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SUMMARY

In this paper, we develop a general strategy for linkage analysis, applicable for arbitrary pedigree struc-
tures and genetic models with one major gene, polygenes and shared environmental effects. Extending
work of Whittemore (1996), McPeek (1999) and Hössjer (2003d), the efficient score statistic is computed
from a conditional likelihood of marker data given phenotypes. The resulting semiparametric linkage
analysis is very similar to nonparametric linkage based on affected individuals. The efficient score S de-
pends not only on identical-by-descent sharing and phenotypes, but also on a few parameters chosen by
the user. We focus on (1) weak penetrance models, where the major gene has a small effect and (2) rare
disease models, where the major gene has a possibly strong effect but the disease causing allele is rare.
We illustrate our results for a large class of genetic models with a multivariate Gaussian liability. This
class incorporates one major gene, polygenes and shared environmental effects in the liability, and allows
e.g. binary, Gaussian, Poisson distributed and life-length phenotypes. A detailed simulation study is con-
ducted for Gaussian phenotypes. The performance of the two optimal score functions Swpairs and Snormdom
are investigated. The conclusion is that (i) inclusion of polygenic effects into the score function increases
overall performance for a wide range of genetic models and (ii) score functions based on the rare disease
assumption are slightly more powerful.
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1. INTRODUCTION

The goal of linkage analysis is to find the position (locus) along the genome of a gene which causes or
increases the risk of development of a certain inheritable disease. Disease related quantities, so called
phenotypes, and DNA samples, are collected for a number of families with aggregation of the disease.
The DNA samples are typed at a large number of genetic markers, distributed throughout the genome.
Using information from the markers, loci are sought at which segregation of DNA is correlated with
the inheritance pattern of the disease. Since each individual’s phenotype is a blurred observation of the
two copies of the disease gene (disease alleles) that he/she carries, DNA transmission is correlated with
phenotype segregation in close vicinity of the disease locus.

If genetic model parameters (disease allele frequencies and penetrance parameters) are known, the lod
score of Morton (1955) can be computed at each locus. For complex diseases, the genetic model is rarely
known and alternative procedures have been proposed. One possibility is to regard the genetic model
parameters as nuisance parameters and optimize the lod score with respect to them at each locus. This is
the mod score approach of Risch (1984) and Clerget-Darpoux et al. (1986).
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For binary traits, nonparametric linkage (NPL) is another method developed in situations when the
genetic model parameters are unknown. The affected-pedigree-member (APM) method is the most
commonly used version of NPL. A score function S is used which does not require specification of a
genetic model. Instead, it quantifies the extent to which the APMs share their alleles identical-by-descent
(IBD) from the same founder alleles, see e.g. Penrose (1935), Weeks and Lange (1988), Fimmers et al.
(1989), Whittemore and Halpern (1994) and Kruglyak et al. (1996).

The NPL method can be extended to more general phenotypes by first noting that the lod score
is equivalent to a conditional likelihood L of DNA marker data (MD) given phenotypes (Whittemore,
1996). By differentiating log L with respect to genetic model parameters a score function S is obtained.
Whittemore (1996) showed that allele sharing score functions S used in NPL can be used to construct an
appropriate L . The opposite route is to start from L , based on a biologically based genetic model with
disease allele frequencies and penetrance parameters, and then to compute S. McPeek (1999) showed, for
binary traits, arbitrary pedigree structures and affected-only phenotypes, that several allele sharing score
functions S could be derived in this way. McPeek’s work was generalized in Hössjer (2003d) to arbi-
trary monogenic models, e.g. Gaussian, Cox proportional hazards and logistic regression models. The
resulting score functions S depend on IBD allele sharing in the pedigree, the observed phenotypes and
a small number of parameters which have to be specified by the user. This approach was referred to as
semiparametric linkage (SPL) in Hössjer (2003d).

The purpose of this paper is to extend the work of McPeek (1999) and Hössjer (2003d) to mixed gen-
etic models with one major susceptibility locus and polygenes/shared environmental effects. In Section
2, we define basic genetic concepts. In Section 3, we provide a general formulation of the efficient score
function approach. In Section 4, we define a broad class of genetic models which includes several existing
models based on Gaussian, binary, life-length or Poisson phenotypes as special cases. In Section 5, we
derive the efficient score functions S for weak penetrance models, where the major gene has a small effect
on the disease, and rare disease models, where the disease allele is rare. A simulation study in Section
6 for the Gaussian mixed model reveals that more powerful and robust procedures are obtained when
polygenic effects are included in the score function S. Some conclusions and further recommendations
are given in Section 7. In Section A of supplementary data available at Biostatistics online, henceforth
denoted HS, we show that the SPL approach is asymptotically equivalent to mod scores under the null
hypothesis of no linkage. In Section B of HS, we derive an orthogonal decomposition of functions of
several genotypes. This is used in Section 5.1 to derive weak penetrance optimal score functions, but we
believe it to be of independent interest. For instance, the classical variance components decomposition of
genetic variance (Fisher, 1918; Kempthorne, 1955) can be obtained from these expansions. Finally, the
proofs are collected in Section C of HS.

