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Combined Association and Linkage Analysis

for General Pedigrees and Genetic Models∗

Ola Hössjer

Abstract

A combined score test for association and linkage analysis is introduced, based on a
biologically plausible model with association between markers and causal genes and pen-
etrance between phenotypes and the causal gene. The test is based on a retrospective
likelihood of marker data given phenotypes, treating the alleles of the causal gene as hid-
den data. It is defined for arbitrary outbred pedigrees, a wide class of genetic models
including polygenic and shared environmental effects and allows for missing marker data.
It is multipoint, taking marker genotypes from several loci into account simultaneously.
The score vector has one association and one linkage component, which can be used to
define separate tests for association and linkage. For complete marker data, we give closed
form expressions for the efficiency of the linkage, association and combined tests. These
are examplified for binary and quantitative phenotypes with or without polygenic effects.
The conclusion is that association tests are comparatively more efficient than linkage tests
for strong association, weak penetrance models, small families and non-extreme pheno-
types, whereas the linkage test is more efficient for weak association, strong penetrance
models, large families and extreme phenotypes. The combined test is a robust alternative,
which never performs much worse than the best of the linkage and association tests, and
sometimes significantly better than both of them. It should be particularly useful when
little is known about the genetic model.
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1 Introduction

Association and linkage analysis are complementary methods for localizing
genes that increase susceptibility to a certain inheritable disease. In linkage
analysis, regions are sought for where marker allele transmissions from par-
ents to children are correlated with phenotypes. This is due to presence of
crossovers in meioses within families and occurs for all markers linked to the
disease locus. In association analysis, one searches regions of non-independence
between phenotypes and marker genotypes in a whole population. In absence
of population stratification, this is caused a mutation many generations ago.
The mutated haplotype has been transmitted and spread to a subset of indi-
viduals of the present generation. During this process, crossovers in meioses of
previous generations break up association at larger distances from the disease
locus, since the mutated haplotype is only intact over small distances around
the mutation.

Linkage analysis is often used in a first step for coarse mapping and then asso-
ciation methods are employed to fine map the regions pinpointed by linkage.
Risch and Merikangas (1996) showed, on the other hand, for family trios/sib
pairs, that association methods can be more powerful for complete genome
scans, although current genotyping technology still makes such an approach
expensive.

Since association as well as linkage tests use marker and phenotype data from
a number of families, one might argue that a combined linkage and association
test optimally extracts information from data and hence should have greater
power in detecting a disease susceptibility locus. By a joint association and
linkage test we mean one that has power even when there is no association
between marker and disease genotypes. This is not the case for methods based
on transmitted and non-transmitted founder alleles, such as the TDT-tests
(Falk and Rubinstein, 1987, Terwilliger and Ott, 1992, Spielman et al., 1993).
Hence, we consider the TDT-test and its extensions as pure association tests,
even though they can be used for testing linkage in presence of association.

In recent years, some authors have considered joint tests of linkage and asso-
ciation. Xiong and Jin (2000) considered a single point likelihood ratio test,
which generalizes the classical lod score for pure linkage analysis. It can be
applied to arbitrary pedigree structures and genetic models without polygenic
or shared environmental effects. Association is modeled between marker and
disease alleles of the founders and linkage is modeled in allele transmissions
to nonfounders. Farnir et al. (2002) considered a similar likelihood ratio test
for an animal genetic application with quantitative phenotypes and half sib
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families, allowing for several markers to be analyzed jointly. Zhao et al. (1998)
defined a semiparametric estimating equations method, with one linkage and
one association component in the score vector, Terwilliger and Göring (2000)
developed a method based on pseudomarkers and Fulker et al. (1999), Sham et
al. (2000) and Meuwissen et al. (2002) considered variance components tests
for quantitative traits. A multipoint Bayesian method for combined linkage
and association analysis was defined by Pérez-Enciso (2003). It is defined for
arbitrary pedigree structure and quantitative traits, but can in principle be
defined for general genetic models.

The focus of this paper is on score tests for linkage and/or association. Whit-
temore (1996) developed score tests for linkage analysis by differentiating the
retrospective log likelihood of marker data given phenotypes with respect to
model parameters. McPeek (1999) and Hössjer (2003, 2005) used the same ap-
proach, with biologically based models involving disease allele frequencies and
penetrance parameters of the causal gene. These score tests put parametric
and nonparametric linkage analysis on a common ground and accommodate a
large class of genetic models, including generalized linear models with hidden
Gaussian regimes. A variety of different kinds of phenotypes can be handled
and polygenic effects are allowed for.

Association score tests are traditionally derived by modeling penetrance di-
rectly between marker genotypes and phenotypes. Self et al. (1991), Schaid
and Sommer (1994), Schaid (1996) and Lunetta et al. (2000) developed family
based score tests for association. These tests are conditional on phenotypes
and observed founder genotypes and avoid spurious association due to pop-
ulation admixture as well as the need to estimate marker allele frequencies.
The price to pay is loss of information and possibly reduced power. Indeed,
Clayton (1999), Whittemore and Tu (2000), Tu et al. (2002) and Shih and
Whittemore (2002) have recently developed more general score tests based on
the conditional distribution of marker data given phenotypes, and shown that
increased power is possible in many cases.

The joint score test for linkage and association defined in this paper is valid
for arbitrary pedigree structures and missing marker information. It is mul-
tipoint, in the sense that it uses information from all markers at the same
chromosome as the marker locus being tested for association and linkage. It
is based on biologically based models with association between marker and
disease causing alleles and penetrance parameters of the disease genes. As in
Hössjer (2005), we allow for polygenic effects and a large class of phenotypes.
Such a model seems complicated, but it turns out that the resulting score
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vector has a very explicit form. It is two-dimensional, consisting of one associ-
ation and one linkage score. These two score components can also be used for
defining separate association and linkage tests. Moreover, very explicit expres-
sions can be derived for the efficiency (noncentrality parameter) of the linkage
test, various versions of the association test (with or without conditioning on
founder genotypes and in the latter case, with known or estimated marker
allele frequencies) as well as for the combined association and linkage test.

The paper is organized as follows. In Section 2 we define the retrospective
likelihood of marker data given phenotypes. Since only marker alleles are
observed, the alleles of the disease causing gene are treated as hidden variables.
In Section 3 we describe the association and penetrance parts of the likelihood
for a wide class of genetic models. Score functions and test statistics are
derived in Sections 4 and 5. Asymptotic efficiency is considered in Section 6
for the combined test as well as for the pure association and linkage tests. This
in turn gives the sample size N required for each test to attain a certain power.
In Sections 7 and 8 we specialize to biallelic markers and nuclear families and
give closed form expressions as well as numerical examples of N . Possible
extensions are discussed in Section 9 and more technical results are gathered
in the appendix.

2 Likelihood for combined association and link-

age

Consider a sample of N outbred pedigrees of arbitrary (and possibly different)
form. Based on phenotypes and marker data from all families, we wish to test
presence of a disease locus τ along a genomic region Ω, which may consist
of (parts of) one or several chromosomes. Marker data is collected at K loci
x1, . . . , xK in Ω, assumed to be ordered within each chromosome. For each xi

we wish to test

H0(xi) : xi is unlinked to τ , marker data is not associated to
disease genotypes at τ ,

H1(xi) : xi = τ.
(1)

Consider one of the N families and assume it consists of n individuals; f
founders and n − f nonfounders. Let Y = (Y1, . . . , Yn) be the vector of phe-
notypes Yk of all pedigree members k, including the possibility Yk =′?′ when
k has unknown phenotype. We denote the genotypes at the disease locus τ as
G = (G1, . . . , Gn), where Gk = (a2k−1a2k) consists of the the two alleles a2k−1
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and a2k that are transmitted to k through maternal and paternal meioses.
Marker data is written M = (M1, . . . , MK), where Mi = {Hik; k ∈ T } is
marker data at locus xi, T ⊂ {1, . . . , n} is the set of genotyped family mem-
bers and Hik = (bi,2k−1bi,2k) is the marker genotype of k at locus xi, which
consists of two alleles, one transmitted from the mother and one from the
father. Write Hi = (Hi1, . . . , Hin) and notice that Mi = Hi when all family
members are genotyped.

To begin with, we consider a fixed locus x = xi and construct a pointwise
score test for (1), taking marker data from x and all other loci into account.
The genetic model parameters are

θ = (q1, . . . , qK , Δ, ψ, p),

where qi = (qi0, . . . , qi,di−1) is the vector of marker allele frequencies of the
di-allelic marker at xi, Δ quantifies association between G and H = Hi, ψ
contains penetrance parameters that quantify association between Y and G,
and p = (p0, p1) consists of disease allele frequencies at the biallelic disease
locus.

The two structural parameters are ψ and Δ, whereas the others are nui-
sance parameters. The effect of misspecifying p and marker allele frequencies
q1, . . . , qi−1, qi+1, . . . , qK at loci xj �= x is not so serious and hence we can use
plug-in estimates of these parameters in the score tests without taking sample
variability into account1. Hence we reduce the parameter vector to

θ = (q, Δ, ψ),

where q = qi = (q0, . . . , qd−1) contains marker allele frequencies for the di = d-
allelic marker at x.

