the chro-
mosome region is 6.43 cM long.    

Fig. 4. Comparisons between the p-val-
ues in a multipoint linkage analysis plot-
ted against the standardized maximal 
lod score for the normal approximation 
(––––), the simulation procedure (– – –) 
given by (12) using 100,000 replicates 
and the adjusted normal approximation 
(· · · · ·) for a data set containing families 
ICEL80002 and ICEL80004 and four 
different models. Marker data is perfect 
and the chromosome region is 6.43 cM 
long.
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Fig. 5. Comparisons between the ge-
nomewide p-values for the normal ap-
proximation (––––), the simulation pro-
cedure (– – –) given by (12) using 10,000 
replicates and the adjusted normal ap-
proximation (· · · · ·) for Model 3 and 60 
families for each pedigree type. Marker 
data is perfect.

      Fig. 6.  Comparisons between the ge-
nomewide p-values for the normal ap-
proximation (––––), the simulation pro-
cedure (– – –) given by (12) using 10,000 
replicates and the adjusted normal ap-
proximation (· · · · ·) for Model 3 and 
180 families for each pedigree type. 
Marker data is perfect. 
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 Fig. 8.  Comparisons between the chro-
mosomewide (chromosome 1, length 
298.5 cM) p-values for perfect and im-
perfect data for 60 families of pedigree 
type 1 for the simulation procedure giv-
en by (12) using 10,000 replicates. Sim-
ulations are done for three different 
models. All markers have J possible al-
leles with equal probability 1/J. Dis-
tance between markers for imperfect 
marker data is 10 cM. Only nonfound-
ers are genotyped when marker data is 
incomplete. 

 
 Fig. 7.  Comparisons between the ge-
nomewide p-values for the normal ap-
proximation (––––), the simulation pro-
cedure (– – –) given by (12) using 10,000 
replicates and the adjusted normal ap-
proximation (· · · · ·) for Model 4 and 60 
families for each pedigree type. Marker 
data is perfect. 

D
ow

nl
oa

de
d 

by
: 

S
to

ck
ho

lm
s 

U
ni

ve
rs

ite
t  

   
   

   
   

   
   

   
   

   
   

 
19

8.
14

3.
54

.1
 -

 1
/1

5/
20

16
 8

:4
1:

28
 P

M



 Kurbasic  /Hössjer    Hum Hered 2004;57:207–219 216

              Fig. 9.  Comparisons between the chro-
mosomewide (chromosome 1, length 
298.5 cM) p-values for perfect and im-
perfect data for 60 families of pedigree 
type 1 for the simulation procedure giv-
en by (12) using 10,000 replicates. Sim-
ulations are done for three different 
models. All markers have J = 10 possible 
alleles with equal probability 1/10. For 
imperfect data, the markers are equally 
spaced with distance  �  cM and only non-
founders are genotyped. 

Liab. class  Age group Penetrance of genotype

dd Dd DD

Cumulative risk for unaffected females
1   <30 0.00009 0.008 0.008
2 <  30–39 0.00146 0.083 0.083
3 <  40–49 0.0083 0.269 0.269
4 <  50–59 0.0210 0.469 0.469
5 <  60–69 0.0390 0.616 0.616
6 <  70–79 0.0610 0.724 0.724
7 680 0.0820 0.801 0.801

Density for affected females
8   <30 0.00002 0.00167 0.00167
9 <  30–39 0.00026 0.01276 0.01276

10 <  40–49 0.00112 0.02305 0.02305
11 <  50–59 0.00137 0.01711 0.01711
12 <  60–69 0.00226 0.01260 0.01260
13 <  70–79 0.00218 0.00908 0.00908
14 680 0.00213 0.00654 0.00654

Product of the penetrances for the monozygotic twins
15 0.00000029 0.000294 0.000294

Table 2. Penetrance values used in the study for models three 
and four. Seven age groups ! two disease classifi cations, affected 
and unaffected, were used. Unaffected males and individuals 
with unknown affection status were assigned to liability class one. 
Disease and normal allele at the disease locus are denoted by d 
and D, respectively. They give rise to three different genotypes.
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Fig. 10. Comparisons between the chromosomewide (chromosome 1, length 298.5 cM) p-values for perfect and 
imperfect data for 60 families of pedigree type 4 for the simulation procedure given by (12) using 10,000 repli-
cates. Simulations are done for three different models. All markers have J possible alleles with equal probability 
1/J. Distance between markers for imperfect marker data is 10 cM. Only nonfounders are genotyped when 
marker data is incomplete.

An essential issue in this paper was to find out and explain
the behaviour of p-values based on maximal lod scores. For
multipoint linkage analysis we have found, both by exten-
sive simulations and theoretical arguments, that the H0

distribution of pointwise and maximal lod scores depend
heavily on genetic model parameters, number and struc-
ture of pedigrees, phenotypes, and marker informativity.
For this reason the p-value is a more appropriate perfor-
mance measure than the maximal lod score itself.