2. BASIC GENETIC CONCEPTS

Consider a pedigree with n individuals of which f are founders (without ancestors in the pedigree) and
n − f nonfounders. Assume that two forms of the disease gene exist—the normal allele (0) and the
disease allele (1). Each individual has a pair of alleles (genotype), of which one is inherited from the
father and one from the mother. The genotypes of all pedigree members can be collected into a vector
G = (G1, . . . , Gn) = (a1, . . . , a2n), where Gk = (a2k−1, a2k) is the genotype of the kth individual, with
a2k−1 and a2k the paternally and maternally transmitted alleles, respectively. We will use the convention
that founders are numbered k = 1, . . . , f . Since the gene of interest is unknown, we do not observe
G, but rather a vector of disease phenotypes Y = (Y1, . . . , Yn). Here Yk is the phenotype of the kth
individual, a quantity related to the disease. This could be binary (affected/unaffected) or a quantitative
variable such as insulin concentration, body mass index, etc. Some Yk may also represent unknown
phenotypes.
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Conditional likelihood score functions 315

Alleles are transmitted from parents to children according to Mendel’s law of segregation. At a certain
locus t , allele transmission can be summarized through the inheritance vector, introduced by Donnelly
(1983). It is defined as v(t) = (v1(t), . . . , vm(t)), where m = 2(n − f ) is the number of meioses and
vk(t) equals 0 or 1 depending on whether a grandpaternal or grandmaternal allele was transmitted during
the kth meiosis. A priori, grandpaternal and grandmaternal alleles are equally likely to be transmitted
during each meiosis, so that

P(v(t) = w) = 2−m (2.1)

for all binary vectors w of length m.
If τ is the disease locus, the phenotype vector Y will be correlated to v(τ) if the genetic component is

strong enough. It is standard in linkage analysis to look at the conditional distribution

w −→ P(v(τ ) = w|Y ), (2.2)

which differs from the prior (2.1). Moreover, (2.2) is unaffected by the way we sampled the pedigree
(ascertainment). The stronger the genetic component at τ is, the stronger is the discrepancy between
P(v(τ )|Y ) and the uniform distribution, because of co-inheritance of phenotypes and DNA at τ . Even at
loci around τ , the conditional distribution of the inheritance vector given phenotypes differs from (2.1),
although the amount of co-inheritance decays with the genetic distance from the disease locus. This
is because of occurrence of so called crossovers—random points along the chromosome where, during
meioses, segregation switches between grandmaternal and grandpaternal transmission.

In practice we do not observe the process v(·), but MD from all or a subset of the pedigree members
give incomplete information of it. As we will see in the next section, up to a multiplicative constant
the conditional probability Pt,θ (MD|Y ) serves as an approximation of (2.2). Here, θ is the set of ge-
netic model parameters (disease allele frequencies and penetrance parameters) and t corresponds to the
hypothesis t = τ .

3. CONDITIONAL LIKELIHOOD AND SCORE FUNCTIONS

Consider a chromosome of length tmax centimorgans (cM) with at most one disease locus τ located along
[0, tmax]. The hypothesis testing problem is

H0: τ is located on another chromosome

H1: τ ∈ [0, tmax].

The unconditional likelihood requires knowledge of MD, Y and the sampling scheme. Since the latter
is often (more or less) unknown, it is common in linkage analysis to consider the conditional likelihood
of MD given Y . The reason is that nuisance parameters involved in the ascertainment scheme are not
included in the conditional likelihood, see e.g. Ewens and Shute (1986). If v = v(τ) is the inheritance
vector at the disease locus, the conditional likelihood can be written as

Pt,θ (MD|Y ) =
∑

v

Pt (MD|v)Pθ (v|Y )

= 2m P(MD)
∑

v

Pt (v|MD)Pθ (v|Y ),
(3.1)

where
∑

v Pt (MD|v)Pθ (v|Y ) is short for
∑

w Pt (MD|v = w)Pθ (v = w|Y ). In the last equality of (3.1)
we applied Bayes’ rule and P(v) = 2−m . The factor P(MD) depends on marker allele frequencies
and genetic distances between the markers. These are assumed to be known in linkage analysis. Since
2m P(MD) is independent of t and θ , it is a fixed constant which we drop. Hence,

L(t, θ ; MD) =
∑

v

Pt (v|MD)Pθ (v|Y ) = Et (Pθ (v|Y )|MD) (3.2)
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is our conditional likelihood. Notice that we only include MD as an argument of L , because we condition
on the phenotype vector Y and consider it as fixed. Kruglyak et al. (1996) noticed that the conditional
inheritance distribution Pt (v|MD) could be used both for NPL and parametric linkage analysis based on
lod scores.

In linkage analysis, t is the structural parameter of interest, whereas θ contains nuisance parameters.
The lod score was originally formulated as the base ten logarithm of a likelihood ratio, but it is a linear
transformation of, and hence equivalent to, Z(t) = Z(t ; θ) = log L(t, θ), as noted by Whittemore (1996).
We regard Z(t) as a local test statistic for testing H0 against the simple alternative hypothesis τ = t . When
testing H0 against H1, the global test statistic

Zmax = sup
t∈�

Z(t) (3.3)

is used instead, where � = [0, tmax] or, more generally, � may consist of several chromosomes. The null
hypothesis is rejected when Zmax exceeds a given threshold T , which depends on the chosen significance
level, � and θ .

When θ is unknown, the profile conditional likelihood Z(t ; θ̂ (t)) = supθ Z(t ; θ) can be computed at
each t and H0 is rejected when maxt Z(t ; θ̂ (t)) exceeds a given threshold. This procedure is equivalent
to mod scores. The mod score is computationally demanding, especially for larger pedigrees, although a
faster version is obtained by replacing the original L(t, θ), based on penetrance and disease allele param-
eters, by a simplified one with only one parameter, see Whittemore (1996) and Kong and Cox (1997).

For quantitative phenotypes, it is common to use variance components techniques, see e.g. Amos
(1994) and Almasy and Blangero (1998). These can be interpreted as an approximate version of the mod
score, where the original L(t, θ), based on penetrance and disease allele parameters, has been replaced by
a simplified one, which is a ratio of two multivariate normal densities.

In this paper, we will not maximize with respect to θ at each locus. Instead, we take a local approach
and assume that {θε} is a one-dimensional trajectory of genetic model parameters such that θ0 corresponds
to no genetic effect at the disease locus, i.e. Pθ0(v|Y ) = 2−m . In other words, under θ0 the prior distribu-
tion of v equals the posterior distribution v|Y . Our objective is to compute a likelihood score function by
differentiating the log conditional likelihood w.r.t. ε at each locus t .