For one family, we use the retrospective likelihood (Prentice and Pyke, 1979),
i.e. the conditional probability

L(x, θ; M) = Px,θ(M |Y ) (2)

of observed marker data given phenotypes. An advantage of retrospective
likelihood is that the ascertainment rule, i.e. the rule for sampling pedigrees,
need not be modeled explicitly, as long as it depends on Y only (and not on

1In fact, essentially, p only enters in the score test through a certain dominance variance
fraction c, defined in Section 5 and q1, . . . , qi−1, qi+1, . . . , qK in the multipoint probability
P (b, v|M), defined in Section 4.

4 Statistical Applications in Genetics and Molecular Biology Vol. 4 [2005], No. 1, Article 11

http://www.bepress.com/sagmb/vol4/iss1/art11



M), see for instance Kraft and Thomas (2001). For N families, we take the
product of the familywise likelihoods (2).

Subscript x in (2) means ’x = τ ’. As will be seen in Section 4, this is a valid
assumption also under the null hypothesis, since all likelihood computations
can be made assuming x = τ . Indeed, H0(x) is equivalent to choosing a
subset of the parameter space at which the position of τ does not affect the
likelihood. We emphasize that x = τ does not mean that H and G are
identical. Instead it means that x and τ are so close that 1) H and G are
likely to be in linkage disequilibrium and 2) crossovers between x and τ for all
meioses in the pedigrees can be ignored.

Let v = (v1, . . . , vm) be the common inheritance vector of a particular pedigree
at loci x and τ , where m = 2(n − f) is the number of meioses. It is a binary
vector, where vj equals 0 or 1 depending on whether a grand-paternal or
grand-maternal allele was transmitted during formation of the jth germ cell
(Donnely, 1983). Let also b = (b1, . . . , b2f ), with bk = bik, be the vector of
founder marker alleles at x (assuming founders are numbered as 1, . . . , f).
The purpose of marker data is to retain as much information about (b, v) as
possible. Therefore, for each pedigree, we expand the familywise likelihood (2)
as

L(x, θ; M) =
∑
b,v

P (M |b, v)Px,θ(b, v|Y ), (3)

assuming
Px,θ(M |b, v, Y ) = P (M |b, v), (4)

that is, given (b, v), marker data at loci different from x are independent of
Y and genetic model parameters. This is clear when M = Mi only contains
marker data at x. Otherwise, it holds under Haldane’s model of no interfer-
ence for crossovers and when there is no residual linkage disequilibrium (LD)
between G and markers Hj, j �= i, that is not already accounted for as LD
between H and G. This crucial assumption will be further discussed in Section
9.

In general, (b, v) is more informative than H, especially when H is a marker
with low degree of polymorphism. When this is the case, and even if all indi-
viduals are genotyped (so that Mi = H), other markers surrounding x are still
needed to give additional information about v. In fact, for complete marker
data, there are of 2f pairs (b, v) for which P (M |b, v) have the same nonzero
value, whereas P (M |b, v) = 0 for all other pairs. The 2f pairs compatible with
M are obtained by shifting phase of all founders independently (Kruglyak et
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al., 1996). Hence, for complete marker data,

L(x, θ; M) = 2fP (M |b, v)Px,θ(b, v|Y ), (5)

where (b, v) is any of the 2f pairs compatible with M . Since 2fP (M |b, v)
is independent of θ, it will cancel out when computing score functions for
complete marker data. For this reason, it is often more convenient to use

Lc(θ; b, v) = Px,θ(b, v|Y ), (6)

where superscript c is short for ’complete’ and dependence on x on the LHS
is implicit in b and v.

Göring and Terwilliger (2000) and Terwilliger and Göring (2000) noted that
linkage and association analysis can be put into a unified framework by con-
ditioning on disease locus genotypes G. We will follow a similar route and
expand Lc(θ; b, v) by conditioning on the vector a = (a1, . . . , a2f ) of founder
alleles at the disease locus,

Lc(θ; b, v) =
∑

a Pq,Δ(b|a)Pp,ψ(a, v|Y )
= C

∑
a Pp,q,Δ(a, b)Pψ(Y |a, v),

(7)

where C = 2−m/Pp,ψ(Y ) is a proportionality constant that depends on ψ but
not on b and v. Hence it will only affect the score function in Section 4 by
means of an additive constant. We devote the next section to specifying the
association term Pp,q,Δ(a, b) and penetrance term Pψ(Y |a, v) in more detail.

3 Modeling of Association and Penetrance

Assuming random mating and Hardy-Weinberg equilibrium, we model associ-
ation between a and b as

Pp,q,Δ(a, b) =
∏2f

j=1 Paj ,bj
,

Paj ,bj
= paj

qbj
(1 + Δs(aj, bj)),

(8)

where Pajbj
is the joint probability of (aj, bj) and s = (s(i, j))ij a 2×d matrix.

In order to keep marginal allele frequencies fixed when Δ varies, we impose∑
j s(i, j)qj =

∑
i s(i, j)pi = 0 for all i and j.

Example 1 (Biallelic markers.) For biallelic markers (d = 2), if

Δ =
P00P11 − P01P10

(p0p1q0q1)1/2
(9)
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is the correlation coefficient of a 2 × 2 table with cell probabilities Pij, then

s =

⎛
⎜⎝

(
p1q1

p0q0

)1/2

−
(

p1q0

p0q1

)1/2

−
(

p0q1

p1q0

)1/2 (
p0q0

p1q1

)1/2

⎞
⎟⎠ . (10)

Other measures are also possible, such as P00P11−P01P10, which is the expected
difference, for cells (0, 0) and (1, 1), between actual cell probabilities and those
expected under independence. In this case s(i, j) = 1 if i = j and -1 otherwise.
Other measures of linkage disequilibrium are discussed by Devlin and Risch
(1995). �

Since we assume that v is the inheritance vector for loci x and τ , it specifies
how founder alleles a are spread to all nonfounders, so that G is a deterministic
function of a and v. Moreover, the penetrance factor Pψ(Y |a, v) is a function
of a and v only through G. Hence we denote it as Pψ(Y |G) in the sequel.
We write the penetrance vector as ψ = (ψ(0), ψ(1), ψ(2)), where ψ(j) is the
penetrance factor for an individual with j copies of the disease causing allele,
say 1. Other penetrance parameters, such as regression coefficients, polygenic
and environmental variance components are considered fixed (or estimated
from population data) and hence suppressed in the notation. Let |Gk| =
a2k−1+a2k be the number of disease causing alleles of the kth pedigree member,
put μ = (ψ(|G1|), . . . , ψ(|Gn|)) and

Pψ(Y |G) = f(Y ; μ).

For instance, in absence of polygenic and shared environmental effects

f(Y, μ) =
n∏

k=1

fk(Yk; μk), (11)

although this restriction is not needed in general. Here fk(Yk; μk) = P (Yk|Gk)
is the penetrance factor for individual k. Dependence of fk on k allows for
individual covariates.

Example 2 (Binary phenotypes.) Let Yk = 1 for an affected individual
and Yk = 0 for an unaffected one. In absence of polygenic and shared environ-
mental effects (11), define

fk(Yk; μk) = μ
(Yk=1)
k (1 − μk)

(Yk=0). (12)

�
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Example 3 (Quantitative phenotypes.) For quantitative traits, it is com-
mon to use a multivariate distribution Y |G ∈ N(μ, σ2Σ), that is

f(Y ; μ) =
1

(2π)n/2σn|Σ|n/2
exp

(
− 1

2σ2
(Y − μ)Σ−1(Y − μ)T )

)
, (13)

where T denotes vector transposition. This mixed model incorporates effects
of the major gene G only in the mean vector, whereas σ2 = Var(Yk|Gk) and the
correlation matrix Corr(Y |G) = Σ = (Σkl) are independent of G. For instance,
if Σ incorporates additive polygenic effects, we have Σkl = (1−h2

a)1{k=l}+h2
arkl,

where rkl is the coefficient of relationship of k and l, i.e. the proportion of
alleles shared identical-by-descent by k and l and h2

a the additive polygenic
heritability. See Ott (1979) for more details. �

Example 4 (Gaussian liabilities.) In Hössjer (2005), a large class of mod-
els was defined with a Gaussian liability X|G ∈ N(μ; σ2Σ) as in Example 3.
Observed phenotypes Y then depend on X through, for instance, a liability
threshold, generalized linear or Cox proportional hazards model. If f̃(·; μ) is a
multivariate normal density as in (13), the penetrance function for this class
of models can be written

f(Y ; μ) =

∫
P (Y |X)f̃(X; μ)dX.

Consider, for instance, a liability threshold model. It is a generalization,
for binary phenotypes of Example 2, to incorporate polygenic and shared
environmental effects. Let z be a given threshold and put Yk = 1{Xk>z},
so that a liability ≥ z implies disease. Then P (Y |X) = 1{X∈A}, where
A = {X; Xk > z if Yk = 1, Xk ≤ z if Yk = 0 or Xk arbitrary if Yk =′?′}.

