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SUMMARY

The aim of this work is practical. We show that the parameters of the widely used operational model
of pharmacological agonism are di�cult to estimate from single dose–response curves. The parameters
can be estimated using pairs of dose–response curves (usually treatment and control) sharing some
parameters. Con�dence bands for the estimators are developed. In the case of multiple dose–response
curve pairs one can employ a non-linear mixed e�ects model to allow for inter-individual variation. The
point estimates and the con�dence intervals thus obtained are similar to the more naive construction
based on mean and standard errors of parameter estimates. To test for di�erence of certain parameters
between treatment and control we employ a permutation test and Wald’s test. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Receptors are proteins interacting with extracellular physiological signals and converting them
into intracellular e�ects. The receptor receives a signal and transduces the signal to an e�ector
mechanism. Receptors can be divided into at least four groups: Receptors that act as enzymes,
receptors that activate transmembrane ion channels, receptors that use as their transducer the
G-protein and receptors located within the cell (transcription factors). Exposing the receptor
to the endogenous ligand(s) normally found in the body gives rise to an agonist response—the
normal positive e�ect of the endogenous ligand is duplicated. In fact, we can often identify
substances not normally found in the body which have either a more speci�c e�ect on a
particular receptor than does the normal ligand, a greater a�nity for a particular receptor,
or even a greater biological e�ect (greater intrinsic activity). In the absence of an agonist, a
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partial agonist may stimulate the receptor—however, if the receptor is already exposed to a
full agonist, then the partial agonist will sit on the receptor and interfere, causing less agonist
activity. This e�ect will be reversed by increasing the concentration of the agonist.
In 1983, Black and Le� introduced a model for agonist action [1]. This model, the

operational model of pharmacological agonism, can be directly �tted to experimental agonist
concentration-e�ect or dose-e�ect data in order to estimate a�nities and relative e�cacies
of agonists. The model has been widely applied. Examples include �-adenoreceptor mediated
vasoconstriction in rat aorta [2], 5-HT induced constriction in rabbit aorta [3], rabbit aorta
contraction due to adenosine in the presence of methoxamine [4], adaptive changes in the
pharmacodynamics of benzodiazepines upon chronic treatment in rats [5] and assessing the
potency of a new �-opioid receptor agonist [6]. There is however very scant information on
the estimation procedure and the statistical analysis. The statistical properties of the estimates
have only been studied in Reference [7]. In that study, the distribution of the estimators of
the parameters for noisy measurements are studied for �xed parameter values, i.e. there is no
provision for biological variation in the parameters themselves.
The aim of this paper is to show that the parameters are very di�cult to estimate from

single dose–response curves. Instead, the parameters can be estimated using pairs of dose–
response curves (usually treatment and control) sharing some parameters. We also want to
develop con�dence intervals for the parameters and a test to detect changes in the di�erences
in parameters between treatment and control.
In short we want to investigate the estimation procedure when applying the operational

model of pharmacological agonism, as this potential problem has not been addressed properly
before.

1.1. Dose–response curves

Dose–response curves express the relationship between the response or the e�ect, E and the
dose or concentration of an agonist [A]. It is common to record the negative logarithm of
the dose, which in analogy with the pH notation is denoted pA. Thus pA=− log10([A]).
A wide range of pharmacological assays have sigmoidal dose–response curves, when E is
plotted against pA. These curves are well described by logistic curves. Examples include the
concentration–response curve that is seen when a contractile agonist, e.g. noradrenaline, is
added to a blood vessel and the dose–response curve that is obtained when giving anesthetics,
e.g. pentobarbitine, to elicit di�erent degrees of drowsiness in patients.
The general form of a logistic dose–response curve with 0 response at 0 concentration is

E([A])=
Em[A]n

ECn50 + [A]n
(1)

Em is the ‘maximum’ response, in the sense that E(∞)=Em. The EC50 is the agonist con-
centration at half the maximal e�ect. Thus, E(EC50)=Em=2. n is a factor that determines the
steepness of the curve. The general logistic dose–response curve is thus a three parameter
model.