Assume first complete MD. It corresponds to an infinitely dense set of markers genotyped for all
pedigree members so that P(v = v(t)|MD) may be determined unambiguously at all loci. We let MDcompl

denote complete MD. The corresponding conditional likelihood is

L(t, θ ; MDcompl) = Pθ (v = v(t)|Y ). (3.4)

Define the score function

S(v) = dρ logPθε (v|Y )

dερ

∣∣∣∣
ε=0

, (3.5)

where ρ is the smallest positive integer such that the right-hand side of (3.5) is nonzero for at least one v .
When ρ � 2 the estimation problem is singular (with zero Fisher information) for ε at ε = 0. By means
of the reparametrization

ε = ερ/ρ!, (3.6)

S is interpreted as a (conditional) likelihood score function for ε at ε = 0. Originally, Whittemore (1996)
used ρ = 1 in her definition of S, but ρ = 2 is also possible for weak penetrance models, see McPeek
(1999) and Hössjer (2003d).

Our goal is to test ε = 0 against ε �= 0 at each locus t , which can also be interpreted as testing H0
against τ = t at each t . Depending on the application, there may or may not be a sign constraint on ε.
In any case, the sign of ε is not of interest, and for this reason we use ε instead of ε as parameter when
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Conditional likelihood score functions 317

formulating a test statistic, also when ρ is even. The Fisher information for ε is I compl = Eθ0(S2(v)|Y ) =
2−m ∑

w S2(w) at ε = 0, with the sum ranging over all binary vectors w of length m. The square root of
the likelihood score statistic for testing ε = 0 against ε �= 0 is W compl(t) = S(v(t))/

√
I compl at locus t .

For incomplete MD, the observed conditional likelihood L(t, θ ; MD) = E(L(t, θ ; MDcompl)|
MD) is obtained by averaging the complete conditional likelihood, treating MDcompl as hidden data. Then

W (t) = [dρ log L(t, θε; MD)/dερ]ε=0√
I (t)

=
√

I compl

√
I (t)

E
(
W compl(t)|MD

)
, (3.7)

where I (t) = Eθ0(E2(S(v(t))|MD)|Y ) is the Fisher information. It depends on t in a way that reflects
positioning and informativity of markers. The outer expectation is taken over variations in MD and is
typically computationally involved. It can be calculated exactly (Whittemore and Halpern, 1994), approxi-
mated as I (t) ≈ I compl so that the first factor of the right-hand side of (3.7) vanishes (Kruglyak et al.,
1996) or approximated by a multiple imputation Monte Carlo algorithm (Clayton, 2001). Yet, another
method of handling incomplete MD was suggested by Kong and Cox (1997).

By definition of W (t) we have

Eθ0(W (t)) = 0,

Vθ0(W (t)) = 1,
(3.8)

where expectation is with respect to variations in MD.
So far, we have only discussed a single family. The extension to N pedigrees with mutually independ-

ent phenotype/MD is straightforward. We allow the pedigree structures to vary arbitrarily and index
quantities for the i th family with i . The overall conditional likelihood L(t, θ) = ∏N

i=1 Li (t, θ) is then sim-
ply the product of the familywise conditional likelihoods, and the total Fisher information is I (t) =∑N

i=1 Ii (t) at locus t . From this it follows that the linkage score function for N families can be written as

W (t) = [dρ logL(t, θε; MD)/dερ]ε=0√
I (t)

=
N∑

i=1

γi (t)Wi (t), (3.9)

where Wi (t) is the score (3.7) for family i and γi (t) =
√

Ii (t)/
∑N

j=1 I j (t) are the locally optimal weights

(McPeek, 1999). Since
∑N

1 γ 2
i (t) = 1, (3.8) also holds for the total linkage score with N families.

Whittemore (1996) noticed that (3.9) includes APM methods as special case.
The local SPL test statistic at locus t is defined as

Z(t) =
{

W (t)2, no sign constraint on ε,

W (t), ε � 0,
(3.10)

and the corresponding global test statistic for testing H0 against H1 is obtained by inserting Z(t) in (3.10)
into (3.3). Two separate definitions of Z(t) are needed, because ε = 0 is at the boundary of the parameter
space when ε � 0. This is always the case when ρ is even and sometimes, depending on the applica-
tion, when ρ is odd (in that case ε � 0 is imposed). A derivation of (3.10) is given in Section A of HS.
There, it is also shown that the SPL and mod score approaches are asymptotically equivalent under the
null hypothesis of no linkage when the genetic model parameters are restricted to a one-dimensional
trajectory {θε}.

For quantitative phenotypes, the SPL approach is also asymptotically equivalent to variance compon-
ent techniques when the parameters of the latter model are varied along a one-dimensional trajectory. This
is briefly discussed in Example 6 of Section 5.
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4. GENETIC MODELS

To begin with, it is mathematically more convenient to work with

Pθ (Y |v) = 2m Pθ (v|Y )Pθ (Y ) (4.1)

than with Pθ (v|Y ). The reason is that

Pθ (Y |v) =
∑

G

Pψ(Y |G)Pp(G|v) (4.2)

can be expanded by summing over all possible genotype configurations in the pedigree. In (4.2), we split
θ = (p, ψ) into p, the frequency (probability) of the disease allele, and ψ , the penetrance parameter(s).
The latter describe the relationship between phenotypes and genotypes.

We will introduce a class of genetic models with penetrance factor of the form

Pψ(Y |G) =
∫

PψY (Y |x)PψX (x |G) dx (4.3)

by integrating with respect to a vector X = (X1, . . . , Xn) of liabilities. This vector contains influences
from the major gene G as well as polygenes and environmental components. Given X , the components
of Y are conditionally independent

PψY (Y |X) =
n∏

k=1

P(Yk |Xk, zk), (4.4)

where zk is a (possibly empty) set of observed covariates for k and ψY is the (possibly empty) set of
penetrance parameters involved in (4.4). In many cases Yk is just a deterministic function of Xk . If k has
unknown phenotype we put P(Yk |Xk, zk) = 1.

