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A GENERAL ASYMPTOTIC SCHEME FOR INFERENCE
UNDER ORDER RESTRICTIONS

BY D. ANEVSKI AND O. HÖSSJER

Göteborg University and Stockholm University

Limit distributions for the greatest convex minorant and its derivative
are considered for a general class of stochastic processes including partial
sum processes and empirical processes, for independent, weakly dependent
and long range dependent data. The results are applied to isotonic regression,
isotonic regression after kernel smoothing, estimation of convex regression
functions, and estimation of monotone and convex density functions. Various
pointwise limit distributions are obtained, and the rate of convergence de-
pends on the self similarity properties and on the rate of convergence of the
processes considered.

1. Introduction. Let {xn}n≥1 be a sequence of stochastic processes defined on
an interval J ⊂ R, and (a.s.) bounded from below on J . In this paper we consider
the asymptotic behavior as n → ∞ of the greatest convex minorant of xn,

TJ (xn) = sup{z; z :J �→ R, z convex and z ≤ xn},(1)

at an interior point t0 of J , as well as its derivative,

TJ (xn)
′(t) = max

v≤t
min
u≥t

xn(u) − xn(v)

u − v
;(2)

see Robertson, Wright and Dykstra [40]. Note that we use the convention
TJ (x)′(t) = TJ (x)′(t+) for any process x. The Pool Adjacent Violators Algorithm
(PAVA) used to calculate T can be found, for example, in [40].

The class of processes xn we consider includes partial sum and empirical
processes for independent, weakly dependent and long range dependent data. The
estimators (1) and (2) have several important applications, for instance, nonpara-
metric regression and density estimation under order restrictions. The regression
model has data (yi, ti)

n
i=1, satisfying

yi = m(ti) + εi,

where m is the unknown regression function, ti = i/n are equidistant and {εi} are
error terms. If we restrict m to be an increasing function, it is well known (cf. [10])
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that the isotonic regression estimator

m̂ = arg min

{
n∑

i=1

(
yi − z(ti)

)2 : z increasing

}
(3)

is given by (2) at the observation points {ti}, with xn the partial sum process formed
by data. For independent and identically distributed errors {εi}, the asymptotic
properties of m̂ have been derived in [11, 47] and [33]. For instance, it follows
from [11] that

Cn1/3(
m̂(t0) − m(t0)

) L→ T
(
s2 + B(s)

)′
(0),(4)

as n → ∞, where T = TR, B is a standard two-sided Brownian motion and C de-
pends on m′(t0) and σ 2 = Var(εi). The right-hand side of (4) can also be replaced
by 2 arg mins∈R(s2 + B(s)), where we use the convention that, for any process x,
arg mins∈R(x(s)) means the infimum of all points at which the minimum is at-
tained.

In density estimation, data consists of a stationary process {ti}ni=1 with an un-
known marginal density function f . If f is increasing and supported on a (fi-
nite or half-infinite) interval J , the nonparametric maximum likelihood estimate
(NPMLE)

f̂ = arg max

{
n∏

i=1

z(ti) : z increasing, z ≥ 0 and
∫
J

z(u) du = 1

}
(5)

for independent data can be written as f̂ = TJ (xn)
′, where xn is the empirical dis-

tribution; see [20]. Asymptotic properties of f̂ have been obtained in [39] and [21];
see also [46]. In particular, (4) holds with f̂ (t0) and f (t0) in place of m̂(t0) and
m(t0), with C a constant depending on f ′(t0) and f (t0). Note also that increasing
density estimation is related to unimodal density estimation; see [7] and references
therein.

We propose to use TJ (xn)
′ as an estimator of m and of f , also for dependent

data; for the regression problem, TJ (xn)
′ minimizes the sum of squares in (3) no

matter what dependence structure we have for {εi}, while the likelihood function
is much more difficult to write down for dependent data; for density estimation the
interpretation of TJ (xn)

′ is

TJ (xn)
′ = arg min

{
n∑

i=1

(
x̃i − z(ti)

)2
wi : z increasing

}
,

where x̃i = (xn(ti) − xn(ti−1))/(ti − ti−1) and wi = ti − ti−1. Thus, TJ (xn)
′ is the

weighted l2-projection of (x̃1, . . . , x̃n) on the convex set of increasing functions;
see [40].

We review these results and show that the same limits are attained if data are
weakly dependent and mixing. For long range dependent subordinated Gaussian
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data, in the regression problem we obtain a result reminiscent of (4), but with a
different (nonpolynomial) convergence rate and with B(·) replaced with a process
belonging to a class of long range dependent processes, which includes fractional
Brownian motion and the Rosenblatt process; see [17]. In density estimation,
B(·) is replaced by a straight line Z · s in (4) with Z ∼ N(0,1), in the cases
for which we are able to check all the conditions. But since T (s2 + Zs)′(0) =
(s2 + Zs)′(0) = Z, f̂ is asymptotically normal in this case.

In [34] it is proposed, as an alternative to doing isotonic regression, to first
smooth the data and then do isotonic regression, and the limit distribution is de-
rived when using a kernel estimator with bandwidth h ∼ n−1/5 as smoother. We
review these results, as well as state results for mixing and long range dependent
data; however, we treat all possible choices of bandwidths h. An analogous ap-
proach is possible for density estimation; we, however, refrain from stating these
results since it will be clear from the regression arguments how to proceed.

When estimating convex regression functions and density functions, the nat-
ural approaches would be to do convex regression or NPMLE of a convex density,
respectively. An algorithm for convex regression has been proposed in [27], and
a conjecture on the limit distribution can be found in [35]. In [30] an iterative
algorithm for the NPMLE of a convex density and a conjecture on the limit distri-
butions have been proposed; see also [2]. Finally, in [23, 24] the limit distributions
for the convex regression and for the NPMLE of a convex density were derived.