1.2. Operational model of pharmacological agonism

The operational model of pharmacological agonism provides an explicit relation between
agonist concentration and pharmacological e�ect using a�nities and relative e�cacies of
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agonists [1, 3, 8, 9]. The agonist–receptor occupancy is linked in sequence to a transducer
relation. Symbolically,

A+ R KA←→ AR KE←→ E

This model assumes that the �rst step in the response produced by an agonist depends on
a bimolecular interaction between the agonist and a receptor, where A denotes the agonist,
R the receptor and AR the receptor–agonist complex, which is dependent on the dissociation
constant of the receptor–agonist complex, KA, the reciprocal of which de�nes agonist a�nity.
The e�ect E, is then produced in a second step, the transducer function. This step is dependent
on the e�cacy of the receptor, and is usually expressed as the number of occupied receptors
when half the maximal e�ect is reached, KE . Thus, KE is a measure of the productivity of the
AR, which depends both on the agonist and on the e�cacy of the post-receptor biochemical
events that link the AR to the e�ect E. KE is thus both agonist and tissue dependent.
For [A]≈ 0, we want the law of mass action to hold

[AR]=
[R][A]
KA

≈ [R0][A]
KA

in which R0 is the total functional receptor concentration. For [A]¿[R], we want [AR]≈ [R0].
Therefore, at equilibrium, the concentration of occupied receptors, [AR], may be modelled by

[AR]=
[R0][A]
KA + [A]

(2)

In Reference [1] a transducer relation of the form

E([AR])=
Em[AR]n

KnE + [AR]n
(3)

is suggested. Combining (2) and (3) and introducing �=[R0]=KE , we get

E([A])=
Em�n[A]n

(KA + [A])n + �n[A]n
(4)

the operational model of pharmacological agonism, which is somewhat di�erent from (1).
Note that this four parameter model is logistic assuming a logarithmic scale on the dose.
Again in analogy with the pH notation we introduce pKA=− log10(KA). Using this, we may
rewrite (4) as

E([pA])=
Em

1 + �−n(10pKA+pA + 1)n
(5)

As pointed out before, dose–response curves are usually well modelled by a three parameter
model, which raises concern regarding the possibility of �tting a four parameter curve. The
maximum e�ect that can be generated in the system is Em�n=(�n+1), which converges to Em
as �→∞. Further, n, is related to slope of the dose–response curve. It is a measure of the
sensitivity with which a particular system transduces AR into E. In practice, a multitude of
receptors and di�erent second-messengers activated by an agonist will alter the slope of the
curve. From (3) and the de�nition of �, it follows that � can be interpreted as the ratio of the
total receptor concentration and the midpoint location of the transducer function. In theory,
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it is possible to generate the same e�ect from a small amount of highly productive AR (low
[R0], small KE) as from a large amount of less productive AR (high [R0], large KE). Therefore
it is the ratio [R0]=KE that de�nes how much e�ect an agonist elicits in a system. If the e�ect
of the receptor stimulation is constant, � will re�ect the actual number of receptors. Further
discussions on mathematical models of dose–response curves may be found in Reference [10].

2. SINGLE DOSE–RESPONSE CURVES

Let �=(Em; pKA; n; �)T be the vector of parameters of (5), the pharmacological model of
agonism. Suppose we have N noisy measurements

ei=E�[pAi] + �i i=1; : : : ; N (6)

of e�ects for the agonist concentrations pA1; : : : ; pAN . The dependence of E on � is indicated
by E�. We assume that {�i}Ni= 1 are independent and identically distributed error terms with
mean zero and standard deviation �. The homoscedasticity of the noise term is partly veri�ed
in Figure 2. Using vector notation, (6) can be written as

e= �(�) + � (7)

where e=(e1; : : : ; : : : ; eN )T, �=(�1; : : : ; �N )T and �(�)= (E�[pA1]; : : : ; E�[pAN ])T. Here �∈N
(0; �2I), where I is the identity matrix of dimension N .
In order to estimate � we de�ne the maximum likelihood and non-linear least-squares

estimator

�̂= argmin
�
‖e − �(�)‖2 (8)

where ‖e‖2 =∑N
i=1 e

2
i is the squared Euclidian norm. Then �

2 can be estimated by

�̂2 = ‖e − �(�̂)‖2=(N − 4)
where N − 4 is the number of degrees of freedom.
As N grows, �̂ is an

√
N -consistent and asymptotically normal estimator of � under mild

regularity conditions on the design points {pAi}Ni= 1. A standard Gauss approximation argument
(see Reference [11]) gives

�̂ ∈ AsN (�; (BT� B�)−1�2) (9)

where B�=(@�(�)=@Em; : : : ; @�(�)=@�). The asymptotic covariance matrix for �̂ can be estimated
by (B�̂