Conditional on G, we assume that the liability vector is multivariate normal,

X |G ∈ N (µ(G) + β
, σ 2�), (4.5)

where s � 0 is the number of covariates, 
 is the s×n design matrix of observed covariates and β is a 1×s
vector of regression coefficients. The vector µ(G) depends on the major gene G whereas the stochastic
variation is due to polygenic and environmental effects. Therefore, neither the conditional variance σ 2 =
Var(Xk |G) nor the conditional correlation matrix � = Corr(X |G) depends on G.

In order to describe µ(G) and �, we need some more definitions. Assume there are numbers m0, m1
and m2 such that Xk |Gk ∈ N (m|Gk | + (β
)k, σ

2), with |Gk | = a2k−1 + a2k the number of disease alleles
of Gk . Then put

µ(G) = (m|G1|, . . . , m|Gn |). (4.6)

For instance, if large values of the liability indicate disease, a natural constraint is m0 � m1 � m2.
Let IBDkl = IBDkl(w) be the number of alleles that two individuals k and l (1 � k, l � n) share
identical by descent for inheritance vector w. The coefficient of relationship between k and l is defined
as rkl = E(IBDkl(w))/2. We also put δkl = P(IBDkl(w) = 2), where expectation and probability is
taken w.r.t. a uniform distribution (2.1). Following Fisher (1918) and Kempthorne (1955), the correlation
matrix with polygenic and shared environmental effects is

� = (1 − h2
a − h2

d − h2
s )In + h2

a R + h2
d� + h2

s S, (4.7)

where In is an identity matrix of order n, R = (rkl) and � = (δkl). Further, h2
a and h2

d are the additive
and dominant polygenic heritabilities, respectively. These are the fractions of total environmental and
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polygenic liability variance (σ 2) due to additive and dominant genetic effects, respectively. The matrix
S = (skl) models a shared environment. For instance, each entry skl can be put to zero or one depending on
whether k and l share the same household or not. The parameter h2

s is the fraction of σ 2 due to shared envi-
ronment. The part of the penetrance vector ψ involved in (4.5) is ψX = (m0, m1, m2, σ

2, h2
a, h2

d , h2
s , β),

with the first three components due to the major gene, and the next five caused by polygenic/environmental
effects.

Summarizing, (4.3)–(4.5) is a penetrance model with multivariate Gaussian liability X and penetrance
parameters ψ = (ψX , ψY ). A similar class of models has been suggested in the geostatistical literature
by Diggle et al. (1999).

EXAMPLE 1 (GAUSSIAN MIXED MODEL) When liabilities are observed, we put Y = X . This is
the Gaussian mixed model of Ott (1979). The name refers to Y being a mixture of multivariate normal
distributions Y |G ∈ N (µ(G) + β
, σ 2�).

EXAMPLE 2 (LIABILITY THRESHOLD MODEL) When the phenotypes Yk are binary (Yk = 1 affected,
Yk = 0 unaffected) but show no simple Mendelian inheritance pattern, it is common to model the distribu-
tion of Yk as a function of an underlying quantitative variable Xk involving alleles from several loci. The
liability threshold model was originally introduced by Pearson and Lee (1901). With T a given threshold,
the phenotypes are defined as Yk = 1{Xk�T } and ψY = {T }. For identifiability we assume m = 0 and
σ 2 = 1, where

m = E(Xk) − (β
)k = q2m0 + 2pqm1 + p2m2

and q = 1 − p. Usually this model does not include a covariate, but we may include a single covariate
containing the liability class or age of each individual. For a recent review of binary liability models with
various extensions, see Todorov and Suarez (2002).

EXAMPLE 3 (LOGISTIC REGRESSION) As in the previous example, we consider a binary trait with
Yk = 1 and 0 corresponding to an affected or unaffected individual. We also include a design vector

 = (t1, . . . , tn), where tk is either the time of examination or time of onset of k and β is a nonnegative
regression parameter. Then assume

P(Yk |Xk) = F(Xk)
Yk (1 − F(Xk))

1−Yk , if tk is age of examination,

P(Yk |Xk) = β f (Xk), if Yk = 1 and tk is age of onset,

where F(x) = ex/(1 + ex ) is the logistic distribution function and f (x) = F ′(x) the corresponding
density. In this case ψY = {β} (so that β appears in ψX and ψY ). A similar model has been considered
by Bonney (1986) and Elston and George (1989), but these authors use a Markov rather than Gaussian
liability model for Y .

EXAMPLE 4 (SURVIVAL ANALYSIS) In Example 3, an alternative is to use a Cox proportional haz-
ards model with hazard rate λ(t ; Xk) = λ0(t) exp(Xk), baseline hazard λ0 and distribution function
F(t ; Xk) = 1 − exp(−∫ t

0 λ(u; Xk) du). In this case there are no covariates (s = 0) in (4.5). Instead,
we include tk as covariate in (4.4) (zk = tk) and put

P(Yk |Xk, tk) = F(tk ; Xk)
Yk (1 − F(tk ; Xk))

1−Yk , if tk is age of examination,

P(Yk |Xk, tk) = f (tk ; Xk), if Yk = 1 and tk is age of onset,

so that ψY = {λ0}. For identifiability we put m = 0. See Thomas and Gauderman (1996) for more details.
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Another possibility is that Yk and Xk are related through a generalized linear model (McCullagh and
Nelder, 1989), i.e. h(E(Yk)) = Xk for some link function h. An example is Poisson distributed data
Yk ∈ Po(exp(Xk)).

5. CHOOSING SCORE FUNCTIONS

To start with, we establish the following simple but very useful result.