As an alternative we propose the estimator TJ (xn)/c(xn), where xn is a kernel
estimate of either m or f , and c(xn) = ∫

J TJ (xn)(u) du/
∫
J xn(u) du. Thus, we

obtain a convex function with the same integral over J as xn. The advantage over
the regression and NMPLE approach is twofold: the PAVA algorithm used to cal-
culate T is noniterative and always converges, and in this paper we state the limit
distributions of TJ (xn), both for the regression problem and for the density estima-
tion problem, for weakly dependent data and long range dependent subordinated
Gaussian data. The interpretation of TJ (xn) is the following: If x′

n is piecewise
continuous, then

TJ (xn)
′ = arg min

{∫
J

(
x′
n(u) − z(u)

)2
du : z increasing

}
(6)

and, thus, TJ (xn)
′ is the L2-projection of x′

n on the convex set of monotone func-
tions; TJ (xn) is the primitive function of the solution to (6).

Our general convergence results can be written as

d−p
n

(
TJ (xn)(t0) − xn(t0)

) L→ T
(|s|p + ṽ(s)

)
(0),(7)

for the convex minorant of xn, and

d−p+1
n

(
TJ (xn)

′(t0) − x′
b,n(t0)

) L→ T
(|s|p + ṽ(s)

)′
(0),(8)

for its derivative. Here 1 < p < ∞ is a fixed number, ṽ a stochastic process re-
flecting the local behavior of xn around t0 and xb,n is the deterministic part of xn,
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for example, E(xn). The sequence dn ↓ 0 and p determine the rate of convergence
in (7) and (8). Values of p different from 2 have previously been considered by
Wright [47] and Leurgans [33], and arise, for example, in nonparametric regres-
sion when

m(t) − m(t0) = a sgn(t − t0)|t − t0|p−1 + o(|t − t0|p−1),

as t → t0 for some constant a �= 0. The rate at which dn ↓ 0 depends on the rate
of convergence of xn toward xb,n and on the local self similarity properties of xn

around t0.
Prakasa Rao [39] was the first to establish limit distributions for T (xn)

′ (with
xn = Fn the empirical distribution function) and the approach presented in that pa-
per has served as a model for later authors, first considering least convex minorants
along a sequence of decreasing “truncated” intervals around t0 and then estab-
lishing a truncation result saying that asymptotically the truncated intervals may
replace J . Brunk [11] proved results for T (xn)

′ with xn the partial sum process,
using similar techniques and relying on Prakasa Rao’s result for the truncation
reasoning. Wright [47] extended Brunk’s result to cover monotone densities sat-
isfying other smoothness assumptions, using a slightly different approach for the
truncation proof. The methods used in these papers rely heavily on the fact that
data are independent, using martingale results, and also on the fact that the limit
process is a Brownian motion.

Leurgans [33] extended Wright’s result to dependent data. The limit process
is still assumed to be a Brownian motion, which could imply applications to
weakly dependent data. However, the two applications given in [33] both deal
with independent data (isotonic regression for independent and not identically
distributed data, and isotonized quantile estimation for independent data). Next,
Groeneboom [21] gave a different proof of Prakasa Rao’s result, introducing strong
approximation techniques (cf. [32]), and proved that the right-hand side of (3) is
2 arg mins∈R(s2 +B(s)); for the truncation result, a reference was made to Prakasa
Rao’s paper. Mammen [34] showed that a kernel estimate of m with bandwidth
h ∼ n−1/5 is first-order asymptotically equivalent to the estimate obtained by do-
ing isotonic regression on the kernel estimate, thus obtaining the limit distribution
for the isotonized kernel estimate. Wang [46] also used strong approximation to
derive the limit distribution of the primitive function of the Grenander estimator.

A first example of a more general asymptotic theory of derivatives of least
convex minorants can be found in [33], which potentially covers weakly depen-
dent data. In our paper we treat both the convex minorant (1) and its deriva-
tive (2), arbitrary (nonpolynomial) sequences dn ↓ 0, as well as a large class of
limit processes ṽ(·), that is, not only Brownian motion. Thus, we are able to ap-
ply our general results also to estimation for dependent data (both short range and
long range) and using estimates xn other than the partial sum process or empirical
process, such as, for example, kernel estimates. Our method of proof is similar
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to the classical proof of Prakasa Rao [39], based on first considering least con-
vex minorants along a sequence of decreasing “truncated” intervals around t0 and
then establishing a truncation result saying that asymptotically the truncated in-
tervals may replace J . However, we decompose xn into a sum of a deterministic
convex function xb,n and a stochastic part vn. In this way we get very explicit
regularity conditions that are possible to verify in a number of applications. Fur-
ther, we use only weak convergence of a rescaled version of vn and do not refer to
strong approximations, thereby obtaining greater generality. This relies on the ap-
plication of the continuous mapping theorem and, thus, the continuity of the map
TJ :D(J ) �→ C(J ) is essential. Furthermore, we state conditions under which the
continuous mapping theorem can be applied to the functional x �→ TJ (x)′(t0) (cf.
Proposition 2). Such a condition automatically holds for Brownian motion and
seems to have been implicitly assumed in previous work.

The article is organized as follows: Section 2 establishes the main convergence
results (7) and (8) in Theorems 1 and 2, respectively. These results are then applied
in Sections 3 and 4 to regression and density function estimation, respectively.
In Section 5 a general formula is presented, which describes how dn depends on
various properties of xn, for example, local self similarity around t0. In Section 6
we discuss possible extensions and generalizations. Finally, we have collected the
proofs of the results in Section 2 and some technical empirical process and partial
sum process results in the Appendix.

2. Limit distributions. Let J ⊂ R be a finite or infinite interval in R and
define D(J ) as the space of functions J �→ R which are right continuous with
left-hand limits.