�

4 Score functions and tests

Following McPeek (1999) and Hössjer (2003, 2005), we consider a one-dimensional
trajectory {ψε}ε of penetrance vectors

ψε = (m∗,m∗,m∗) + ε(u(0), u(1), u(2))

and hence rewrite the parameter vector as

θ = (q, Δ, ε). (14)
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Here ε = 0 corresponds to no genetic effect, P (Y |G, ε = 0) = P (Y ) of the
major gene G and small ε gives a weak penetrance model, where G has weak
impact on Y . We reformulate the hypothesis testing problem as

H0(x) : τ = x, Δ = ε = 0,
H1(x) : τ = x, ε �= 0.

Adding ’τ = x’ under H0(x) may seem contradictory in view of (1). However,
τ = x, ε = 0 refers to a ’disease locus’ τ with no effect on the phenotypes,
which, for all likelihood computations, is mathematically equivalent to a dis-
ease locus with effect on phenotypes that is unlinked to τ . With this notation,
we make it clear that the parameter spaces of H0(x) and H1(x) are disjoint
but not isolated from each other and that all likelihood computations can be
performed assuming τ = x. Compared to (1), we have added the additional
requirement ε �= 0 under H1. This means that under H1, τ is indeed a true
disease locus that has some effect on the phenotype.

Whereas ε �= 0 is needed in H1 for testing both association and linkage, Δ �= 0
is only needed in H1 for testing association. Hence, we do not impose Δ �= 0 in
a joint test for linkage and association. However, it is shown in the appendix
that the scores of Δ and ε vanish for outbred pedigrees. For this reason, we
reparametrize to

ε = (ε0, ε1, ε2), (15)

where ε0 = q = (q1, . . . , qd−1) contains nuisance parameters, and ε1 = Δε and
ε2 = ε2 are the structural parameters2. Notice that we only included d − 1
components of q because of the constraint

∑d−1
j=0 qj = 1. The score vector at

locus x becomes

S(x) =
∂ log L(x, ε; M))

∂ε

∣∣∣∣
ε=(q,0,0)

= (S0(x), S1(x), S2(x)), (16)

where Si(x) = Si(x; M, Y ) is the partial derivative of log L with respect to εi.
Using standard results for likelihood scores with missing data (Dempster et
al., 1977), it follows, by differentiating (3) with respect to ε, that

S(x) =
∑
b,v

Pq(b, v|M)S(b, v), (17)

2To be exact, ε is not a one-to-one function of θ in (14), since (q, Δ, ε) and (q,−Δ,−ε)
correspond to the same ε. However, the likelihood is locally invariant around (q, 0, 0) with
respect to this ambiguity. Alternatively, we might impose ε ≥ 0 to make the reparametriza-
tion a one-to-one mapping.
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where, with a slight abuse of notation, S(b, v) = (S0(b, v), S1(b, v), S2(b, v)) is
the score function for complete marker data, defined as

S(b, v) =
∂ log Lc(ε; b, v))

∂ε

∣∣∣∣
ε=(q,0,0)

. (18)

With N > 1 pedigrees, we simply add the score vectors (17) of each pedigree
to obtain a total score vector S(x). The validity of (17) depends crucially on
(4), as shown in the appendix.

We consider both the case when q is known and unknown. In the latter case,
we have to plug in a maximum-likelihood estimate of q into S1 and S2, and this
will affect the Fisher information. Define Iij = E(ST

i Sj), where expectation is
under H0, and I = (Iij)

2
i,j=1. Let J = (Jij)

2
i,j=1 be the 2×2 Fisher information

matrix for (ε1, ε2) at the null value (0, 0), defined as

J =

{
I, q known,
I − (I01, I02)

T I−1
00 (I01, I02), q is estimated.

(19)

As shown in the appendix, the combined test statistic for linkage and associ-
ation, when testing H0 against H1 is

Tcombined(x) =

{
(S1(x), S2(x))J−1(S1(x), S2(x))T , if S̃2(x) ≥ 0,

S2
1(x)/J11, if S̃2(x) < 0,

(20)

where S̃2(x) = (S1(x), S2(x))J−1/2gT , g =
(
(0, 1)J1/2

)⊥
and e⊥ = (−e2, e1) is a

vector orthogonal to e = (e1, e2). When J is diagonal, as for complete marker
data, we have S̃2(x) = S2(x). The null hypothesis H0 is rejected when Tcombined

exceeds a given threshold. Notice that ε2 ≥ 0, whereas no sign constraint is put
on ε1. For this reason, Tcombined is defined differently depending on whether S2

is negative or positive. Asymptotically, for large samples (N → ∞), the null
distribution of Tcombined is a 0.5 : 0.5 mixture of χ2(1) and χ2(2) distributions.
This is a typical limit distribution when the null parameter is at the boundary
of the parameter space, see the appendix and Self and Liang (1987).

The tests for pure association (H1: τ = x, Δ �= 0 and ε �= 0) and pure linkage
(H1: τ = x and ε �= 0) have tests statistics

T1(x) = S2
1(x)/J11,

T2(x) = S2(x)/
√

J22,
(21)

and H0 is rejected when T1 or T2 exceed a given threshold. It is customary
in linkage analysis not to account for the influence of estimating q and put
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J22 = I22 in (21) regardless of whether q is estimated or not. The reason is
that misspecification of q is not as serious for linkage analysis. Indeed, we show
below that S2(b, v) = S2(v), and hence S2(x) =

∑
v Pq(v|M)S2(v). Therefore,

q only enters in the conditional inheritance distribution Pq(v|M) and not in
centering of the score function. Asymptotically for large samples T1 has a
χ2(1) and T2 an N(0, 1)-distribution under H0.

For practical purposes, for incomplete marker data, computation of Tcombined(x),
T1(x) and T2(x) requires an explicit expression for Pq(b, v|M) in (17) for each
family. In the most general case, when nearby loci xi are close enough to be
in LD, the LD-structure has to modeled and incorporated in order to compute
Pq(b, v|M). For sparser marker maps, when nearby xi are in linkage equilib-
rium (LE), one may use the multipoint algorithm of Lander and Green (1987)
for this purpose, as shown in the appendix.

5 Scores for complete marker data

For complete marker data, the scores Si have a very explicit form. Let μ0 =
(m∗, . . . , m∗), σ2

g = Var(u|Gk|) and define

ωk = ωk(Y ) = σg ∂f(Y ; μ)/∂μk|μ=μ0
/f(Y ; μ0)

ωkl = ωkl(Y ) = σ2
g ∂2f(Y ; μ)/∂μk∂μl|μ=μ0

/f(Y ; μ0)

as family-specific weights assigned to individuals and pairs of individuals.

Example 5 (Binary phenotypes, contd.) Let Kp = P (Yk = 1) = m∗ be
the prevalence of the disease when ε = 0. If σ2

g = K2
p(1 − Kp)

2, it follows, by
differentiating (12), that

ωk = Yk − Kp. (22)

Further, ωkl = ωkωl when k �= l, and this is general property in absence of
polygenic and shared environmental effects (11). If k and l is a monozygotic
twin pair, it follows that the relative risk ratio (Risch, 1990) equals

λ = 1 + ωklε
2 + o(ε2). (23)

If E(ψ(|Gk|)) = 0, the prevalence is independent of ε and the remainder term
in (23) vanishes. �
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Example 6 (Quantitative phenotypes, contd.) Let r = (Y − μ0)/σ =
(r1, . . . , rn) be the standardized vector of residuals. Then, if σ2

g = 1,

ωk = (rΣ−1)k,
ωkl = (rΣ−1)k(rΣ

−1)l − Σ−1
kl ,

where Σ−1
kl is the (k, l)th entry of Σ−1, see Hössjer (2005). Moreover, if h2 =

Var(E(Y |Gk))/Var(Yk) is the heritability at the main locus, then

ε2 =
h2

1 − h2
.

�

Example 7 (Gaussian liabilities, contd.) If σ2 = 1, then, as shown in
Hössjer (2005),

ωk = σg

∫
((X − μ0)Σ

−1)kP (X|Y )dX
ωkl = σ2

g

∫ (
((X − μ0)Σ

−1)k((X − μ0)Σ
−1)l − Σ−1

kl

)
P (X|Y )dX,

(24)

where P (X|Y ) ∝ P (Y |X)f̃(X; μ0) is the posterior distribution of X when
ε = 0. Consider in particular the liability threshold model with m∗ = 0. Then
μ0 = (0, . . . , 0), Kp = 1 − Φ(z) is the prevalence P (Yk = 1) when ε = 0
and Φ is the distribution function of a standard normal random variable. Put
σ2

g = (1 − Kp)
2K2

p/φ
2(z), where φ = Φ′. Then (24) reduces to (22), in the

special case of no polygenic or shared environmental effects, i.e. when Σ is
an identity matrix. In general, the relative risk ratio of a monozygotic twin
pair k, l can be written as λ = λother · λmain. It has two factors, of which the
first one, λother, is due to polygenic and shared environmental effects, and the
other, λmain, is caused by the major gene G (Kurbasic and Hössjer, 2005). It
can be shown that (23) generalizes to

λmain = 1 + ωklε
2 + o(ε2).