TB�̂)
−1�̂2. If the normal approximation is fair, then (9) gives an approximate con�dence

interval

(vT�̂± ��=2[vT(B�̂TB�̂)−1v]1=2�̂) (10)

for any linear combination vT� of the elements of � with an approximate con�dence level
1− �, if ��=2 is the (1− �=2)-quantile of the standard normal distribution.
Multicollinearity in arises in non-linear regression when the columns of B�̂ are almost

linearly independent. As will be seen below, the single dose–response curve model exhibits
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multicollinearity due to overparametrization. Following [12, p. 272–273], we may view B�̂
as the design matrix of a linear regression model and use collinearity diagnostics for linear
regression in the non-linear setting as well. To quantify the amount of multicollinearity, we
use 	, the condition number of the asymptotic correlation matrix of �̂. See References [13, 14]
for further details.

Example (Covariance for single dose–response curve model)
For Em=25, pKA=8 (i.e. KA=10−8), n=2, �=2, �=0:2 and 17 equally spaced design
points between 7 and 11, we obtained the asymptotic covariance matrix⎛

⎜⎜⎜⎜⎜⎝

0:0273 0:0312 0:0103 −0:7648
0:0312 0:0410 0:0148 −1:0024
0:0103 0:0148 0:0060 −0:3603
−0:7648 −1:0024 −0:3603 24:5157

⎞
⎟⎟⎟⎟⎟⎠

in (9). The 	 condition number becomes 49 000.
We simulated a dose–response curve with the above parameters, and using (10) we

obtained the poor 95 per cent con�dence band for the parameters shown in Table I. By
additionally simulating 500 dose–response curve pairs we estimated the actual con�dence level.
These values are also found in Table I. Thus, the asymptotic analysis reveals that the single
dose–response curve estimation problem is ill conditioned.

An alternative method to generate con�dence intervals is to use bootstrap methodology.
This does not however remedy the fact that the parameters � are ill conditioned and di�cult
to estimate.
Alternatively, we may use a Bayesian approach with a multivariate normal prior on �.

The resulting Bayes’ estimator, which is then a non-linear analogue of the ridge regression
estimator in linear regression, see e.g. Reference [15], is de�ned as in (8) by adding a penalty
term k‖�‖2 to the objective function on the right-hand side. We implemented this estimator
and found that the MSE of �̂ was only marginally improved.
Yet another possibility is to reparametrize � to have fewer parameters. The ‘guided reformu-

lation’ of Reference [16] is one example, where a partial di�erential equation, corresponding
to linear dependency among the original �-components, is solved to obtain a new approxi-
mate non-linear regression function with fewer parameters. However, we prefer to retain the
biologically motivated model (5). Instead, we will solve the multicollinearity problem in the

Table I. 95 per cent con�dence band and estimated actual con�dence levels (with approx-
imate 95 per cent con�dence intervals estimated using the normal approximation of the

binomial distribution) for the parameters of a single dose–response curve.

Parameter Con�dence band Estimated actual con�dence level

Em 25:22± 0:32 80± 4%
pKA 8:24± 0:39 83± 3%
n 2:05± 0:15 82± 3%
� 11:57± 9:70 76± 4%
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next section by simultaneously considering two or more dose–response curves that share some
(but not all) parameters.
To allow for heteroscedasticity, one may consider non-constant variance functions

�2(pA)=Var(�i|pAi=pA). However, we do not think this will a�ect the ML-estimator �̂
very much and in particular not make it less ill conditioned.

3. MULTIPLE DOSE–RESPONSE CURVES

Single dose–response curves contain too little information to give reliable estimates of the
parameters. One solution is to use a multiple dose–response curve design. In such a design,
it is assumed that Em, pKA and n remain constant after treatment [3]. Only � is allowed to
vary. If also KE is assumed constant the variation in � is an expression for changes in total
receptor concentration [R0] after treatment.
In practice, the most common approach to the multiple curve design is to reduce the

receptor number, usually with an irreversible alkylating agent, to such an extent that a full
agonist can no longer produce the maximal response. The curve before alkylation is then
compared to the curve after alkylation. In Reference [2] concentration–response curves for
�-adenoreceptor-mediated vasoconstriction were registered before and after treatment with an
alkylating agent. Another approach is to use a partial agonist. Instead, the dose–response curve
of the partial agonist is compared to the dose–response curve of the full agonist. Experimental
set-ups where multiple (often two) dose–response curves from the same sample or individual
are registered are commonly used to reduce an observed variability in Em between the samples
(see Reference [17]). In summary, our analysis of receptor changes will rely on two crucial
points:

(i) The operational model of pharmacological agonism (5) holds and
(ii) Em, pKA and n are unaltered by the treatment. Only � is a�ected.