PROPOSITION 1 Let S̄(v) = dρ log Pθε (Y |v)/dερ |ε=0 be the score function of Pθε (Y |v) at ε = 0. Then
S is the centered version of S̄, i.e.

S(v) = S̄(v) − C,

where C is a centering constant, ensuring that Eθ0(S(v)|Y ) = 2−m ∑
w S(w) = 0.

Proposition 1 implies that it suffices to consider score functions of Pθ (Y |v). In formula (4.2), Pθ (Y |v)
is defined by summing over all possible genotype vectors G. This is equivalent to summing over all
founder allele vectors a = (a1, . . . , a2 f ). In fact, J (w) = ( j1(w), . . . , j2n(w)), the gene-identity state of
the pedigree (Thompson, 1974), is a function of the inheritance vector w, such that jk(w) ∈ {1, . . . , 2 f }
is the number of the founder allele that has been transmitted to allele number k. Since

G = G(a, v) = aJ (v) = (
a j1(v) , . . . , a j2n(v)

)
,

we obtain
Pθ (Y |v) =

∑
a

Pψ(Y |a, v)Pp(a) = E p(Pψ(Y |a, v)), (5.1)

where the sum ranges over all 22 f possible founder allele vectors a and the last expectation is w.r.t. a.
We assumed in (5.1) that a and v are independent (no segregation distortion), so that Pp(G|v) = Pp(a).
Under random mating, the components of a are independent,

Pp(a) = p|a|q2 f −|a|, (5.2)

where |a| = ∑2 f
1 a j . Viewing a as hidden data, Pψ(Y |a, v) is the complete likelihood corresponding to

Pθ (Y |v). Formulas (5.1) and (5.2) will be used in the next two subsections for deriving score functions S.

5.1 Local penetrance models

Assume the disease allele frequency p is fixed whereas the penetrance parameters ψε vary with ε so that
Pψ0(Y |G) = Pψ0(Y ) is independent of G. This implies no genetic effect at the disease locus when ε = 0.
In more detail, we consider penetrance functions of the form

Pψ(Y |G) = f (Y ; µ), (5.3)

with µ = µ(G) as in (4.6). The Gaussian liability class of models (4.3) is included in (5.3). For brevity,
we write ψ = (m0, m1, m2), since only these three penetrance parameters depend on ε according to

ψε = (m∗, m∗, m∗) + ε(u(0), u(1), u(2)). (5.4)

Hence, it is only µ that depends on ε in (5.3). Define σ 2
g = Var(u(|Gk |)). Then, in (4.5), the variance

of the liability is Var(Xk) = ε2σ 2
g + σ 2. The first term (ε2σ 2

g ) is genetic variance at the main locus and
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Conditional likelihood score functions 321

the second term (σ 2) is variance due to polygenic and shared environmental effects. We may further split
σ 2

g = σ 2
a + σ 2

d into additive and dominant variance components, where

σ 2
a = 2pq(p(u(2) − u(1)) + q(u(1) − u(0)))2,

σ 2
d = (pq)2(u(2) − 2u(1) + u(0))2.

(5.5)

Let c = σ 2
d /σ 2

g be the fraction of dominance variance at the main locus, put µ0 = (m∗, . . . , m∗) and
introduce weights

ωk = ωk(Y ) = σg ∂ f (Y ; µ)/∂µk |µ=µ0
/ f (Y ; µ0),

ωkl = ωkl(Y ) = σ 2
g ∂2 f (Y ; µ)/∂µk∂µl |µ=µ0/ f (Y ; µ0),

(5.6)

assigned to individuals and pairs of individuals. Then, the following result holds.

THEOREM 1 Consider a weak penetrance model (4.6), (5.3), (5.4) and assume random mating (5.2).
Then, for an inbred pedigree, ρ = 1 and the score function S in (3.5) satisfy

S(v) = √
c

n∑
k=1

ωkHBDk − C, (5.7)

provided c �= 0 and at least one ωk �= 0. Here HBDk = HBDk(v) = 1{j2k−1(v)= j2k (v)} is the homozygosity
of descent indicator of k and C is a centering constant. For an outbred pedigree, ρ = 2 and

S(v) = 2
∑

1�k<l�n

ωkl
(
(1 − c)IBDkl/2 + c1{IBDkl=2}

) − C, (5.8)

provided ωkl is nonzero for at least one pair kl and, again, C is a centering constant.

Notice that ρ in Theorem 1 depends on the pedigree structure. On the other hand, the weights ωk and
ωkl depend on the phenotypes and the genetic model. They determine how various individuals or pairs of
individuals should be weighted in the optimal score function.

EXAMPLE 5 (MONOGENIC DISEASES) When there are no polygenic or shared environmental compon-
ents, we assume

P(Y |G) =
n∏

k=1

P(Yk |Gk). (5.9)

This includes the Gaussian regime class of models with � diagonal. McPeek (1999) derived (5.7)–(5.8)
for binary traits and pedigrees whose members are affected or have unknown phenotype. In this case (5.7)
simplifies to a score function which counts the number of affected individuals that are HBD, i.e. ωk are
identical for all affected individuals. For outbred pedigrees, (5.8) becomes a linear combination of the two
score functions Spairs, which sums the number of alleles shared IBD over all pairs of affected individuals
(Whittemore and Halpern, 1994) and Sg-prs, which sums all pairs of affected individuals that have both
alleles IBD. McPeek’s results were generalized to arbitrary genetic models in Hössjer (2003d), where it
was shown that

ωkl = ωkωl , k �= l. (5.10)

For instance, for the Gaussian mixed model of Example 1 without polygenic effects, (5.8) equals the
weighted pairwise correlation statistic SWPC of Commenges (1994) when the main locus is additive,
i.e. c = 0.
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EXAMPLE 6 (GAUSSIAN MIXED MODEL, OUTBRED PEDIGREE) Consider the Gaussian mixed model
of Example 1. Assume σ 2

g = σ 2. It is shown in HS that

ωk = (r�−1)k,

ωkl = (r�−1)k(r�−1)l − �−1
kl ,

(5.11)

where r = (Y − µ0 − β
)/σ = (Y − E(Y ))/σ is the standardized vector of residuals and �−1
kl is the

(k, l)th component of �−1. If Yk is unknown, we put ωk = ωkl = 0.
For an outbred pedigree ρ = 2, hence ε = ε2/2 can be written as

ε = h2

2(1 − h2)
,

where h2 = Var(m|Gk |)/Var(Yk) is the heritability of the phenotype at the main locus; when ε is small,
ε ≈ h2/2.