�

Decompose the genetic variance σ2
g = σ2

a + σ2
d into additive and dominant

variance components σ2
a = 2p0p1(p0(ψ(1) − ψ(0)) + p1(ψ(2) − ψ(1)))2 and

σ2
d = (p0p1)

2(ψ(2) − 2ψ(1) + ψ(0))2, and let

c = σ2
d/σ

2
g
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be the fraction of variance due to dominance effects. Let also ni be the number
of marker alleles of type i among the founders, i = 0, . . . , d − 1. Then, it is
shown in the appendix that for one outbred pedigree and complete marker
data, the components of the score vector have the form

S0(b, v) = S0(b) = (n1/q1 − n0/q0, . . . , nd/qd − n0/q0),
S1(b, v) = S1(H) =

√
1 − c · ∑n

k=1 ωk(g(b2k−1) + g(b2k)) − C1

S2(b, v) = S2(v) =
∑

1≤k<l≤n ωkl

(
(1 − c)IBDkl/2 + c1{IBDkl=2}

)
− C2,

(25)
where g(b1) = s(1, b1)

√
p1/(2p0), IBDkl is the number of alleles shared identical-

by-descent by k and l and Ci is a centering constant that assures E(Si(b, v)) =
0. For a set of N pedigrees, the familywise score components (25) are simply
added to obtain the total score vector S.

For pure association testing, T1 can be viewed as a generalization of the test
statistics in Clayton (1999), Whittemore and Tu (2000) and Shih and Whit-
temore (2002), since polygenic and shared environmental effects are allowed
for. For biallelic marker alleles (d = 2), g only attains two values, so without
loss of generality we may rescale and put g(bk) = bk. Therefore, in this case,
the influence of the marker allele is additive. Non-additive effects can be at-
tained by dropping the assumption of Hardy-Weinberg equilibrium in (8). In
the linkage case, T2 coincides with the test statistic in Hössjer (2005), see also
McPeek (1999) and Hössjer (2003b).

The association score may be split into founder and nonfounder terms, S1 =
SF

1 + SNF
1 . The nonfounder score is defined conditionally on observed pheno-

types and founder genotypes. Let g0(bk) = g(bk) − E(g(bk)|b). Then

SNF
1 (H) =

√
1 − c

n∑
k=f+1

ωk

(
g0(b2k−1) + g0(b2k)

)
, (26)

where the sum ranges over all nonfounders {f +1, . . . , n}, see Clayton (1999),
Whittemore and Tu (2000) and Shih and Whittemore (2002). The analogous
score for incomplete marker data is defined as in (16) with SNF

1 instead of S
on the RHS. Moreover, ’nonfounder versions’ of the combined association and
linkage test Tcombined, as well as the pure association test T1 can be defined by
replacing S1 with SNF

1 everywhere. For instance, the modified version of T1 is

TNF
1 (x) = (SNF

1 (x))2/JNF
11 , (27)

where JNF = (JNF
ij )2

i,j=1 is defined analogously to J in (19). This is a general-
ization of the classical TDT test to arbitrary pedigrees and phenotypes. An
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advantage of TNF
1 compared to T1 is less sensitivity to model misspecification in

terms of marker allele frequencies and spurious association due to population
admixture. The price to pay is decreased efficiency. For complete marker data
SNF

1 is orthogonal to S0 and marker allele frequencies need not be estimated.
An even more robust approach is to condition on a minimal sufficient statistic
under the null hypothesis, see Rabinowitz and Laird (2000) for details. The
distribution of the resulting test statistic is independent of marker allele fre-
quencies and adjusts for association due to population admixture for any kind
of marker data.

6 Noncentrality Parameters and Efficiency

We define the noncentrality parameter

η2
combined = 2Eθ

(
log

L(τ, θ̂)

L(τ, θ̂0)

)
(28)

as twice the expected increase of the log likelihood under θ̂ = (q̂, Δ, ε) com-
pared to θ̂0 = (q̂, 0, 0) and with q̂ the ML-estimator of q. When q is known we
replace θ̂ and θ̂0 by θ = (q, Δ, ε) and θ0 = (q, 0, 0) respectively. The noncen-
trality parameter grows with N if θ is kept fixed. However, for θ close to θ0,
likelihood theory implies, under certain regularity assumptions (see (A.1) and
(A.9) in the appendix) that the asymptotic approximation

η2
combined = (ε1, ε2)J(ε1, ε2)

T . (29)

may be used, provided that the RHS of (29) stays bounded when N grows.
For complete marker data, it is shown in the appendix that

J =

(
J11 0
0 I22

)
, (30)

which implies
η2

combined = η2
1 + η2

2, (31)

where
η2

1 = (Δε)2J11,
η2

2 = ε4I22,
(32)

are the noncentrality parameters of the pure association and linkage tests
respectively. The asymptotic distributions of the combined association test
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and linkage tests at the disease locus are

Tcombined(τ) = (X1 + η1)
2 + (X2 + η2)

21{X2+η2≥0},
T1(τ) ∈ χ2(1, η2

1),
T2(τ) ∈ N(η2, 1),

(33)

where χ2(p, η2) is a noncentral χ2-distribution with p degrees of freedom and
noncentrality parameter η2 and X1 and X2 are independent standard normal
random variables. Notice that Tcombined(τ) does not have a χ2(2, η2

combined)-
distribution, since the linkage parameter ε2 is constrained to be nonnegative.

Formula (32) for η1 holds for all three versions of the association test, with

J1 =

⎧⎨
⎩

Jkm
11 = I11, no founder cond., known q,

Jem
11 = I11 − IT

01I
−1
00 I01, no founder cond., estimated q,

JNF
11 = INF

11 , founder conditioning,
(34)

and superscripts ’km’ and ’em’ are short for known and estimated marker allele
frequencies respectively.

Consider a sample of one single pedigree type, i.e. a sample where all pedigrees
have the same structure and identical phenotypes. Our goal is to assess the
sample sizes N em

1 (α, β), Nkm
1 (α, β), NNF

1 (α, β), N2(α, β) and Ncombined(α, β)
needed for level α tests T em

1 , T km
1 , TNF

1 , T2 and Tcombined to attain power β.
Write N(α, β) for any of these five quantities and η2 for any of the four non-
centrality parameters (ηem

1 )2, (ηkm
1 )2, (ηNF

1 )2 and η2
2. Then

η2 = Nη2(1), (35)

where η2(1) is corresponding noncentrality parameter when N = 1.

For a pointwise test T at one single x, we first choose threshold by solving
for t in P (T ≥ t|H0(x)) = α, where the H0-distribution of T is obtained by
putting η = 0 in (33). Then N(α, β) is found by inserting (35) into (33) and
solving for N in P (T ≥ t|H1(x)) = β.

When linkage and/or association is tested at number of loci x simultaneously,
we incorporate multiple testing correction into the definition of N(α, β). We
have done this for the pure association and linkage tests (but not for the
combined test) in the appendix, where it is shown that

N(α, β) ≈
(ξα̃ + ξ1−β̃)2

η2(1)
, (36)
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with ξα = Φ−1(1−α) the (1−α)-quantile of a standard normal N(0, 1) random
variable. A formula similar to (36) appears in Risch and Merikangas (1996).
The numbers α̃ (= α̃em

1 , α̃km
1 , α̃NF

1 or α̃2) and β̃ (= β̃em
1 , β̃km

1 , β̃NF
1 or β̃2) can

be interpreted as the pointwise one-sided significance level and power after
correction for multiple testing. The adjusted pointwise power satisfies β̃ ≤ β.
The larger the region around τ is where a significant test result is considered as
a true positive, the smaller is β̃, and β̃ = β if a significant test at τ is required
to be characterized as a true positive. The adjusted pointwise significance
levels can be interpreted by viewing the multiple testing problem under H0

as performing an ’effective number’ K̃ of one-sided independent tests. The
Bonferroni approximation for small α is α̃ ≈ α/K̃, although exact expressions
can be found in the appendix. Since one two-sided test roughly corresponds
to two one-sided tests for small α, we put K̃1 = 2 and K̃2 = 1 when one
locus is tested, where K̃1 is any of K̃em

1 , K̃km
1 or K̃NF

1 . When several loci
are tested, K̃1/2 and K̃2 correspond to the effective number of ’independent
loci’ for association and linkage tests. When test statistics at different loci
are independent, both K̃1/2 and K̃2 equal the number K of actual loci xi. In
general though they may be smaller than K due to dependency of test statistics
at nearby loci. Since linkage disequilibrium decays faster than correlation
of allele sharing statistics, K̃1/2 is in general larger than K̃2 and hence the
numerator of (36) is larger for the association tests than for the linkage test.

Formula (36) can be generalized samples is drawn from a population of pedi-
gree types, as in Hössjer (2003a). Then, if η2(φ) is the noncentrality parameter
for a pedigree of type φ, the sample size required for a level α test to attain
power β is

N(α, β) ≈
(ξα̃ + ξ1−β̃)2∫
η2(φ)dν(φ)

, (37)

where ν is the distribution of pedigree types in the population. In other words,
if α̃ and β̃ are independent of pedigree type φ, the required sample size is the
harmonic mean of the required sample sizes of each pedigree type.