To formalize the multiple dose–response curve method, consider several dose–response
curves simultaneously with the same Em; pKA and n but varying �. More precisely we assume
that

eji=E�j [pAji] + �ji j=1; : : : ; J i=1; : : : ; Nj (11)

where eji is the ith measured e�ect from the jth response curve, and �j=(Em; pKA; n; �j)T is
the parameter vector of the jth curve. Further {�ji} are assumed to be i.i.d. with mean zero and
standard deviation �. The joint parameter vector is �=(Em; pKA; n; �1; : : : ; �J )T. Using vector
notation, (11) can be written as

e= �(�) + � (12)

where e=(e11; : : : ; : : : ; e1N1 ; e21; : : : ; eJNJ )
T, �j=(�11; : : : ; �1N1 ; �21; : : : ; �JNJ )

T and �(�)= (E�1 [pA11];
: : : ; E�1 [pA1N1 ]; E�2 [pA21]; : : : ; E�J [pAJNJ ])

T. Here �j ∈N (0; �2I), where I is the identity matrix
of dimension N =N1 + · · ·+ NJ . �2 can now be estimated by

�̂2 = ‖e − �(�̂)‖2=[N − (J + 3)]
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Formulas (9) and (10) still hold, with B�=(@�(�)=@Em; : : : ; @�(�)=@�J ). Even though there are
more parameters to estimate in (12) than in (7), the asymptotic covariance matrix is less ill
conditioned.

Example (Covariance for multiple dose–response curve model)
Using 17 equally spaced design points between 7 and 11 and parameters J =2, Em=25,
pKA=8, n=2, �1 = 2, �2 = 20 and �=0:2 we obtained the following a symptotic covariance
matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0:0097 −0:0002 −0:0018 −0:0004 −0:0015
−0:0002 0:0007 0:0010 −0:0014 −0:0316
−0:0018 0:0010 0:0024 −0:0019 −0:0419
−0:0004 −0:0014 −0:0019 0:0030 0:0615

−0:0015 −0:0316 −0:0419 0:0615 1:4313

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The problem is much better conditioned than in the single curve case as seen by the smaller
variances and less collinear as indicated by the much smaller 	 condition number of 170.
We also simulated two dose–response curves using these parameter values which gave the
accurate 95 per cent con�dence band for the parameters shown in Table II. By additionally
simulating 500 dose–response curve pairs we estimated the actual con�dence levels. These
values are also found in Table II.

In order to test the validity of (ii) we formulate it as a null hypothesis, which is tested
against an alternative larger model with a total of 4J parameters �j=(Emj; pKAj; nj; �j),
j=1: : : : ; J . Let �̂full be the ML estimator of the larger model. In order to test the null
hypothesis (ii) we de�ne the LR statistic

(‖e − �(�̂)‖2 − ‖e − �(�̂full)‖2)=�̂2full

with plug-in estimate �̂2full = ‖e − �(�̂full)‖2=(N − 4J ) of variance. Asymptotically, it has a 
2
distribution with 3(J − 1) degrees of freedom under ii.

Table II. 95 per cent con�dence band and the estimated actual con�dence level (with
approximate 95 per cent con�dence intervals estimated using the normal approximation of

the binomial distribution) for the parameters of a double dose–response curve.

Parameter Con�dence band Estimated actual con�dence level

Em 25:03± 0:19 95± 2%
pAA 8:01± 0:053 94± 2%
n 2:00± 0:096 94± 2%
�1 1:97± 0:11 94± 2%
�2 19:91± 2:34 94± 2%
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Example (�1-adrenoreceptor-mediated vasoconstriction)
In Reference [2], the role of endothelium on �1-adrenoreceptor-mediated vasoconstriction
in aorta from Wistar Kyoto (WKY) and spontaneously hypertensive rats was studied. The
operational model of pharmacological agonism was used. In one set-up 12 WKY rat aortas
with intact endothelium were subjected to varying doses of phenylepinephrine before and after
treatment with the alkylating agent phenoxybenzamine. This causes a partial �1-adrenoreceptor
inactivation. We applied the multiple dose–response model with J =2, N1 =N2 = 8 and N =16
to each rat separately as well as calculating the LR-statistic and its pertaining p-value. The
result of this analysis is presented in Figure 1 and Table III. Condition (ii) was not rejected
for any of these 12 rats at the 90 per cent level. Also, as no trend is seen in the residuals
in Figure 2, the homoscedasticity assumption of (12) is feasible, although the variance seems
slightly larger for the control mice.