Assume {xn}n≥1 is a sequence of stochastic processes on D(J ) for which we
can write

xn(t) = xb,n(t) + vn(t), t ∈ J,(9)

where xb,n is deterministic with vn also a member of D(J ). In this section we
will derive limit distributions of TJ (xn) and TJ (xn)

′ for a large class of stochastic
processes xn. Our main assumptions on xn are that the process part vn can be
rescaled in a way close to the self similarity property, and that the rescaled process
converges weakly to some limit process. Given a sequence dn ↓ 0, we rescale vn

locally around an interior point t0 of J according to

ṽn(s; t0) = d−p
n

(
vn(t0 + sdn) − vn(t0)

)
,

where 1 < p < ∞ is a fixed constant and s ∈ Jn,t0 = d−1
n (J − t0). Thus, ṽn(·; t0) ∈

D(Jn,t0).
Many of the results on weak convergence are stated as results in D[0,1]

equipped with the Skorokhod metric. There are two reasons why this will not
be appropriate for our needs. The first is that processes treated in our applica-
tions are not random elements of D[0,1]. For instance, ṽn(s; t0) is defined on
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D(Jn,t0) = D[−an, bn], where an, bn → ∞ as n → ∞. The second reason is that
the Skorokhod metric is too weak for the application we have in mind: the greatest
convex minorant function T :D[0,1] �→ C[0,1] will not be continuous if D[0,1]
is equipped with the Skorokhod topology. Thus, we would not be able to use the
continuous mapping theorem to show limit distribution results for T applied to a
drift term plus a rescaled process.

The first problem is solved by working in D(−∞,∞). For instance, ṽn(s) can
be extrapolated according to

ṽn(s; t0) =
{

ṽn(bn+; t0), if s ≥ bn,

ṽn(−an; t0), if s ≤ −an.

Thus, ṽn(s; t0) will lie in D(−∞,∞) for all n. To deal with the second problem,
we define a metric on D(J ) as follows: for x, y ∈ D(J ),

ρ(x, y) =
∞∑

k=1

2−k ρk(x, y)

1 + ρk(x, y)
,(10)

where ρk(x, y) = sups∈[−k,k]∩J |x(s) − y(s)|, that is, we write xn → x in D(J ) if,
for each fixed k, sup[−k,k]∩J |xn(s) − x(s)| → 0. Note that if |J | < ∞, then ρ is
equivalent to ρJ (x, y) = sups∈J |x(s) − y(s)|. By Theorem 23 in [38], page 108,
weak convergence in D(−∞,∞) is equivalent to weak convergence in D[−k, k]
of the processes restricted to [−k, k], for every fixed k, where each D[−k, k] of
course is equipped with the sup-norm metric over [−k, k]. Note that with this
metric the empirical process is not a measurable map if we use the Borel σ -algebra
on D[−k, k]. If we instead use the σ -algebra generated by the open balls, the
empirical process becomes measurable, and that assumption is also made in [38].
In that case, however, the continuous mapping theorem becomes somewhat more
complicated, in that the set on which the function has all its continuity points
should satisfy a certain regularity condition, as well as the usual demand that it
have probability mass one. In the case of the functional x �→ T (x)(t) that is not
a problem, since this map is continuous everywhere; see (76) in Lemma A.1 in
the sequel. However, in the case of the functional x �→ T (x)′(t), it does pose a
potential problem; see the proof of Proposition 2 and Note 2 in the sequel.

The next two assumptions are related to a local limit distribution result; see
Lemma A.2 in Appendix A and the proof of Theorem 2.

ASSUMPTION A1 (Weak convergence of rescaled stochastic term). Assume
there exists a stochastic process ṽ(·; t0) �= 0 such that

ṽn(s; t0) L→ ṽ(s; t0)
on D(−∞,∞) as n → ∞.



1880 D. ANEVSKI AND O. HÖSSJER

ASSUMPTION A2 (Bias term). Assume the functions {xb,n}n≥1 are convex.
Put

gn(s) = d−p
n

(
xb,n(t0 + sdn) − ln(s)

)
,

(11)
ln(s) = xb,n(t0) + x′

b,n(t0)sdn,

for s ∈ Jn,t0 . Assume there is a constant A > 0 such that for each c > 0,

sup
|s|≤c

∣∣gn(s) − A|s|p∣∣ → 0,(12)

as n → ∞.

In applications we typically have a convex function xb, such that either xb,n = xb

or xb,n → xb as n → ∞, satisfying

xb(t) = xb(t0) + x′
b(t0)(t − t0) + A|t − t0|p + o(|t − t0|p),

as t → t0. In particular, A = 1
2x′′

b (t0) if p = 2.
Define the rescaled function

yn(s) = gn(s) + ṽn(s; t0).(13)

The next two assumptions are related to a truncation result; see Lemma A.3 and
Theorem A.1 in Appendix A.

ASSUMPTION A3 (Lower bound). For every δ > 0, there are finite 0 < τ =
τ(δ) and 0 < κ = κ(δ) such that

lim inf
n→∞ P

(
inf|s|≥τ

(
yn(s) − κ|s|) > 0

)
> 1 − δ.

ASSUMPTION A4 (Small downdippings). Given ε, δ, τ̃ > 0,

lim sup
n→∞

P

(
inf

τ̃≤s≤c

yn(s)

s
− inf

τ̃≤s

yn(s)

s
> ε

)
< δ,

lim sup
n→∞

P

(
inf

−c≤s≤−τ̃

yn(s)

s
− inf

s≤−τ̃

yn(s)

s
< −ε

)
< δ,

for all large enough c > 0.

We will now present a slightly less general but more transparent version of As-
sumptions A3 and A4, since in many of the applications it is possible to establish
a separate restriction on the process part of yn.
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PROPOSITION 1. Suppose Assumption A2 holds and that, for each ε, δ > 0,
there is a finite τ = τ(ε, δ) such that

lim sup
n→∞

P

(
sup
|s|≥τ

∣∣∣∣ ṽn(s)

gn(s)

∣∣∣∣ > ε

)
< δ.(14)

Then Assumptions A3 and A4 hold.

Also the following assumption is related to the truncation results Lemma A.3
and Theorem A.1 in Appendix A.

ASSUMPTION A5 (Tail behavior of limit process). For each ε, δ > 0, there is
a τ = τ(ε, δ) > 0 so that

P

(
sup
|s|≥τ

∣∣∣∣ ṽ(s; t0)
A|s|p

∣∣∣∣ > ε

)
≤ δ.