7 Biallelic Markers and Nuclear Families

We now specialize to biallelic markers and complete marker data, and further
assume that Δ is the correlation coefficient (9). In the appendix, we give
general expressions for the Fisher information. In particular, for one nuclear
family (N = 1) with two parents (k = 1, 2) and n − 2 siblings (k = 3, . . . , n)
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we get

Jkm
11 = 0.5 · (1 − c) ((

∑n
k=1 ωk)

2 + (ω1 − ω2)
2 +

∑n
k=3 ω2

k)
Jem

11 = 0.5 · (1 − c) ((ω1 − ω2)
2 +

∑n
k=3 ω2

k)
JNF

11 = 0.5 · (1 − c)
∑n

k=3 ω2
k,

I22 = 0.125 · (1 + 0.5 · c2)
∑

3≤k<l≤n ω2
kl

(38)

and this in turn gives explicit expressions for N(α, β), using formulas of the
previous section.

8 Numerical Results

We evaluated the required sample size N(α, β) in a genomewide scan for dif-
ferent pedigree types and genetic models. Since (36) is based on asymptotic
approximations, it is accurate mainly when ε is small (linkage) or when ε and
Δ are small (association). For the linkage test, we used extreme value theory
of stochastic processes to adjust for multiple testing, see the figure captions
and appendix for details. No such theory is available for association analysis.
Instead, we used the distance δ = 0.1 cM between two adjacent ’effectively
independent’ association tests, since it is reasonable to assume that δ is is the
range 0.05-0.2 cM (Reich et al., 2001). We used β̃1 = β = 0.8 in all plots,
requiring, for the association tests, a significant peak at the disease locus itself
to be declared as a true positive. For the linkage test, a less stringent criterion
was used in defining a true positive. With a smaller value of β̃1, N(α, β) would
decrease somewhat for all association tests.

In Figures 1-3, N(α, β) is calculated for three different pedigrees types with
binary phenotypes. The model parameters of Examples 5 and 7 are varied one
at a time. When h2

a > 0, the integral expressions for ωk and ωkl are evaluated
by means of a rapid importance sampling algorithm (using 10000 samples) for
multivariate normal distributions truncated on a rectangular region (Gottlow
and Sadeghi, 1999).

In general the associations tests are more efficient than the linkage test for
weak penetrance models (small λ or small ε) and strong association (large
Δ) whereas the linkage test is more efficient for strong penetrance models
and weak association. This can easily be explained since N(α, β) is inversely
proportional to (Δε)2 for the association tests and inversely proportional to ε4

for the linkage test. The prevalence has small effect on efficiency (with λ fixed),
whereas increased polygenic variance often decreases efficiency, at least for
concordant phenotypes. The linkage test is more efficient relative to T em

1 and
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TNF
1 for larger pedigrees. This is not surprising, since I22 grows quadratically

with pedigree size, whereas Jem
11 and JNF

11 grow linearly with pedigree size.
Among the three association tests, T km

1 is most efficient, followed by T em
1 and

TNF
1 . This is evident from the figures, but can also be seen by comparing the

Fisher informations in (38). (However, T km
1 is also most sensitive to model

misspecification, followed by T em
1 and TNF

1 .) When parents have unknown
phenotypes (ω1 = ω2 = 0), T em

1 and TNF
1 are equally efficient, as in Figures 1

and 2.

Figures 4-6 display N(α, β) for three different pedigree types using the Gaus-
sian model of Example 6. Similar remarks can be made regarding the effect of
penetrance, association and pedigree size. In addition, more extreme pheno-
types (larger k if the figures) make the linkage test more efficient compared to
the association tests. This follows since I22 is proportional to k4 when there
are no polygenic effects whereas J11 is proportional to k2 for all three asso-
ciation tests. The effect of polygenic variance depends on the pedigree type.
For concordant (discordant) phenotypes, the efficiency decreases (increases)
when h2

a increases, and more so for the linkage test than for the association
tests. Notice that T km

1 and T em
1 have identical efficiency when

∑
k ωk = 0, as

in Figure 5. In this case the marker allele frequencies (ε0) are orthogonal to
ε1, so no asymptotic efficiency loss is induced by estimating them.

The fraction of dominance variance at the disease locus, c, is zero in Figures
1-6. When c increases, the linkage test gets comparatively more efficient than
the association tests, as can be seen from (38). This effect is small for when
c ≤ 0.1 but then rapidly gets more pronounced as c increases, see Hössjer
(2004a) for details.

We also investigated the effect of varying δ in the range 0.01-0.3 cM in Hössjer
(2004a). The conclusion is that N1(α, β) is quite insensitive to the choice of
δ. Hence the N1-curves of Figures 1-6 are quite representative for a range of
values of δ.

To evaluate the performance of the combined test, we computed the relative
efficiency

N(α, β)/ min(N1(α, β), N2(α, β), Ncombined(α, β)) (39)

as function of η2/η1 for the combined, association and linkage tests in Figure
7. In this case, all sample sizes are for pointwise tests, using (33). It is evident
from this figure that the combined test is very robust, and never performs
much worse than the best of the association and linkage tests. On the other
hand, for a range of intermediate values of η2/η1, the combined test is more
efficient than both the association and linkage tests, since the extra cost of
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adding degrees of freedoms to the combined test is less than the gain of using
more information from marker data.

We conjecture that the conclusions of Figure 7 extend to multiple testing over
one or several chromosomes. For instance, it is reasonable to assume that
the amount of multiple testing is about the same for the association test and
combined tests, setting α̃ and β̃ to the same values as for both tests in Figures
1-6. Hence, we conclude Tcombined is a robust alternative to using either of T1

or T2. It is preferable to use the combined test when little is known about the
genetic model. Only if prior knowledge of the genetic model is available that
makes either of T1 and T2 much more powerful than the other, is it reasonable
to use the best of these two tests.

9 Discussion

In this paper we derived a combined score test for linkage and association. It
can be used for arbitrary combinations of (outbred) pedigree structures and
allows for missing marker information and multipoint analysis in a general way.
The test uses biologically based genetic models, with 1) marker allele frequen-
cies, 2) association between markers and the causal gene and 3) penetrance
between the causal gene and phenotypes as parameters. The genotypes at the
causal gene are treated as hidden variables in the likelihood computations. We
have also defined separate tests for linkage and association, by using either of
the two components of the combined score test separately.

The derived score tests are semiparametric in the sense described in Hössjer
(2003b, 2005). By this we mean that they depend on the dominance variance
fraction c and a few other genetic model parameters (such as prevalence and
polygenic heritability) included in the weights ωk and ωkl. The latter can often
be estimated from population data, and c = 0 is a good approximation when
the disease allele frequency p1 is reasonably small. However, we stress that
misspecification of these parameters does not affect the significance level of
the tests, only the power.

Our framework facilitates efficiency comparisons between the combined, asso-
ciation and linkage tests, as well as between various versions of the association
test, with or without estimating marker allele frequencies, and with and with-
out conditioning on founder marker genotypes. We derived general efficiency
formulas for complete marker data and biallelic markers with correction for
multiple testing. When comparing linkage and association, no method is uni-
formly superior, but association tests are comparatively more efficient than
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linkage tests for weak penetrance and strong association models, smaller fam-
ilies and less extreme (quantitative) phenotypes. The linkage methods are
comparatively more informative when there is strong penetrance, weak asso-
ciation, larger families and extreme phenotypes. These results could be used
to choose between linkage or association when some prior knowledge of the
genetic model is available. The combined tests is a robust alternative, with
performance close to the best of the linkage and association tests, and some-
times better. Hence it is a useful altnernative, in particular when little is
known about the genetic model.

A natural continuation is to extend the analytical efficiency and power com-
parisons between linkage and various association methods to d-allelic markers
with d > 2. Likewise, the effect of incomplete marker data should be stud-
ied. Incomplete marker data arises because of untyped family members, un-
known haplotype phase, sparse marker maps or non-polymorphic markers. To
a large extent, efficiency and power comparisons for incomplete marker data
will employ simulation, since explicit analytical expressions for noncentrality
parameters are hard to obtain except in certain special cases.

In the efficiency comparisons, we utilized large sample normal approximations
to determine pointwise significance level and power. To adjust the significance
level (and power) for multiple testing, we used analytically tractable meth-
ods that are fast to compute. For the association tests, we introduced an
’effective distance between independent loci’ as a varying parameter and for
the linkage test we used extreme value theory for Gaussian processes. Several
modifications of the multiple testing correction are possible. First, it is possi-
ble the refine the Gaussian approximation (for the linkage test) by adjusting
for non-normality and finite marker spacing (Feingold et al. 1993, Ängquist
and Hössjer, 2005). Secondly, simulation could be used as a more accurate
but time-consuming alternative. For the linkage test, one may use importance
sampling (Ängquist and Hössjer, 2004). Another option is to employ permu-
tation testing. It has the advantage of being applicable to any of the linkage,
association and combined tests, both for pointwise and genomewide signifi-
cance calculations. On the other hand, it requires exchangeability between all
families or between subsets of families.