We denote the score function obtained when inserting (5.11) into (5.8) by Swpairs. The name re-
flects that Swpairs is a weighted sum of pairwise IBD sharing. The unknown parameters of Swpairs are
(m∗, σ 2, c, h2

a, h2
d , h2

s , β). For additive models we put c = h2
d = 0, and in absence of polygenic and

shared environmental effects we reduce the parameter vector further by letting h2
a = h2

s = 0. This spe-
cial case of Swpairs is the weighted pairwise correlation statistic SWPC. It contains σ−2 as a multiplicative
constant which can be dropped. The only remaining parameters to estimate for SWPC are (m∗, β).

One may approximate the exact distribution (4.2) of Y |v by a multivariate normal one. The VC
techniques are based on this approximation. Tang and Siegmund (2001), Putter et al. (2002) and Wang
and Huang (2002) have shown, for nuclear families, that Swpairs is the score obtained with the multivariate
normal approximation. Hence, the two approaches are locally equivalent for small ε.

For an inbred pedigree ρ = 1. If q2u(0) + 2pqu(1) + p2u(2) = 0, it follows that

E(Yk) = m∗ + Fkσdε + (β
)k,

where Fk = E(HBDk) is the inbreeding coefficient of k. This means that ε = ε is proportional to the
change in phenotype mean for all inbred individuals compared to the null model ψ0. The score function
obtained by inserting (5.11) into (5.7) has (m∗, h2

a, h2
d , h2

s , β) as parameters that need to be estimated or
put to prior values. If we ignore polygenic dominance and shared environmental effects and there are no
covariates, we only need to choose (m∗, h2

a) a priori.
Inbred pedigrees are often used for recessive models. If u(0) � u(1) � u(2), it is natural to put

the constraint ε � 0 in (5.4) in order to maintain monotonicity of the three mean parameters m0 �
m1 � m2. Then θ0 is at the boundary of the parameter space and Z(t) = W (t) is a natural test statistic
at locus t . It is also possible to replace the ε = 0 model (m∗, m∗, m∗) in (5.4) by an additive model
(m0, (m0 + m2)/2, m2) with m2 > m0. The argument leading to (5.7) carries over to this case. If any
deviation from additivity is of interest, we put no sign constraint on ε and use Z(t) = W (t)2 as test
statistic at locus t .

EXAMPLE 7 (GAUSSIAN LIABILITY MODELS) It is shown in HS that for the Gaussian liability model
(4.3),

ωk = σg

σ

∫
(x�−1)k P(x |Y ) dx,

ωkl = σ 2
g

σ 2

∫
((x�−1)k(x�−1)l − �−1

kl )P(x |Y ) dx,

(5.12)
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Conditional likelihood score functions 323

where P(x |Y ) ∝ P(Y |σ x +µ0 +β
)P(x) is the posterior density of (X −µ0 −β
)/σ and P(x) is the
density of an N (0, �)-distribution.

5.2 Rare disease models

In this subsection, we keep the penetrance parameter ψ fixed whereas pε = ε is a function of ε.

PROPOSITION 2 Assume random mating (5.2) and let e j and 0 be binary vectors of length 2 f with e j

having a one in the j th position and zeros elsewhere and 0 having zeros everywhere. Then ρ = 1 and

S(v) =
2 f∑
j=1

P(Y |e j , v)

P(Y |0, v)
− C (5.13)

whenever the right-hand side is a nonconstant function of v . The constant C is chosen so that Eθ0

(S(v)|Y ) = 0.

Notice that θ0 is at the boundary of the parameter space because of the constraint p � 0 on the disease
allele frequency. Hence, Z(t) = W (t) is the appropriate test statistic to use.

McPeek (1999) derived (5.13) for binary traits and affected pedigree members. The resulting score
function S she referred to as Srobdom, since it had good and robust performance over a wide range of
dominant models. McPeek’s result was extended in Hössjer (2003d) to the monogenic model (5.9), whilst
(5.13) is a further extension to include polygenic and shared environmental effects.

EXAMPLE 8 (GAUSSIAN MIXED MODELS FOR RARE DISEASES) In Example 1, assume that the
pedigree is outbred. Define b j = b j (v) = (b j1, . . . , b jn), where b jk is 1 iff individual k receives the
j th founder allele via one of its parents (either j2k−1(v) or j2k(v) equals j). Put K = exp((m1 − m0)/σ ),
and let r = (Y −m0−β
)/σ be a standardized residual vector in the absence of disease alleles (m = m0).
Then, inserting Y |e j , v ∼ N (m01 + (m1 − m0)b j + β
, σ 2�) into (5.13) we arrive at

Snormdom(v) =
2 f∑
j=1

K b j �
−1(r−0.5 log(K )b j )

′ − C, (5.14)

where C is a centering constant. We use the score function name S = Snormdom introduced in Hössjer
(2003d) for the special case h2

a = h2
d = h2

s = 0 of no polygenic effects. Notice that m2 does not enter
into Snormdom, because for rare disease alleles it is very unlikely that there is more than one disease allele
among the founders. Since the pedigree is assumed to have no loops, the disease allele can appear at most
once in each individual. The unknown parameters of Snormdom are (K , m0, σ

2, h2
a, h2

d , h2
s ). Of these, K

is most important, since it measures the strength of the major genetic component. For rare disease alleles
one has E(Yk) ≈ m0 + (β
)k and V (Yk) ≈ σ 2. This motivates why m0 + (β
)k and σ are used for
standardizing phenotypes.