THEOREM 1. Let t0 be fixed and suppose Assumptions A1, A2, A3, A4 and A5
hold. Then

d−p
n [TJ (xn)(t0) − xn(t0)] L→ T [A|s|p + ṽ(s; t0)](0),(15)

with A > 0 as in Assumption A2, as n → ∞.

PROOF. Denote Tc = T[−c,c], T = TR and Tc,n = T[t0−cdn,t0+cdn]. Clearly,

d−p
n

(
TJ (xn)(t0) − xn(t0)

) = d−p
n

(
TJ (xn)(t0) − Tc,n(xn)(t0)

)
+ d−p

n

(
Tc,n(xn)(t0) − xn(t0)

)
.

The truncation result in Lemma A.3 implies

d−p
n

(
Tc,n(xn)(t0) − TJ (xn)(t0)

) P→ 0

if we first let n → ∞ and then let c → ∞. The local limit distribution result of
Lemma A.2 implies that

d−p
n

(
Tc,n(xn)(t0) − xn(t0)

) L→ Tc[y(s)](0)

as n → ∞, where

y(s) = A|s|p + ṽ(s; t0).(16)

Then use Theorem A.1, Proposition 1 and Assumption A5 with yn(s) = y(s) to
deduce

Tc(y(s))(0) − T (y(s))(0)
P→ 0

as c → ∞. An application of Slutsky’s theorem completes the proof. �



1882 D. ANEVSKI AND O. HÖSSJER

Next we will study the limit distribution of the derivative T (xn)
′. There are some

extra difficulties in this case. One is that the processes xn need not be differentiable.
We therefore study the difference between T (xn)

′ and x′
b,n directly.

Since the functional

h :D[−c, c]  x �→ T (x)′(0)(17)

is not continuous, the next assumption is essential.

ASSUMPTION A6. Suppose yn, y are defined in (13) and (16). Then

Tc(yn)
′(0)

L→ Tc(y)′(0),

as n → ∞, for each c > 0.

We need some simple condition in order to check Assumption A6.

PROPOSITION 2. Assume y takes its values in a separable set of completely
regular points (cf. [38]), with probability one. Suppose Assumptions A1 and A2
hold and that for each a ∈ R and c, ε > 0,

P
(
y(s) − y(0) − as ≥ ε|s| for all s ∈ [−c, c]) = 0.(18)

Then Assumption A6 holds.

NOTE 1. Since y(s) = ṽ(s; t0) + A|s|p and (A|s|p)′(0) = 0, (18) follows if
we can prove

P
(
ṽ(·; t0) ∈ �c(a, ε)

) = 0,(19)

for each a ∈ R and c, ε > 0, with �c(a, ε) defined in the proof of Proposition 2 in
Appendix A. But (19) follows if we can find a random variable Z (which may be
deterministic) such that

P

(
lim inf
s→0+

ṽ(s; t0) − Zs

s
≤ 0

)
= 1,(20)

P

(
lim inf
s→0−

ṽ(s; t0) − Zs

|s| ≤ 0
)

= 1.(21)

Note that (20) and (21) hold if ṽ(s; t0) is differentiable at 0 [take Z = ṽ′(0; t0)].
We can also make use of (the lower half of) the iterated logarithm law. Thus, with
Z = 0, (20) and (21) follow if we can find a function ψ : R \ {0} �→ (0,∞) such
that

P

(
lim inf
s→0+

ṽ(s; t0)
ψ(s)

= −1
)

= 1,

P

(
lim inf
s→0−

ṽ(s; t0)
ψ(s)

= −1
)

= 1.



ORDER RESTRICTED INFERENCE 1883

NOTE 2. If y is continuous almost surely, the separability and complete regu-
larity assumptions in Proposition 2 are satisfied; see Chapters 4 and 5 of [38]. All
limit processes in this paper are almost surely continuous.

THEOREM 2. Assume that Assumptions A1–A6 hold. Then

d−p+1
n [T (xn)

′(t0) − x′
b,n(t0)] L→ T

(
A|s|p + ṽ(s; t0))′(0)

as n → ∞. Further, if

P
(
T

(
A|s|p + ṽ(s; t0))′(0) = a

) = 0,(22)

then

lim
n→∞P {d−p+1

n [T (xn)
′(t0) − x′

b,n(t0)] < a}

= P

{
arg min

s∈R

(
A|s|p + ṽ(s; t0) − as

)
> 0

}
,

with A as in Assumption A2.

PROOF. We start by proving a local limit distribution result. A t varying in
In = [t0 − cdn, t0 + cdn] can be written as t = t0 + sdn with s ∈ [−c, c]. Then

xn(t0 + sdn) = vn(t0) + ln(s) + dp
n

(
gn(s) + ṽn(s; t0)),(23)

with gn, ln defined in Assumption A2. We use the representation (23) and the chain
rule to obtain

Tc,n(xn)
′(t0) = x′

b,n(t0) + dp−1
n Tc

(
gn(s) + ṽn(s; t0))′(0).

That is, Assumption A6 implies

d−p+1
n

(
Tc,n(xn)

′(t0) − x′
b,n(t0)

) = Tc(yn)
′(0)

L→ Tc(y)′(0)(24)

as n → ∞, with yn, y defined in (13) and (16). Applying Lemma A.3 with 	 = 0,
we obtain

lim
c→∞ lim sup

n→∞
P

(
d−p+1
n |Tc,n(xn)

′(t0) − T (xn)
′(t0)| > ε

) = 0.(25)

Then, applying Theorem A.1 with yn(s) = y(s) and I = {0}, we get

lim
c→∞P

(|Tc(y(s))′(0) − T (y(s))′(0)| > ε
) = 0.(26)

Now (24), (25) and (26) and Slutsky’s theorem prove the first part of the theorem.
For the second part of the theorem, we notice that if P(T (y)′(0) = a) = 0, then

lim
n→∞P

(
d−p+1
n

(
T (xn)

′(t0) − x′
b,n(t0)

)
< a

) = P
(
T (y)′(0) < a

)
.
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Since T (x)′ is defined as the right-hand derivative of T (x) and arg mins∈R(x(s))

as the infimum of all points at which the minimum is attained, it follows that

{T (y)′(0) < a} =
{

arg min
s∈R

(
y(s) − as

)
> 0

}
.(27)

By the first half of the theorem,

P
(
d−p+1
n

(
T (xn)

′(t0) − x′
b,n(t0)

)
< a

) → P
(
T (y)′(0) < a

)
,

if Assumption (22) holds, and this concludes the proof. �

In our applications the limit process will have stationary increments. Further-
more, it will be a two-sided version of a process defined on R

+, and as such, its
distribution will be unaffected by reflections in the y axis through the origin. In
these cases our results simplify.