In the multipoint analysis, the crucial assumption (4) on marker and phenotype
data is natural to use i) for sparse marker maps with all marker loci in LE and
ii) for dense marker maps with polymorphic (haplotype) markers, so that the
marker closest to τ captures essentially all LD with G, although there may be
other markers nearby. Hence, we believe our joint association and linkage test
is well suited for dense marker maps, although haplotype markers (e.g. ones
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with a certain number B of SNPs) are then preferred a) to utilize all available
association between disease genotypes and markers to increase power and b)
to make the assumption (4) for deriving the score test correct.

Our approach has some similarities with that of Chapman et al. (2003), who
also treat disease gene alleles as hidden variables. Their focus is mainly on
population based case-control studies and prospective likelihoods P (Y |M),
while we focus on family-based association studies and retrospective likeli-
hoods P (M |Y ). In Chapman et al. (2003), the relation between marker and
disease causing alleles are modeled in terms of linear regression, while we use
the joint distribution of marker and disease alleles among founders. We believe
some ideas of Chapman et al. (2003) could be incorporated into our framework.
Firstly, a pure association test can be derived by keeping Δ �= 0 fixed and only
differentiating the log likelihood with respect to penetrance parameters. Sec-
ondly, when haplotype marker alleles are used and d, the length of q, is large,
Δ can be chosen as a vector. The choice of dimensionality of such a vector
is a trade-off between size of noncentrality parameter and number of degrees
of freedoms. For instance, if the haplotype consists of B biallelic markers,
d = 2B, and the dimensionality of Δ should be somewhere between B (locus
scoring) and d − 1 (haplotype scoring). Chapman et al. (2003) and Clayton
et al. (2004) conclude that in many cases locus scoring is more powerful. It
would be interesting to see if such a conclusion is valid also in our framework
of family-based association studies.

For quantitative traits, Fulker et al. (1999) and Sham et al. (2000) intro-
duced a joint likelihood ratio test for linkage and family-based association.
They model P (Y |M) through a multivariate normal distribution N(μ, Σ), and
thereby avoid summing over disease genotypes. The association and linkage
parameters are contained in μ and Σ respectively. The corresponding score
vector obtained by differentiating log P (Y |M) with respect all model param-
eters, is closely related to our score vector (S1, S2) (assuming q is known). In
fact, for additive models, with identical within and between family association
parameters, calculations (not shown here) reveal that S1 and S2 are the mean
and covariance part of the Fulker et al. score vector. Hence, in view of the
asymptotic equivalence between likelihood ratio and score tests, their LR test
for combined association and linkage is asymptotically equivalent to Tcombined.

Sham et al. (2000) compute noncentrality parameters for their joint test of
linkage and association, which they subsequently split into linkage and asso-
ciation terms. As in our paper, they conclude that the linkage noncentrality
parameter is proportional to h4 for small heritabilities h2, whereas the associ-
ation parameter is proportional to Δ2h2 for biallelic markers and small Δ and
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h2. However, they use a prospective rather than retrospective likelihood and
define the noncentrality parameter as

η2
combined = 2 (Eθ log L(τ, θ) − Eθ0 log L(τ, θ0))

instead of (28), so our our results are not directly comparable.

Several other extensions are possible. For instance, the assumption of Hardy-
Weinberg equilibrium could be relaxed and rare-disease models could be ana-
lyzed, where the penetrance parameters are kept fixed but the frequency of the
disease causing allele tends to zero. In the pure linkage case, such score tests
has been derived by McPeek (1999) and Hössjer (2003b, 2005). For recessive
diseases, it is also of interest to consider inbred pedigrees. Then the first order
linkage score ∂ log L/∂ε will no longer vanish, requiring a reparametrization
different from (15). Examples of linkage score functions for inbred pedigrees
can be found in McPeek (1999) and Hössjer (2003b, 2005).

Appendix

Derivation of incomplete marker data score functions. Let Ṗx,ε(b, v|Y ) =
∂Px,ε(b, v|Y )/∂ε. Then

S(x) =
P

b,v P (M |b,v)Ṗx,ε(b,v|Y )
P

b,v P (M |b,v)Px,ε(b,v|Y )

∣∣∣
ε=(q,0,0)

=
P

b,v P (M |b,v)Pq(b,v)S(b,v)
P

b,v P (M |b,v)Pq(b,v)

=
∑

b,v Pq(b, v|M)S(b, v),

where in the first equality we used (4) and in the second (6), (18) and Px,ε(b, v|Y ) =
Pq(b, v) when ε = (q, 0, 0). �

Motivation of combined score test. We omit x and ε0 in the notation,
so that ε = (ε1, ε2), L(x, ε) = L(ε) and S = (S1, S2) = (S1(x), S2(x)). We
consider a local (contiguous) sequence of true parameter values, meaning that
the true value of ε is such that εJεT stays bounded when N (and hence also
J) grows. We further assume that the likelihood surface is smooth enough to
admit a second order asymptotic Taylor expansion

2 log(L(ε)/L(0, 0)) = 2SεT − εJεT + op(εJεT ) (A.1)

as N → ∞, which is valid for all ε (not just the true parameter vector) such
that εJεT stays bounded when N grows. The remainder term op(εJεT ) is
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stochastic and of smaller order than εJεT . Essentially, (A.1) requires that the
likelihood, before reparametrization, has partial derivatives (mixed or not)
with respect to Δ and ε up to order five, see Rotnitzky et al. (2000). We will
derive the combined score test as an asymptotic approximation of

2 log(L(ε̂)/L(0, 0)), (A.2)

where ε̂ is the ML-estimator of ε, i.e. the maximizer of L(ε1, ε2) over the region
{(ε1, ε2), ε2 ≥ 0}, or a bounded subset thereof3. Define the two unit vectors
e = (1, 0)J1/2/|(1, 0)J1/2| = (e1, e2), f = e⊥ = (−e2, e1) and the orthogonal
2 × 2 matrix Q = (eT , fT ). A reparametrization S̃ = SJ−1/2Q = (S̃1, S̃2) and
ε̃ = εJ1/2Q gives

2 log(L(ε̃)/L(0, 0)) = 2S̃ε̃T − ε̃ε̃T + op(|ε̃|2), (A.3)

which is maximized over4 {ε̃ = (ε̃1, ε̃2); ε̃2 ≥ 0}. Asymptotically, as N → ∞,
we may ignore the remainder term and notice that the ML-estimator of ε̃ is

ˆ̃ε =

{
(S̃1, S̃2), S̃2 ≥ 0,

(S̃1, 0), S̃2 < 0.

Insertion into (A.3) yields

2 log(L(ˆ̃ε)/L(0, 0)) =

{
S̃2

1 + S̃2
2 , S̃2 ≥ 0,

S̃2
1 , S̃2 < 0.

(A.4)

Since the likelihood ratio is invariant with respect to reparametrization, the
LHS of (A.4) coincides with (A.2). From the definition of S̃, we notice that
the RHS of (A.4) is equivalent to (20). �

Expanding multipoint probabilities. Recall x = xi and that b and
v are founder allele and inheritance vectors at xi. When all markers be-
long to the same chromosome, let M (i−) = (M1, . . . , Mi−1) and M (i+) =
(Mi+1, . . . , MK). Then, in the case of LE between markers, the multipoint
probability Pq(b, v|M), can be written

Pq(b, v|M) ∝ Pq(b, v, M) = αi(v)βi(v)P (b)P (Mi|b, v)

3This is because Δ is bounded and, depending on the application, ε is either bounded or
not.

4Even if the parameter space of ε is bounded, J grows with N , and hence asymptotically,
this is the parameter space of ε̃.
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where αi(v) = P (M (i−), v) are forward probabilities, updated recursively with
respect to i from left to right, and βi(v) = P (M (i+)|v) backward probabilities,
updated recursively with respect to i from right to left. See Lander and Green
(1987) for details. The term P (Mi|b, v) is computed as in Appendix A of
Kruglyak et al. (1996). �

Derivation of complete marker data score functions. To begin with,
we use parameters (q, Δ, ε), as in (14), to motivate why a reparametrization
(15) is appropriate. We regard a in (7) as hidden data and define the full data
likelihood as

Lf(q, Δ, ε; b, v, a) = CPq,Δ(a, b)Pψε(Y |a, v),

where superscript f short for ’full data’ and the proportionality constant C =
2−m/Pp,ψ(Y ) will only affect the score function by means of an additive (cen-
tering) constant.