It is possible to use alternative approaches in paramet-
ric linkage analysis than traditional lod scores whose Zmax
distributions under H0 are less sensitive to variations of
nuisance parameters. One possibility is to define a mod
score ([7], [8], [9])

Z(x) = sup
ψ

Z(x;ψ) (18)

by maximizing (3) over a predefined set of genetic model
parameters. In this case the parameter (x, ψ) contains
both the disease locus x and genetic model parameters ψ,
of which the latter are nuisance parameters. Let ψ0 be a
set of genetic model parameters corresponding to no ge-
netic effect. For a chromosome [0, l] of length l, the null
hypothesis is no longer formulated as x = ∞ but rather
as ’a disease locus’ x ∈ [0, l] with no genetic component
(ψ = ψ0). To be precise, x is a disease locus only when
there is a genetic component, but we may think of (x, ψ0)
as the limit of (x, ψ) when ψ → ψ0. This parameter space,
illustrated in Figure 1, is connected if the genetic model
parameter space ψ is connected. As a result, the distribu-

Summary and Other Approaches
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The nonparametric linkage method in Genehunter ([6])
is based on an allele sharing score function S(v) and NPL
score

Z(x) =
∑

w

S(w)Px(w), (19)

tion of Z(x) under H0 is asymptotically free from nuisance
parameters. Depending on the set of genetic models {ψ}
locally around ψ0 and whether or not ψ0 is at the bound-
ary of {ψ}, the limit distribution can be either a χ2 dis-
tribution or a mixture of χ2 distributions, cf. [10], [19],
and [20]. Hence, at least the pointwise p-value αpt(T ) is
asymptotically free from nuisance parameters.

As a final illustration showing the usefulness of the Z̃
score, we calculated p-values for the real dataset assuming
marker data is perfect, cf. Figures 3 and 4, and found that
the p-value curves for Z vary much more between the mod-
els than for Z̃, although we have only two families and the
Central Limit Theorem approximation is expected to be
inaccurate. In the real dataset 64% of individuals were
typed for four markers, D13S1246, D13S260, D13S171,
and D13S267. The maximal lod score obtained in mul-
tipoint analysis (with Genehunter, cf. [6]) for the breast
cancer model (Model 3) is 2.99. Corresponding standard-
ized maximal lod score Z̃ is 4.13. We approximated the
p-value for this threshold with the value 0.051 obtained
from the simulation procedure (12) and assuming perfect
marker data. Corresponding p-values obtained for models
1, 2, and 5 and lod score 2.99 are 0.001, 0.000, and 0.021,
respectively. These should be compared to the p-values
0.01, 0.08, and 0.04 for the standardized threshold 4.13.
This illustrates our findings that standardized lod scores
Z̃ are more closely related to p-values than unstandardized
ones.
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for one pedigree with Px as defined in Section 3. The score
function S is standardized so that Z(x) has zero mean and
unit variance under H0 when the marker information is
perfect. This method originally goes back to the affected
pedigree method in [3], although these authors focused on
identity by state (IBS) rather than IBD sharing. It is also
possible to define S for genetic models with other phe-
notypes than affected/nonaffected, cf. [9], [20], [21] and
[22] and use it for parametric linkage analysis. In fact, a
large class of scores (19) can be obtained by differentiat-
ing the lod score (3) with respect to ψ at ψ0. In that case,
Z(x) can be interpreted as a score test version of the mod
score (18), which is a profile likelihood curve with ψ being
the profiled set of parameters.

When several family scores (19) are added and stan-
dardized to have unit variance under H0, the total NPL
score is asymptotically normally distributed and quite in-
sensitive to variation of genetic model parameters. A mod-
ified version of (19) suggested in [23] makes the H0 distri-
bution less sensitive to variation in marker informativeness
as well. As a result, the pointwise p-value αpt(T ) is asymp-
totically free of nuisance parameters. However, the same
is not true for the genomewide p-value α(T ), since the ef-
fective amount of multiple testing depends for example on
pedigree structure, see [17], [15], and [16].

As a practical implication of our work, we suggest, if
traditional lod scores are to be used in multipoint linkage
analysis, that they are reported together with p-values. An
alternative is that the standardized version Z̃ from Section
4 is plotted and used in the analysis, cf. Figure 4. It is in
fact an NPL score with S as in (5), standardized to have
mean zero and unit variance under H0 (S ← (S−µi)/σi for

family i) and with family weights σi/
√∑N

i=1 σ2
i , cf. (13).

For imperfect marker data, we define each family score
according to (19) or use the approach in [23]. How Z̃
compares with mod scores and NPL scores with other S
in terms of power and robustness to model misspecification
will depend on both the true and assumed genetic model,
pedigree structure(s), sample size, etc. This is certainly a
topic for future research.
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