ASSUMPTION A7 (Stationarity). The process ṽ(·; t0) has stationary incre-
ments, and (

ṽ(s1; t0), . . . , ṽ(sk; t0)) L= (
ṽ(−s1; t0), . . . , ṽ(−sk; t0)),

for each k and all s1, . . . , sk .

COROLLARY 1. Suppose Assumptions A1–A7 hold and p = 2. Then

d−1
n

(
T (xn)

′(t0) − x′
b,n(t0)

) L→ 2
√

A arg min
s∈R

(
s2 + ṽ

(
s√
A

; t0
))

as n → ∞, with A as defined in Assumption A2.

PROOF. We need to show that

lim
n→∞P

(
d−1
n

(
T (xn)

′(t0) − x′
b,n(t0)

)
< a

)

= P

(
arg min

s∈R

(
s2 + ṽ

(
s√
A

; t0
))

<
a

2
√

A

)

at each a satisfying

P

(
arg min

s∈R

(
s2 + ṽ

(
s√
A

; t0
))

= a

2
√

A

)
= 0.(28)

Note that

P

(
arg min

s∈R

(
s2 + ṽ

(
s√
A

; t0
))

<
a

2
√

A

)

= P

(
arg min

s∈R

(
s2 + ṽ

(
s√
A

+ a√
A

; t0
))

> − a

2
√

A

)
(29)

= P

(
arg min

s∈R

(
y(s) − as

)
> 0

)
,
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where the first equality follows by Assumption A7, and the second by a change of
variables and completion of squares. Putting ha(y) = 1{arg min(y(s)−as)>0}, we can
rewrite (28) as

lim
ε→0

Eha+ε(y) = Eha(y).(30)

Note also that ha+ε(y) ↑ when ε ↓ 0. Let D = {z : limε→0 ha+ε(z) �= ha(z)}. Then
if P(D) = 0, we have

Eha+ε(y) = Eha+ε(y)1{Dc}(y) ↑ Eha(y)1{Dc}(y) = Eha(y)

as ε ↓ 0 by monotone convergence, and, thus, (30) holds. But (27) implies

ha+ε(z) = 1 ⇐⇒ T (z)′(0) < a + ε.

Thus

D = {z :T (z)′(0) = a},
and the latter part of Theorem 2 completes the proof. �

Let S(xn) denote the least concave majorant of xn. Limit distribution results for
S(xn) and S(xn)

′ now follow easily by noting that S(xn) = −T (−xn).
In the next two sections we will consider various applications of Theorems

1 and 2 when p = 2. Applications for other p > 1 in the independent data case
are treated in [47] and [33].

3. Regression. Assume m is a function on the interval J = [0,1] ⊂ R, and
(yi, ti), i = 1, . . . , n, are pairs of data satisfying

yi = m(ti) + εi,(31)

where the ti = i/n are the design points, that is, we have an equispaced design.
For later convenience, we define the error terms εi for all integers, and assume
that {εi}∞i=−∞ form a stationary sequence of random variables with E(εi) = 0
and Var(εi) = σ 2 < ∞. Let σ 2

n = Var(
∑n

i=1 εi). Then the two-sided partial sum
process wn is defined by

wn

(
ti + 1

2n

)
=




1

σn

(
ε0

2
+

i∑
j=1

εi

)
, i = 0,1,2, . . . ,

1

σn

(
−ε0

2
−

−1∑
j=i+1

εi

)
, i = −1,−2, . . . ,

and linearly interpolated between these points. This process is right continuous
with left-hand limits, so it lies in the space D(−∞,∞).

The dependence structure for the random parts, the εi , will determine the limit
distribution. Let Cov(k) = E(ε1ε1+k) denote the covariance function. Then it is
possible to distinguish between three cases [of which (i) is a special case of (ii)]:
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(i) Independence: the εi are independent.
(ii) Weak dependence:

∑
k |Cov(k)| < ∞.

(iii) Strong (long range) dependence:
∑

k |Cov(k)| = ∞.

The first two cases are similar in the sense that, for these, wn has the same limit dis-
tribution, namely, the Brownian motion. For the case of long range dependence, the
limit distributions are very different. Also, this case is the most awkward to work
with, and limit distribution results are known only for subordinated processes, that
is, when εi is a function of an underlying process with a parametric law. We
will treat only subordinated Gaussian processes when the underlying process is
Gaussian. All results stated will be for processes in D(−∞,∞) with the uniform
metric on compacta defined in (10), and the σ -algebra generated by the open balls.

Most of the limit results stated for partial sum processes are results for processes
in D[0,1] equipped with the Skorokhod metric. An examination of the proofs of
the limit distribution results for D[0,1] shows that there is nothing special about
[0,1]; it can be replaced by [0, k], for any finite k. This means that the results
can be seen as results for D[0, k], with the Skorokhod metric. If the limit process
is in C[0, k] a.s., we can use the Skorokhod–Dudley theorem to get new random
processes converging almost surely, so in the Skorokhod metric on a set with prob-
ability one. But convergence in that metric toward a continuous function implies
convergence in the supnorm-metric, and this implies weak convergence in D[0, k]
with the supnorm-topology. Finally, this is made into a result for D[−k, k], for the
two-sided partial sum process wn.