From the last example, it is clear that there is a great deal of variation in the parameters
between the subjects, and one may suspect that this variation must be in the parameters Em
and �. Model (11) may not be an optimal description, since a separate model is needed for
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Figure 1. The contractile response of 12 rat aortas to phenylepinephrine before (circles) and after
(boxes) treatment with phenoxybenzamine. The solid lines indicate the estimated curves.
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Table III. Multiple dose–response curve estimates of �k for 12 rat aortas.

k 1 2 3 4 5 6 7 8 9 10 11 12

Êm 34.7 40.2 36.8 32.9 28.4 20.1 18.8 17.0 18.7 13.6 16.6 28.1
̂pKA 6.34 6.42 5.57 6.56 6.60 6.54 6.39 6.62 6.29 6.64 6.45 6.36
n̂ 1.02 0.66 0.90 0.92 1.18 1.29 1.36 1.10 1.12 1.49 1.28 1.23
�̂1 2.29 1.17 56.62 1.19 3.03 2.69 4.31 1.44 2.58 2.80 6.74 5.12
�̂2 0.14 0.05 0.02 0.21 0.81 0.92 1.08 0.49 0.38 0.23 0.16 1.16
LR 0.95 4.81 0.12 1.27 1.18 2.86 5.36 0.54 2.15 3.28 4.26 3.81
p 0.81 0.18 0.98 0.73 0.75 0.41 0.14 0.90 0.54 0.34 0.23 0.28
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Figure 2. Dose–response curves and residual plots for control (left) and treatment (right) for the
�1-adrenoreceptor-mediated vasoconstriction example.

each rat. This observation motivates the use of one single model which takes into account
the biological variation between the subjects.

4. PAIRWISE DOSE–RESPONSE CURVES

4.1. Mixed e�ects model

In a mixed e�ects model we will allow the parameter vector to be random and vary from
subject to subject. Let �kj=(Emk ; KAk ; nk ; �jk)T be the parameter vector for the kth control or
treatment curve, and �k =(Emk ; KAk ; nk ; �1k ; �2k)T be their joint parameter vector. Using vector
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notation

ek = �k(�k) + �k k=1; : : : ; K (13)

where ek =(ek11; : : : ; ek1N ; ek21; : : : ; ek2N )T, �k =(�k11; : : : ; �k1N ; �k21; : : : ; �k2N )T and �k(�k)=
(E�k1 [pAk11]; : : : ; E�k1 [pAk1N ]; E�k2 [pAk21]; : : : ; E�k2 [pAk2N ])

T. Here �k ∈N (0; �2I), where I is the
identity matrix of dimension 2N . Let further

�k =�+ uk

where � is a 5× 1 vector of �xed e�ects and

uk ∈N (0;�)

is a 5× 1 vector of random e�ects. We will assume that � is a diagonal matrix, i.e. the
parameters are uncorrelated. This mixture of �xed and random e�ects results in a non-
linear mixed e�ects model with unknown parameters �, � and �2. We wish to write all the
K models simultaneously, and to this end we introduce e=(eT1 ; : : : ; e

T
K)
T, �=(�T1 ; : : : ; �

T
K)
T,

�(�)= (�1(�1)T; : : : ; �K(�K)T)T and �=(�T1 ; : : : ; �
T
K)
T. Using this notation, we may write

e= �(�) + � (14)

De�ne the objective function

g(�; �)=− 12 �−2 (e − �(�))T(e − �(�))− 1
2 (�− �)T�̃

−1
(�− �) (15)

where �̃=diag(�; : : : ;�).‡ Estimates �̂ and �̂ are de�ned by jointly maximizing g with re-
spect to � and �, replacing � and �2 by plug-in estimates �̂ and �̂2 de�ned in the appendix.
Following References [18, 19], �̂ can be motivated as a maximum likelihood estimate of �
with an approximate marginal distribution assigned to the components of e. We are inter-
ested in �nding con�dence intervals for the components of �. For this purpose, we introduce
the design matrices X�=(BT1�1 ; : : : ; B