Then, in view of (7), the complete marker data likelihood (6) satisfies

Lc(q, Δ, ε) = E(Lf(q, Δ, ε)|b, v). (A.5)

Let Sf
ijk(a, b, v) = Lf(q, 0, 0)−1 · ∂i+j+kLf(q, Δ, ε)/(∂iq∂jΔ∂kε)

∣∣
(q,Δ,ε)=(q,0,0)

be

the full data score function of order (i, j, k) and define Sijk(b, v) analogously
for the complete marker data likelihood Lc. It follows, by differentiating (A.5),
that

Sijk(b, v) = E(Sf
ijk(a, b, v)|b, v). (A.6)

Next we compute the leading Sijk terms needed in a Taylor series expansion
of log L(q, Δ, ε) around (q, 0, 0). We let C denote a centering constant that
assures E(Sf

ijk) = 0 or E(Sijk) = 0, whose value may differ from line to

line. It follows from (8) and (A.6) that S100(b, v) = Sf
100(a, b, v) is identical

to S0(b) in (25). Since Lf(q, Δ, 0) = 2−mPq,Δ(a, b), it follows from (A.5) that
L(q, Δ, 0) = 2−mPq(b) is independent of Δ. Hence Sf

0j0(b, v) = 0 for all j > 0.
Further,

Sf
011(a, b, v) = σ−1

g

∑2f
j=1

∑2n
k=1 s(aj, bj)ωku(|Gk|) − C

Sf
001(a, b, v) = σ−1

g

∑n
k=1 ωku(|Gk|) − C

Sf
002(a, b, v) = 2σ−2

g

∑
1≤k<l≤n ωklu(|Gk|)u(|Gl|)

+ σ−2
g

∑n
k=1 ωkku

2(|Gk|) − C.

(A.7)

Assuming an outbred pedigree, there are exactly two of the founder alleles aj

that are IBD to the alleles of Gk = (a2k−1a2k). Since E(s(aj, bj)|bj) = 0 (see
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the discussion below (8)), it follows form independence of {(aj, bj)}2f
j=1 that

S011(b, v) = σ−1
g

∑2f
j=1

∑2n
k=1 E(s(aj, bj)ωku(|Gk|)|b, v) − C

= σ−1
g

∑2n
k=1 ωk (E(s(a2k−1, b2k−1)u(|Gk|)|b, v) + E(s(a2k, b2k)u(|Gk|)|b, v)) − C

= σ−1
g

∑2n
k=1 ωk (E(s(a2k−1, b2k−1)u(|Gk|)|b2k−1) + E(s(a2k, b2k)u(|Gk|)|b2k)) − C

=
√

1 − c · ∑n
k=1 ωk (g(b2k−1) + g(b2k)) − C,

and the last line is identical to S1(H) in (25). In the last step, we used
Lemma 1 in Hössjer (2003b) to conclude u(|(a1a2)|) = σa(a1 + a2)/

√
2p0p1 +

σd(a1 − p0)(a2 − p1)/(p0p1) + C, where C is a constant, independent of a1

and a2. Neither Sf
001 nor Sf

002 depend on b, and we can apply results from
Hössjer (2005) to deduce, for an outbred pedigree, that S001(b, v) = 0 and
S002(b, v) = 2S2(v). Summarizing, we have shown that

log
Lc(q′, Δ, ε)

Lc(q, 0, 0)
= (q′ − q)ST

0 + ΔεS1 + ε2S2 + o(|q′ − q| + |Δε| + ε2).

A reparametrization (15) and (18) shows that indeed Si in (25) are valid score
functions for complete marker data. �

Proof of (30) and (34) for complete marker data. To prove (30), it
suffices to verify that I02 = (0, . . . , 0)T and I12 = 0. Assuming independence
of b and v (no segregation distortion) it follows immediately that S0 = S0(b)
and S2 = S2(v) are independent, and hence I02 = (0, . . . , 0)T . We prove I12 = 0
for the version (25) of S1 without conditioning on founders’ marker genotypes.
(The proof for SNF

1 is analogous.) Let Skl = (1 − c)IBDkl/2 + c1IBDkl=2 and
notice that

I12 =
√

1 − c ·
n∑

k=1

∑
1≤k′<l′≤n

(Cov(g(b2k−1), Sk′l′(v)) + Cov(g(b2k), Sk′l′(v))) .

(A.8)
Since {bj} are independent and identically distributed, the conditional distri-
bution bk|v = bjk(v) is independent of v, where 1 ≤ jk(v) ≤ 2f is the founder
allele number that has been transmitted to allele k, k = 1, . . . , 2n. Hence bk

and v are independent. Applying this in (A.8) I12 = 0 follows. Finally, (34)
follows from the definition of J and I, and, for the nonfounder statistic, the
fact that INF

01 = 0 for complete marker data. �

Pointwise asymptotic distribution of test statistics, complete marker
data. Omitting ε0 and S0 in the notation, we put ε = (ε1, ε2) and S =
(S1, S2) = (S1(τ), S2(τ)). Assume that the likelihood surface is smooth enough
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so that (A.1) holds and the Central Limit Theorem can be applied to deduce
that asymptotically,

S ∈ N(εJ, J) (A.9)

where ε is the true parameter vector, assumed to be contiguous, i.e. εJεT

stays bounded as N grows. See Rotnitzky et al. (2000) for a discussion on
regularity conditions admitting (A.9). By the definition of S̃ = (S̃1, S̃2) above
(A.3), (A.9) is equivalent to

S̃ ∈ N(ε̃, I2) = N(εJ1/2Q, I2), (A.10)

where I2 is a 2 × 2 identity matrix.

For complete marker data, we use (30) and (32) to conclude that (A.10) is
equivalent to

S̃1 = S1(τ)/
√

J11 = X1 + η1,

S̃2 = S2(τ)/
√

J22 = X2 + η2,

with X1 and X2 independent standard normal random variables. Then (33)
follows from (21) and representation (A.4) of Tcombined. �

Required sample size (36) for one type of pedigree for association
and linkage tests. Let T (x) be any of T km

1 (x), T em
1 (x), TNF

1 (x) and T2(x) and
t = t(α) be the threshold for rejecting H0. We wish to choose t and N(α, β)
as solutions of the first and second equations in

P (max1≤i≤K T (xi) ≥ t|H0) = 1 − P (T < t|H0)
K′

= α
P

(
maxi;xi∈Ω̃ T (xi) ≥ t|H1

)
= β

(A.11)

respectively, where H0 = ∩K
i=1H0(xi), K ′ is the effective number of independent

pointwise tests, H1 = H1(τ) and Ω̃ ⊂ Ω a region surrounding τ at which we
declare rejections as true positives. The larger Ω̃ is, the more liberal we are
in defining a ’true set of candidate loci’. Typically, K ′ is smaller than the
actual number K of marker loci due to dependence of test statistics. Letting
K̃ denote the effective number of independent one-sided tests, we have K ′ = K̃
when T = T2 and K ′ = K̃/2 for the three association tests T km

1 , T em
1 and TNF

1 .
Starting with the first equation in (A.11), formula (33), with η1 = η2 = 0,
implies that α̃, the pointwise one-sided significance level satisfies

α̃ =

{
P (T (x) ≥ t|H0)/2 = 1 − Φ(

√
t), T = T1,

P (T (x) ≥ t|H0) = 1 − Φ(t), T = T2,
(A.12)
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where T1 is any of the three association tests. The first equation of (A.11)
then implies

α̃ =

{
(1 − (1 − α)2/K̃)/2, T = T1,

1 − (1 − α)1/K̃ , T = T2.

Solving for t we find

t =

{
ξ2
α̃, T = T1,

ξα̃, T = T2.
(A.13)

For the power calculations, we assume a) xi = τ for some i = 1, . . . , K and
b) that the power β in the second equation of (A.11) can be written as a
function of the noncentrality parameter η2 at τ , where η is defined in (32)
(η = η1 for the association tests and η = η2 for the linkage test). Assuming N
pedigrees with the same structure and with identical phenotypes, the Fisher
information matrix satisfies J(N) = NJ(1), where J(1) is the Fisher infor-
mation matrix when N = 1. From this (32) follows, which inserted into (33)
gives the pointwise power5

β̃ = P (T (τ) ≥ t|H1) =

{
1 − Φ(

√
t −

√
Nη(1)), T = T1,

1 − Φ(t −
√

Nη(1)), T = T2.
(A.14)

It satisfies β̃ ≤ β because of (A.11) and (A.14). In fact, β̃ gets smaller the
larger the region Ω̃ is, with β̃ = β if Ω̃ = {τ}. The required sample size
N(α, β) is found by solving for N in the second part of (A.11), or equivalently,
solving for N in (A.14). Using the latter approach (36) follows. �

Required sample size for combinations of different pedigree types.
Let φj be the type of the jth pedigree and η2(φj) be corresponding noncentral-

ity parameter of test statistic T at the disease locus. Then η2 =
∑N

j=1 η2(φj)
for a sample of size N , since Fisher information is added over pedigrees. Then,
by similar arguments as those leading to (36) we find

N(α, β) =
(ξα̃ + ξ1−β̃)2∑N(α,β)

j=1 η2(φj)/N(α, β)
. (A.15)

When N(α, β) is large, the denominator of (A.15) is close to
∫

η2(φ)dν(φ) by
the law of large numbers and this leads to (37). �

5The last identity is an approximation for T = T1, assuming that the term Φ(−
√

t −√
Nη(1)) can be ignored.
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Pointwise significance and power for linkage. For linkage analysis, when
complete marker data and a dense marker map along C chromosomes of to-
tal length L > 0 cM is available, we use asymptotic extreme value theory
for Gaussian processes from Feingold et al. (1993) and Lander and Kruglyak
(1995) and put K̃ = C + 2ρLt2, where ρ is the crossover rate. The value of
ρ depends on the pedigree and the score function S2. For most pedigrees its
value is in the range 0.01-0.04, see Ängquist and Hössjer (2005) for details.
According to (A.11), t is the solution of