When the εi are independent, we have the classical Donsker theorem (cf. [8]),
implying that

wn
L→ B,(32)

as n → ∞, with B a two-sided standard Brownian motion on D(−∞,∞).
Next we treat weakly dependent data. The notion of weak dependence can be

formalized in several ways. We will use mixing conditions; for a survey see [9].
Define the σ -algebras

Fk = σ {εi : i ≤ k},
F̄k = σ {εi : i ≥ k},

where σ {εi : i ∈ I } denotes the σ -algebra generated by {εi : i ∈ I }.
DEFINITION 1. The stationary sequence {εi} is said to be φ-mixing or

α-mixing, respectively, if there is a function φ(n) or α(n) → 0 as n → ∞, such
that

sup
A∈F̄n

∣∣P(A|F0) − P(A)
∣∣ ≤ φ(n),

sup
A∈F0,B∈F̄n

|P(AB) − P(A)P (B)| ≤ α(n).
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Mixing conditions say that elements in sequences are almost independent if
they are far away from each other. There are other ways to model weak depen-
dence, such as the notion of mixingales introduced in [36], which is a special case
of the processes treated in [26]. See also the results for short range dependent
subordinated Gaussian sequences in [15].

Introduce

κ2 = Cov(0) + 2
∞∑

k=1

Cov(k)(33)

whenever the limit exists. The following results for mixing sequences are adapted
from [37] and [26].

ASSUMPTION A8 (φ-mixing). Assume {εi}i∈Z is a stationary φ-mixing se-
quence with Eεi = 0 and Eε2

i < ∞. Assume further
∑∞

k=1 φ(k)1/2 < ∞ and κ > 0
in (33).

Note that κ2 exists and that

σ 2
n

n
→ κ2,(34)

as n → ∞ by Lemmas 20.1 and 20.3 in [8], if Assumption A8 is satisfied. In [26]
it is shown that Donsker’s result (32) is implied by Assumption A8 and also by
several other combinations of assumptions.

ASSUMPTION A9 (α-mixing). Assume {εi}i∈Z is a stationary α-mixing se-
quence with Eεi = 0 and Eε4

i < ∞, κ > 0 in (33) and
∑∞

k=1 α(k)1/2−ε < ∞, for
some ε > 0.

From Lemma 20.1 in [8] and Theorem 17.2.2 in [29] it follows that κ2 exists
and that (34) holds, if Assumption A9 is satisfied. The results of Peligrad [37]
imply that if Assumption A9 holds, then Donsker’s result (32) follows.

To treat long range dependent data, assume {ξi}i∈Z is a stationary Gaussian
process with mean zero and covariance function Cov(k) = E(ξiξi+k) such that
Cov(0) = 1 and Cov(k) = k−d l0(k), where l0 is a function slowly varying at infin-
ity and 0 < d < 1 is fixed. For a review of long range dependence, see [6].

Let g : R �→ R be a measurable function and define εi = g(ξi). Then we can
expand g(ξi) in Hermite polynomials

g(ξ1) =
∞∑

k=r

1

k!ηkhk(ξ1),

with equality holding as a limit in L2(φ), with φ the standard Gaussian density
function. Here hk are the Hermite polynomials of order k, the functions

ηk = E(g(ξ1)hk(ξ1)) =
∫

g(u)hk(u)φ(u)du,
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are the L2(φ)-projections on hk , and r is the index of the first nonzero coefficient
in the expansion. Assuming that 0 < dr < 1, the sequence {εi} also exhibits long
range dependence. In this case we say the sequence {εi} is subordinated Gaussian
long range dependent with parameters d and r .

The results of Taqqu [43, 44] show that

σ−1
n

∑
i≤nt

g(ξi)
L→ zr,β(t)

in D[0,1] equipped with the Skorokhod topology. Lemma 3.1 and Theorem 3.1
in [43] show that the variance is σ 2

n = Var(
∑n

i=1 g(ξi)) = η2
r n

2−rd l1(n)(1 + o(1)),
where

l1(k) = 2

r!(1 − rd)(2 − rd)
l0(k)r .(35)

The limit process zr,β is in C[0,1] a.s., and is self similar with parameter

β = 1 − rd/2.(36)

That is, the processes zr,β(δt) and δβzr,β(t) have the same finite-dimensional dis-
tributions for all δ > 0.

The limit process can, for arbitrary r , be represented by Wiener–Itô–Dobrushin
integrals as in [17]; see also the representation given in [44]. The process z1,β(t) is
fractional Brownian motion, z2,β(t) is the Rosenblatt process, and the processes
zr,β(t) are all non-Gaussian for r ≥ 2; see Taqqu [43]. This implies that, under the
above assumptions,

wn
L→ Br,β(37)

in D(−∞,∞), as n → ∞, where Br,β are the two-sided versions of the
processes zr,β .

3.1. Isotonic regression. Assume the regression function m in (31) satisfies
m ∈ F = {increasing functions}. The problem of minimizing the sum of squares∑n

i=1(yi − m(ti))
2 over the class F is known as the isotonic regression problem.

The nonparametric least squares estimator is obtained as

m̂ = T[0,1](xn)
′

(cf., e.g., [40]), where xn is defined as follows: Let ñ = ñ(t) = �nt − 1/2� and put

xn(t) = n−1
ñ∑

i=1

yi + (nt − 1/2) − ñ

n
yñ+1, t ∈ [0,1].

The limit distribution of T[0,1](xn)
′ is known in the case of independent data and

is included in Theorem 3 in [35]; note also the results in [33] and [47].
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Actually T[0,1](xn)
′ is the solution to the isotonic regression problem, no matter

what the dependence structure is, and we will derive the limit distributions also in
the weakly and long range dependent cases.

We can write

xn(t) = xb,n(t) + vn(t),

with

xb,n(t) = n−1
ñ∑

i=1

m(ti) + (nt − 1/2) − ñ

n
m(tñ+1),

vn(t) = n−1
ñ∑

i=1

εi + (nt − 1/2) − ñ

n
εñ+1.