6. A SIMULATION STUDY

In this section we investigate various score functions for the Gaussian mixed model of Example 1. For
simplicity we do not include covariates and put β = 0 in (4.5) (with Y = X ). We assume that the
phenotype mean E(Yk) = m and total variance V (Yk) = σ 2

t = Var(m|Gk |) + σ 2 have been estimated
from population data. Here Var(m|Gk |) is the total genetic variance of the major gene while σ 2, defined in
(4.5) with Y = X , is the sum of all environmental and polygenic variance components. For simplicity, we
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324 O. HÖSSJER

Fig. 1. 50 · ANCP, where ANCP is the asymptotic noncentrality parameter, as function of true h2
a for optimal (thick

solid line), Haseman–Elston (dashed line) and Snormdom score functions with k = 1.5 and different choices of assumed
h2

a : h2
a = 0 (∗), h2

a = 0.2 (+), h2
a = 0.5 (dotted line) and h2

a = 0.8 (o). The number of Monte Carlo iterates is 5000.

assume there are no dominant polygenic or shared environmental effects, i.e. h2
d = h2

s = 0 in (4.7). The
four essential unknown genetic model characteristics are then p, h2

a and

Disp = (m2 − m0)/σ,

Dom = (2m1 − m0 − m2)/(m2 − m0).

The displacement Disp quantifies the strength and Dom the degree of dominance of the main locus genetic
component. Under the mild restriction that mi are nondecreasing we have Disp � 0 and −1 � Dom � 1,
with Dom taking values −1, 0 and 1 for recessive, additive and dominant models, respectively.

We only consider outbred pedigrees, hence the linkage score function is Z(t) = W (t), i.e. the second
row of (3.10) is used. As performance criterion we use the noncentrality parameter, NCP = E(Z(τ )|Y ),
the expected value w.r.t. MD and conditional on phenotypes of the linkage score function at the disease
locus. This criterion is related to the power PH1(Zmax � T ) to detect linkage (Feingold et al., 1993), but
does not require specification of a threshold T , genome region � or significance level PH0(Zmax � T ).
For a genomewide scan, an NCP of about 4 corresponds to significant linkage, although the exact value
depends on the collection of pedigrees, the score function, marker informativeness and the genetic model
(Lander and Kruglyak, 1995; Ängquist and Hössjer, 2004a).

Assuming complete MD, one has

NCP =
∑
w

S(w)Pθ (v = w|Y )
/√

2−m
∑
w

S(w)2, (6.1)
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Conditional likelihood score functions 325

Fig. 2. 50 · ANCP as function of true h2
a for different score functions: optimal (thick solid line), Snormdom with as-

sumed h2
a = 0.5 and k = 1.5 (dotted line), Swpairs with assumed h2

a = 0.5 (thin solid line) and Haseman–Elston
(dashed line). The four subplots correspond to different pedigree structures. The number of Monte Carlo iterates is
5000 (a,b) and 2000 (c,d).

for one pedigree and any centered score function S. Here m is the number of meioses of the pedigree and
v = v(τ). For a collection of N pedigrees, the NCP grows at rate

√
N , since

NCP = √
N

∑N
i=1 γi NCPi/N√∑N

i=1 γ 2
i /N

, (6.2)

with NCPi the NCP and γi the weight of the i th pedigree. We choose γi as in the denominator of (6.1).
For the locally optimal score function (3.5), this weighting scheme is equivalent to (3.9).

If pedigrees (including their phenotypes) are drawn from a population, the second factor of (6.2) con-

verges to ANCP = ∫
γ (Y )NCP(Y ) dP(Y )/

√∫
γ 2(Y ) dP(Y ) as N grows, where dP(Y ) is the sampling
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Fig. 3. 50 · ANCP as function of true h2
a for different score functions: optimal (thick solid line), Snormdom with as-

sumed h2
a = 0.5 and k = 1.5 (dotted line), Swpairs with assumed h2

a = 0.5 (thin solid line) and Haseman–Elston
(dashed line). The four subplots correspond to different strengths of the penetrance parameters (Disp). The number
of Monte Carlo iterates is 5000.

distribution of pedigrees including their phenotype vectors Y (Hössjer, 2003b,d). Hence,

NCP ≈ √
N ANCP

for large N . When sampling pedigrees, we consider one fixed pedigree structure with certain pedigree
members having unknown phenotypes. For the remaining pedigree members, the phenotype vector Y is
drawn from the fraction α (0 < α � 1) of randomly sampled Y (Pθ (Y ) = ∑

G Pψ(Y |G)Pp(G)) with
largest weights γ (Y ). For the locally optimal score function (3.5), this means that a fraction α of the most

informative pedigrees are considered, because the weights γi are then proportional to
√

I compl
i , the square

roots of the Fisher informations.
Four score functions were included in the simulations, Swpairs, Snormdom, SHE and Soptimal. Since m

and σt are assumed to be known, we use the residual vector r = (Y − m)/σt in the definition of Swpairs
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Fig. 4. 50 · ANCP as function of true h2
a for different score functions: optimal (thick solid line), Snormdom with as-

sumed h2
a = 0.5 and k = 1.5 (dotted line), Swpairs with assumed h2

a = 0.5 (thin solid line) and Haseman–Elston
(dashed line). The four subplots correspond to different degrees of dominance (Dom). The number of Monte Carlo
iterates is 5000.

in (5.11) and Snormdom in (5.14). We also put c = h2
d = h2

s = 0 in the definition of Swpairs and h2
d = h2

s = 0
and k = 1.5 in the definition of Snormdom. The value k = 1.5 yields good and robust performance for a
wide range of genetic models. As a score function analogue of the classical Haseman–Elston regression
method for quantitative traits we included

SHE(v) =
∑
k<l

(2σ 2
t − (Yk − Yl)

2)IBDkl − C,

see Haseman and Elston (1972) and Hössjer (2003d). Finally, as a benchmark, we also included the opti-
mal (in terms of NCP) score function Soptimal, which is the centered version of P(v|Y ) (Hössjer, 2003b).