T
K�K )

T of dimension 2KN × 5 and Z�=diag(B1�1 ; : : : ; BK�K )
of dimension 2KN × 5N , where Bk�k =(@�k(�k)=@Emk ; : : : ; @�k(�k)=@�2k). By Taylor expanding
� and using the fact that asymptotically, �̂ is equivalent to a generalized least-squares esti-
mator, we obtain

Cov(�̂)≈ (X T� V−1
� X�)−1 (16)

where V =�2I +Z��̃ZT� and I is the identity matrix of order 2KN × 2KN , cf. Reference [18].
Con�dence intervals are constructed by assuming asymptotic normality of �̂, and replacing
�2, �, X�, Z� with �̂2, �̂, X�̂ and Z�̂ in the covariance matrix (16).

‡For a matrix A, diag(A) denotes the vector of the diagonal elements. For a vector v, diag(v) denotes the square
matrix with diagonal elements v. For a collection of matrices A1; : : : ; An, diag(A1; : : : ; An) denotes the block matrix
with matrices A1; : : : ; An on the diagonal and zero blocks outside the diagonal.
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Table IV. Pairwise dose–response curve estimates of �k for 11 rat aortas after exclusion of one outlier.

k 1 2 3 4 5 6 7 8 9 10 11 12

Êm 33.3 32.8 — 27.3 28.4 20.8 19.9 15.9 20.0 13.7 17.9 28.9
̂pKA 6.37 6.41 — 6.48 6.55 6.54 6.44 6.51 6.41 6.49 6.57 6.42
n̂ 1.08 0.75 — 0.95 1.14 1.29 1.30 1.03 1.18 1.27 1.22 1.24
�̂1 2.46 2.16 — 1.91 3.23 2.69 3.61 1.79 2.01 3.39 4.72 4.43
�̂2 0.16 0.11 — 0.30 0.82 0.92 0.97 0.54 0.36 0.19 0.14 1.08

Table V. �∗ and �̂ and their pertaining approximate 95 per cent con�dence bands. Subscripts oe and
oi indicate exclusion, respectively, inclusion of outlier.

Parameter Reported in Reference [2] �∗
oe �̂oe �∗

oi �̂oi

Em 25:55± 5:15 24:51± 5:20 23:49± 5:70 25:54± 5:16 25:59± 5:77
pKA 6:40± 0:16 6:47± 0:073 6:47± 0:12 6:40± 0:16 6:43± 0:20
n 1:13± 0:14 1:16± 0:13 1:12± 0:16 1:13± 0:13 1:08± 0:15
�1 3:39 3:03± 1:03 2:95± 1:24 7:50± 8:80 3:28± 9:21
�2 0:52± 0:24 0:50± 0:25 0:48± 0:23 0:44± 0:24

Example (�1-adrenoreceptor-mediated vasoconstriction)
Returning to the real data example of �1-adrenoreceptor mediated vasoconstriction in rat aorta,
now using the pairwise dose–response curve model with K =12, and excluding the obvious
outlier, namely the third treatment=control pair (see right upper panel of Figure 1 and Table
III) we obtain the new estimates �̂k of �k in Table IV for the remaining 11 rats. Notice that
the parameter estimates in Table IV for the mixed model are slightly more shrunk towards
their mean values than those of the multiple dose response curve model in Table III. The
estimates of �̂ for the mixed model are presented in Table V, together with the 95 per
cent con�dence bands based on the diagonal entries of (16) and normal approximation. We
also computed the naive estimator �∗=

∑K
k=1 �

∗
k =K and the associated 95 per cent con�dence

bands. Here �∗
k is the preliminary estimate of �k , see the appendix for details. To allow for a

more direct comparison with the results in Reference [2] we also performed the calculations
including the outlier. Looking at the estimates of �1, we note that �̂ seems less sensitive
to the outlier than �∗. In fact they do not report con�dence intervals in Reference [2] but
the standard error of the mean (SEM) of Em, KA, n and log(�1), i.e. the standard deviation
divided by

√
K . For each parameter, an asymptotic 95 per cent con�dence interval has the form

mean± �0:025SEM.