Note that xb,n is convex (recall that we assume p = 2 in Sections 3 and 4) and that,
because of the stationarity of {εi}∞i=−∞,

ṽn(s; t) = d−2
n

(
vn(t + sdn) − vn(t)

)
= d−2

n n−1σn̂

(
wn̂(td

−1
n + s) − wn̂(td

−1
n )

)
L= d−2

n n−1σn̂wn̂(s),

where n̂ = ndn and the last equality in distribution holds exactly when t = ti for
any i and asymptotically for all t . Since we know that, under the appropriate as-

sumptions, wn̂
L→ w in D(−∞,∞) for some process w, we need to choose dn in

such a way that d−2
n n−1σn̂ → c for some constant 0 < c < ∞. Thus,

ṽn(s; t0) L→ cw(s) =: ṽ(s; t0)
in D(−∞,∞).

THEOREM 3. Assume m is increasing with m′(t0) > 0 and t0 ∈ (0,1). Let
m̂(t0) = T[0,1](xn)

′(t0) be the solution to the isotonic regression problem. Suppose
that one of the following conditions holds:

(i) {εi} are independent and identically distributed with Eεi = 0 and
Var(εi) = σ 2 < ∞;

(ii) Assumption A8 or A9 holds, σ 2
n = Var(

∑n
i=1 εi) and define κ2 as in (33);

(iii) εi = g(ξi) is a long range dependent subordinated Gaussian sequence with
parameters d and r , and β as in (36).

Then, correspondingly, we obtain

d−1
n c1(t0)

(
m̂(t0) − m(t0)

) L→ arg min
s∈R

(
s2 + ṽ(s)

)
,

d−2
n c2(t0)

(∫ t0

0
m̂(s) ds − xn(t0)

)
L→ T

(
s2 + ṽ(s)

)
(0),
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as n → ∞ with, respectively:

(i) ṽ = B,dn = n−1/3, c1(t0) = 2−2/3m′(t0)−1/3σ−2/3, c2(t0) = 2−1/3 ×
m′(t0)1/3σ−4/3;

(ii) ṽ = B,dn = n−1/3, c1(t0) = 2−2/3m′(t0)−1/3κ−2/3, c2(t0) = 2−1/3 ×
m′(t0)1/3κ−4/3;

(iii) ṽ = Br,β , dn = l2(n)n−rd/(2+rd), c1(t0) = 2−1/(2−β)m′(t0)(β−1)/(2−β) ×
|ηr |−1/(2−β), c2(t0) = 2−β/(2−β)m′(t0)β/(2−β)|ηr |−2/(2−β);

and l2 is a slowly varying function related to l1 as shown in the proof below. More-
over,

nσ−1
ñ

∫ t0

0

(
m̂(s) − m(s)

)
ds

L→ w(1)(38)

as n → ∞, where w(t) = B(t) in the cases (i) and (ii) and w(t) = Br,β(t) in the
case (iii), and ñ = �nt − 1/2�.

PROOF. (i) (The independent case) We have σ 2
n̂

= σ 2n̂ = σ 2ndn, which im-
plies that we can choose dn = n−1/3, so that c = d−2

n n−1σn̂ = σ . The rescaled
process is yn(s) = gn(s) + ṽn(s; t), where ṽn, gn are defined in Section 2.

From Donsker’s theorem (32), it follows that ṽn(s; t0) L→ σB(s) as n → ∞ on
D(−∞,∞) and, thus, Assumption A1 is satisfied. Next define m̃n(t) = m(ti)

when ti − 1/(2n) < t ≤ ti + 1/(2n), so that xb,n(t) = ∫ t
0 m̃n(u) du. Then

gn(s) = d−2
n

∫ t0+sdn

t0

(
m̃n(u) − m̃n(t0)

)
du

= d−2
n

∫ t0+sdn

t0

(
m(u) − m(t0)

)
du + rn(s),

where the first term converges toward As2 uniformly for s on compacta, with A =
m′(t0)/2, and

sup
|s|≤c

|rn(s)| ≤ 2cd−1
n sup

|u−t0|≤sdn

|m(u) − mn(u)| = O(n−1d−1
n ) = o(1),

since n−1d−1
n = cdnσ

−1
n̂

(1 + o(1)) → 0, because dn → 0 and σn̂ → ∞ and, thus,
Assumption A2 holds. Assumptions A3 and A4 follow by Proposition 1 and
Lemma B.1 in Appendix B. Assumptions A5, A6 and A7 hold by properties of
the Brownian motion; see [42] for an LIL for Brownian motion which shows As-
sumption A6 via Proposition 2 and Note 1. Thus, from Theorem 1,

n2/3
(∫ t0

0
m̂(s) ds − xn(t0)

)
L→ T

(
As2 + σB(s)

)
(0)

L= A−1/3σ 4/3T
(
s2 + B(s)

)
(0)
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as n → ∞, where the equality follows from the self similarity of Brownian motion.
Furthermore, Corollary 1 implies

n1/3(
m̂(t0) − m(t0)

) L→ 2A1/2 arg min
s∈R

(
s2 + σB

(
s√
A

))

L= 2A1/3σ 2/3 arg min
s∈R

(
s2 + B(s)

)
as n → ∞, where the equality follows from the self similarity of Brownian motion,
and the proof is complete.

(ii) (The mixing case) Choosing n̂ = ndn, we get, as in the independent data
case, d−2

n n−1σn̂ → κ , so that ṽ(s; t0) = κB(s), with the choice dn = n−1/3. The
rest of the proof goes through as for independent data.