Φ(t)C+2ρLt2 = 1 − α. (A.16)

and then α̃ is computed from (A.13). For power, we use the asymptotic ap-
proximation

β = β̃ + φ(t − η)

(
2

ηd
− 1

η(2d − 1) + t

)
, (A.17)

of Feingold et al. (1993, formula (A.8)), where β̃ is defined in (A.14), φ = Φ′

is the standard normal density and d a constant that is close to 1 for most
pedigrees (Hössjer, 2003c). This formula corresponds to choosing Ω̃ as a region
surrounding τ in which the largest peak of T (x) is located with high probability
under H1. �

Fisher information for T km
1 , T em

1 , T2 when marker data is complete.
For biallelic markers, with Δ and s as in Example 1, it follows that g(0) =
−

√
q1/(2q0) and g(1) =

√
q0/(2q1). Let zkl denote the probability that alleles

k and l are shared identical by descent. Then

Cov (g(b2k−1) + g(b2k), g(b2l−1) + g(b2l))
= (g(1) − g(0))2Var(b1) (z2k−1,2l−1 + z2k−1,2l + z2k,2l−1, z2k,2l)
= 2(g(1) − g(0))2Var(b1)rkl

= rkl,

where rkl = E(IBDkl)/2 is the coefficient of relationship, i.e. the proportion of
alleles shared IBD, by k and l. It follows that

I11 = (1 − c) ·
n∑

k,l=1

ωkωlrkl. (A.18)

When d = 2, write S0 = (n1 − E(n1))/(q0q1). Since for any k ∈ {1, . . . , 2f},
Cov(g(bk), n1) = (g(1) − g(0))Cov(bk, n1) = (g(1) − g(0))Var(bk) =

√
q0q1/2,
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we get I01 =
√

1 − c/(q0q1) ·
∑n

k=1

(
2ωk

√
q0q1/2

)
=

√
2(1 − c)/q0q1

∑n
k=1 ωk.

Combining this with I00 = 2f/(q0q1), it follows that

I2
01/I00 = (1 − c)(

n∑
k=1

ωk)
2/f. (A.19)

Define Skl as in (A.8), and Σkl,k′l′ = Cov(Skl(v), Sk′l′(v)) when 1 ≤ k < l ≤ n
and 1 ≤ k′ < l′ ≤ n. Then

I22 =
∑
kl,k′l′

ωklωk′l′Σkl,k′l′ . (A.20)

In particular, for a nuclear family with two parents (k = 1, 2) and n−2 children
(k = 3, . . . , n), we have f = 2, rkk = 1, r12 = r21 = 0 and rkl = 0.5 for all other
k, l with k �= l. Further, Σkl,k′l′ = 0.125 + c2 · 0.0625 when (k, l) = (k′, l′) and
both k and l are siblings and zero for all other k, l, k′, l′, see Hössjer (2004b).
Hence (A.18)-(A.20) simplify to

I11 = 0.5 · (1 − c) ((
∑n

k=1 ωk)
2 − 2ω1ω2 +

∑n
k=1 ω2

k)
I2
01/I00 = 0.5 · (1 − c)(

∑n
k=1 ωk)

2,
I22 = 0.125 · (1 + 0.5 · c2)

∑
3≤k<l≤n ω2

kl,

which in turn implies the first two and the fourth equations in (38). �

Fisher information for TNF
1 when marker data is complete. Let 1 ≤

k ≤ 2n be a given allele and 1 ≤ jk = jk(v) ≤ 2f the founder allele that is
transmitted to k. Introduce pkj = P (jk(v) = j) and, for any pair 1 ≤ k, l ≤ 2n

of alleles, αkl = zkl −
∑2f

j=1 pkjplj, where zkl is the probability that k and l are

shared IBD. If b0
k = bk − E(bk|b), it follows after some calculations that

E(b0
kb

0
l ) = αklq0q1. (A.21)

Combining (A.21) with the definition (26) of the nonfounder score, it follows,
for complete marker information, that

INF
11 = (1 − c)

∑n
k,l=1 ωkωl (E(g0(b2k−1)g

0(b2l−1)) + E(g0(b2k−1)g
0(b2l))

+E(g0(b2k)g
0(b2l−1)) + E(g0(b2k)g

0(b2l)))
= (1 − c)(g(1) − g(0))2

∑n
k,l=1 ωkωl

(
E(b0

2k−1b
0
2l−1) + E(b0

2k−1b
0
2l)

+E(b0
2kb

0
2l−1) + E(b0

2kb
0
2l)

)
= 0.5(1 − c)

∑n
k,l=f+1 ωkωl(α2k−1,2l−1 + α2k−1,2l + α2k,2l−1 + α2k,2l)),

(A.22)
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where, in the last step, we used that αkl = 0 if either k or l is a founder allele,
i.e. if either 1 ≤ k ≤ 2f or 1 ≤ l ≤ 2f . For a nuclear family, it is easy to see
that αkl = 0.5 · 1{k=l} for a nonfounder pair 2f + 1 = 5 ≤ k, l ≤ 2n of alleles.
Hence (A.22) becomes

INF
11 = 0.5(1 − c)

n∑
k=3

ω2
k,

which, for complete marker data, is identical to the third equation of (38).
�
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Hössjer, O. (2005). Conditional likelihood score functions in linkage analysis.
Biostatistics 6, 313-332.

Kraft, P. and Thomas, D. (2001). Bias and efficiency in family-based gene
characterization studies: Conditional, prospective, retrospective and joint like-
lihoods. Am. J. Hum. Gen. 66, 1119-1131.

Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. and Lander, E.S. (1996). Para-
metric and nonparametric linkage analysis: A unified multipoint approach.
Am. J. Hum. Genet., 58, 1347-1363.

31Hössjer: Combined Association and Linkage Analysis

Produced by The Berkeley Electronic Press, 2005
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Figure 1: The number of affected sib pairs (Y = (?, ?, 1, 1)) required to at-
tain power β = 0.8 as function of various parameters when α = 0.05 in a
genomewide scan. The curves correspond to T km

1 (dotted), T em
1 and TNF

1

(dashed) and T2 (solid). Only one parameter is varied, and the remaining
ones are kept fixed at Kp = 0.1, Δ = 0.5, h2

a = 0, δ = 0.1 cM, c = 0 and
λ = 1.5, where λ = 1 + (1 −Kp)

2ε2 is the relative risk of an affected MZ twin
pair in absence of polygenic effects. For multiple testing correction, we assume
C = 22 chromosomes of total length L = 3575 cM. For the association tests
we use β̃1 = β and K1 = 2(L/δ+C) and for the linkage tests the dense marker
approximations (A.16) and (A.17) with ρ = 0.02 cM−1 and d = 1.
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Figure 2: The number of affected sib quartets (Y = (?, ?, 1, 1, 1, 1)) required
to attain power β = 0.8 as function of various parameters when α = 0.05 in
a genomewide scan. The curves correspond to T km

1 (dotted), T em
1 and TNF

1

(dashed) and T2 (solid). See Figure 1 for further details.
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Figure 3: The number of nuclear families with binary phenotypes Y =
(1, 0, 1, 1, 1, 0) required to attain power β = 0.8 as function of various pa-
rameters when α = 0.05 in a genomewide scan. The curves correspond to T km

1

(dotted), T em
1 (dashed), TNF

1 (dash-dotted) and T2 (solid). See Figure 1 for
further details.
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Figure 4: The number of concordant sib pairs (quantitative phenotypes, Y =
k(?, ?, 2, 2)) required to attain power β = 0.8 as function of various parameters
when α = 0.05 in a genomewide scan. The curves correspond to T km

1 (dotted),
T em

1 and TNF
1 (dashed) and T2 (solid). Only one parameter value is varied, and

the others equal m∗ = 0, σ = 1, k = 1, Δ = 0.5, h2 = 0.3, h2
a = 0, c = 0 and

δ = 0.1 cM. See Figure 1 for details on multiple testing correction.
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Figure 5: The number of discordant sib pairs (quantitative phenotypes,
Y = k(?, ?, 2,−2)) required to attain power β = 0.8 as function of various
parameters when α = 0.05 in a genomewide scan. The curves correspond to
T km

1 , T em
1 and TNF

1 (dotted) and T2 (solid). See Figures 1 and 4 for details on
multiple testing correction and parameter values.
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Figure 6: The number nuclear families with quantitative phenotypes and phe-
notype vector Y = k(2,−2, 2, 2,−2) required to attain power β = 0.8 as func-
tion of various parameters when α = 0.05 in a genomewide scan. The curves
correspond to T km

1 (dotted), T em
1 (dashed) TNF

1 (dash-dotted) and T2 (solid).
See Figures 1 and 4 for details on multiple testing correction and parameter
values.
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Figure 7: Normalized required sample size (39) for the association test (dot-
ted), linkage test (solid) and combined test (dash-dotted). Ncombined(α, β) is
computed by Monte Carlo, using 100 000 iterates.
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