4.2. Tests for treatment versus control

A common problem in the analysis of dose–response curves with the pharmacological model
of agonism is to detect di�erences in � before and after treatment, i.e. we want to test H0 :
�1 = �2. Given K pairs of treatment=control curves, there are 2K possible permutations of the
treatment=control curves under H0.
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Figure 3. Estimated dose–response curves from a mixed e�ect model with �2 − �1 = 1 for
the left panel and �2 − �1 = 4 for the right panel. The continuous curves correspond to �1

(control) while the dotted curves correspond to �2 (treatment).

Example (Permutation test for treatment versus control)
We simulated K =5 pairs of dose–response curves using the parameter distribution

N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

25

8

2

4

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 0 0 0 0

0 0:4 0 0 0

0 0 0:1 0 0

0 0 0 0:5 0

0 0 0 0 0:5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

for �k , k=1; : : : ; 5 and �=0:2, as shown in Figure 3. Let �1 =�4 and �2 =�5 denote the
average values of these two parameters in the whole population. Out of the 25 =32 possible
permutations of the treatment=control curves, in three cases |�̂2− �̂1| was greater than or equal
to |�̂2− �̂1| for the original unpermuted sample. This means we cannot reject H0 at the 95 per
cent level as the p-value is 3=32≈ 0:094. Repeating this procedure now with �2 = 8 we get
the p-value 1=32≈ 0:031. We may thus reject H0 at the 95 per cent level.

Example (Wald’s test for treatment versus control)
A more powerful alternative to the permutation test is to use Wald’s test, i.e. the statistic
(�̂2− �̂1)=s, which asymptotically is standard normal. The standard error s is obtained through
s2 = vTCov(�̂)v, where v=(0; 0; 0;−1; 1) and the estimated covariance matrix of (16) is used.
As �2¿�1 in the permutation test example, we use a one-sided test. Already for �2 − �1 = 1
we get 2:24¿�0:05 = 1:64, i.e. rejection of the null hypothesis �1 = �2.
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5. CONCLUSION

In this paper we have shown that the parameters of the widely used operational model of
pharmacological agonism are di�cult to estimate from single dose–response curves. The para-
meters can be estimated using pairs of dose–response curves (usually treatment and control)
sharing some parameters. Standard errors and con�dence intervals based on normal approx-
imations are suggested for the estimators. In the case of multiple dose–response curve pairs
one can employ a non-linear mixed e�ects model to allow for inter-individual variation. The
point estimates and the con�dence intervals thus obtained are similar to the more naive
construction based on mean and standard errors of parameter estimates for di�erent dose–
response curve pairs. To test for di�erence in � between treatment and control we have
employed a permutation test and Wald’s test.

APPENDIX

We will derive preliminary estimators of the parameters �, � and �2 in Section 4.1. Let �∗
k

be a non-linear least-squares estimator of �k . A standard Gauss approximation argument gives
that �∗

k |�k ∈AsN (�k ;�k), where �k =(BTk�kBk�k )−1�2 and hence
�∗
k ∈AsN (�;�+�k)

� can be estimated by �∗=
∑K

k=1 �
∗
k =K , which asymptotically satis�es

�∗ ∈AsN
(
�;
�
K
+
∑K

k=1 �k
K2

)
(A1)

Let

S=
K∑
k=1
(�∗
k − �∗)T(�∗

k − �∗)

By calculating the expected value of S,

E[S]= (K − 1)� + (1− 1=K)
K∑
k=1
�k

we see that

[Cov(�∗)= S=(K(K − 1))
is an unbiased estimator of the asymptotic covariance matrix in (A1). Moreover

�̂
′
=

S
K − 1 −

K∑
k=1
�̂k =K

is an unbiased estimate of � if �̂k is an unbiased estimator of �k . Our �nal estimate

�̂=diag(diag(�̂
′
)) (A2)
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is de�ned by putting all non-diagonal entries of �̂
′
to zero. In practice it may happen that �̂

′

has negative diagonal elements. This can be remedied by using a �atter estimated prior for
�k , �̂

′′
= S=(K − 1). In this case, we replace �̂′

by �̂
′′
in (A2). An asymptotically unbiased

estimator of �k is �̂k =(BTk�∗
k
Bk�∗

k
)−1�̂2, where

�̂2 =

K∑
k=1
‖ek − �k(�∗

k )‖2

K(2N − 5)
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