In Figures 1–6 we have plotted 50 × ANCP for complete MD, all four score functions and various
genetic models (Disp, Dom, h2

a , p), pedigrees and sampling fractions α. This corresponds to an NCP of
a sample with N = 2500. We assume, for simplicity of interpretation, that all families in the populations
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Fig. 5. 50 · ANCP as function of true h2
a for different score functions: optimal (thick solid line), Snormdom with as-

sumed h2
a = 0.5 and k = 1.5 (dotted line), Swpairs with assumed h2

a = 0.5 (thin solid line) and Haseman–Elston
(dashed line). The four subplots correspond to different sampling fractions α. The number of Monte Carlo iterates
is 5000.

have the same pedigree structure. We have included four pedigree structures in the simulations—sib pair
(SP), sib trio (Strio), sib quartet (Squart) and first cousin (Cous) families. In all cases, all individuals
except the two parents of the first generation have known phenotypes.

Notice that ANCP for Soptimal is a measure of informativity for the particular combination of pedigree
structure, genetic model parameters and sampling fraction. Figures 1–6 show that informativity in gen-
eral increases with increased polygenic heritability h2

a , the explanation for which is that deconvolution
(recovering G from Y ) is easier for dependent errors than for independent ones. Risch and Zhang (1995)
noticed, for sib pairs, that residual correlation increases and decreases informativity of discordant and
concordant sib pairs, respectively. From our simulation results it is evident that sib correlation, in most
cases, on average, increases informativity.

Figure 1 shows the effect of varying the assumed h2
a of Snormdom. It turns out that a value of h2

a around
0.5 gives the best overall performance when the true h2

a varies between 0 and 1. The same conclusions
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Fig. 6. 50 · ANCP as function of true h2
a for different score functions: optimal (thick solid line), Snormdom with as-

sumed h2
a = 0.5 and k = 1.5 (dotted line), Swpairs with assumed h2

a = 0.5 (thin solid line) and Haseman–Elston
(dashed line). The four subplots correspond to different disease allele frequencies p. The number of Monte Carlo
iterates is 5000.

can be drawn for other pedigree structures, genetic models and sampling fractions, both for Snormdom and
Swpairs. For this reason, we have compared Snormdom and Swpairs, with assumed h2

a = 0.5 with SHE and
Soptimal. Of the three nonideal score functions, Snormdom is best with Swpairs almost as good. The Haseman–
Elston score function is competitive for large h2

a and large disease allele frequencies p. The optimal
version of Swpairs, with c = σ 2

d /σ 2
g , was also included in the simulations (results not shown here). Its

performance differed marginally from the c = 0 version of Swpairs, even when Dom assumed values −1 or
1, i.e. when the degree of dominance at the main locus was maximal.

7. CONCLUSIONS

In this paper, we have presented a general semiparametric framework for choosing score functions in link-
age analysis based on local expansions of conditional likelihoods, extending previous work of Whittemore
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(1996), McPeek (1999) and Hössjer (2003d). In particular, we have derived score functions for weak
penetrance and rare disease models. The methodology is applicable for arbitrary pedigree structures and
genetic models for which one major gene, polygenes and shared environmental effects are built into the
penetrance function. In particular, we have introduced a wide class of Gaussian liability mixed models,
which unifies and extends several models considered in the literature.

The SPL method is asymptotically equivalent to mod scores (and for Gaussian phenotypes also to
variance components techniques) under the null hypothesis of no linkage. However, SPL scores are
faster to compute than mod scores, since no parameter optimization is needed at each locus. Once the
score function S is specified, existing multipoint NPL software such as Genehunter (Kruglyak et al.,
1996), Allegro (Gudbjartsson et al., 2000) or Meurlin (Abecasis et al., 2002) can be utilized. These
computational savings are important when genomewide p-values are calculated by Monte Carlo, using
e.g. the importance sampling algorithm of Ängquist and Hössjer (2004b). Another advantage of SPL is
that analytical formulas for genomewide p-values (Feingold et al., 1993; Lander and Kruglyak, 1995;
Ängquist and Hössjer, 2004a) and confidence regions (Kruglyak and Lander, 1995; Hössjer, 2003a) can
easily be adapted from NPL by changing the score function S.

Our simulations for the Gaussian mixed model indicate that incorporating polygenic effects into the
score functions leads to improved and robust performance over a wide range of parameters. The rare dis-
ease score function Snormdom was most powerful, closely followed by the weak penetrance score function
Swpairs.

We believe that the semiparametric approach, with a strategic choice of the fixed parameter(s) often
leads to procedures with good performance and robustness toward parameter misspecification. When the
chosen parameter(s) is not too misspecified, the decreased number of degrees of freedom compared to a
fully nonparametric approach can be worthwile. However, more investigations are needed to compare the
two approaches in terms of power.

The orthogonal decomposition of functions of genotypes in Section B of HS is of independent inter-
est. It incorporates the classical decomposition of genetic variance into additive and dominant variance
components. When applied to local penetrance models, it yields score functions involving HBD sharing
for inbred pedigrees and pairwise IBD sharing for outbred pedigrees.

One way of reducing the number of unknown parameters of the score function is to consider a trajec-
tory {θε}, where ε has more than one degree of freedom. The resulting multiparameter score function S is
vector-valued, and a linkage score test for weak penetrance models has been derived in Hössjer (2003c).
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