(iii) (The long range dependent case) In this case σ 2
n̂

= η2
r (ndn)

2−rd l1(n̂). We
choose dn as

|ηr | = d−2
n n−1σn̂ = d−2

n n−1|ηr |(ndn)
1−rd/2l1(ndn)

1/2

⇐⇒ d1+rd/2
n = n−rd/2l1(ndn)

1/2

⇐⇒ dn = n−rd/(2+rd)l2(n),

where l2 is another function slowly varying at infinity. Thus,

ṽn(s; t0) = |ηr |wn̂(s)
L→ ṽ(s; t0) = |ηr |Br,β,

on D(−∞,∞), as n (and n̂) → ∞, and Assumption A1 holds. Assumption A2 is
proved as for independent data and Assumptions A3 and A4 follow from Proposi-
tion 1 and Lemma B.1. Also Assumptions A5, A6 and A7 follow from the proper-
ties of Br,β ; see Proposition 2 for Assumption A6. The assumptions of Theorem 1
are therefore satisfied and

d−2
n

(∫ t0

0
m̂(s) ds − xn(t0)

)
L→ T

(
As2 + |ηr |Br,β(s)

)
(0)

L= A−β/(2−β)|ηr |2/(2−β)T
(
s2 + Br,β(s)

)
(0)

as n → ∞, where the equality follows from the self similarity of Br,β . Further-
more, Corollary 1 implies

d−1
n

(
m̂(t0) − m(t0)

) L→ 2A1/2 arg min
s∈R

(
s2 + |ηr |Br,β

(
s√
A

))

L= 2A(1−β)/(2−β)|ηr |1/(2−β) arg min
s∈R

(
s2 + Br,β(s)

)
,

where the equality follows from the self similarity of Br,β .
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To show (38), note that, with M(t) = ∫ t
0 m(s) ds,

xn(t0) − M(t0) = vn(t0) + (
xb,n(t0) − M(t0)

)
= n−1σñwn(1) + Op(n−1),

implying that

nσ−1
ñ

(
xn(t0) − M(t0)

) L→ w(1)

as n → ∞. This proves the theorem. �

3.2. Estimating a convex regression function. Assume the regression func-
tion m in (31) belongs to the class F2 = {convex functions}. One natural way
to estimate m based on the data is to do convex regression, that is, to minimize
the sum of squares over the class of convex functions. Algorithms for the convex
regression problem are given in [27] and [35], and the limit distribution for inde-
pendent data is presented in [23, 24]. We present here an estimator of a convex
regression function for which we are able to give the limit distributions also in the
weakly dependent and long range dependent cases.

Define ȳn : [1/n,1] �→ R by linear interpolation of the points {(ti, yi)}ni=1, and
let

xn(t) = h−1
∫

k
(
(t − u)/h

)
ȳn(u) du(39)

be the Gasser–Müller kernel estimate of m(t) (see [19]), where k is a symmetric
density in L2(R) with compact support; for simplicity, take supp(k) = [−1,1];
k is called the kernel function. Let h be the bandwidth, for which we assume
that h → 0, nh → ∞. The exact choice of h will be affected by the dependence
structure of {εi}.

To define a convex estimator of m, we put

m̃(t) = T[0,1](xn)(t)

c(xn)
, t ∈ J,(40)

where c(xn) = ∫
J T[0,1](xn)(t) dt (

∫
J xn(t) dt)−1 is a normalization constant that

ensures
∫
J m̃(t) dt = ∫

J xn(t) dt . We will confine ourselves to studying the as-
ymptotics of T[0,1](xn), that is, the behavior of m̃ before normalization. Kernel
regression estimation for long range dependent errors is considered in [13, 14].

Clearly, xn(t) = xb,n(t) + vn(t), with

xb,n(t) = h−1
∫

k

(
t − u

h

)
m̄n(u) du,

vn(t) = h−1
∫

k

(
t − u

h

)
ε̄n(u) du,
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where the functions m̄n and ε̄n are obtained by linear interpolation of
{(ti ,m(ti))}ni=1 and {(ti, εi)}ni=1, respectively. For the deterministic term, xb,n(t) →
xb(t) = m(t), as n → ∞. Note that m̄n, and thus also xb,n, is convex.

Put

w̄n(t) = n

σn

∫ t

0
ε̄n(u) du.(41)

Since supp(k) = [−1,1] and if t ∈ (1/n + h,1 − h), from a partial integration and
change of variable, we obtain

vn(t) = σn

nh

∫
k′(u)w̄n(t − uh)du.

It can be shown that w̄n and wn are asymptotically equivalent for all dependence
structures treated in this paper. This will henceforth be tacitly assumed.

Recall that for the rescaling of vn we need to choose dn in a correct way. Having
done that choice, depending on the relation between the rate of convergence to zero
of the bandwidth and of dn, we get different limit results for T (xn). We have three
subcases: dn = h,dn/h → 0, or dn/h → ∞ as n → ∞.

3.2.1. The case dn = h. For s > 0, we rescale as

ṽn(s; t) = d−2
n (nh)−1σn̂

∫ (
w̄n̂(h

−1t + s − u)

− w̄n̂(h
−1t − u)

)
k′(u) du

L= d−2
n (nh)−1σn̂

∫ (
w̄n̂(s − u) − w̄n̂(−u)

)
k′(u) du,

with n̂ = nh, where the last equality holds exactly only for t = ti and asymptoti-
cally otherwise. Note that the right-hand side holds also for s < 0.

Assume dn = h is such that

d−2
n (nh)−1σn̂ = d−3

n n−1σn̂ → c > 0.(42)

Then, under conditions given in the beginning of this chapter, wn
L→ w in

D(−∞,∞), using the supnorm over compacta metric. Note that if k′ is bounded
and k has compact support, the map

D(−∞,∞)  z(s) �→
∫ (

z(s − u) − z(−u)
)
k′(u) du ∈ D(−∞,∞)

is continuous, using the supnorm over compacta. Thus, the continuous mapping
theorem implies that

ṽn(s; t) L→ ṽ(s; t) = c

∫ (
w(s − u) − w(−u)

)
k′(u) du.(43)

Define m̂ = T[0,1](xn(t)), and note in the following theorem that the rate n−2/5

in the independent data case is the same as the rate in the limit distribution result
for the convex regression; see [23, 24].
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THEOREM 4. Assume m is convex with m′′(t0) > 0 and t0 ∈ (0,1). Let xn

be the kernel estimate of m defined in (39), with a nonnegative and compactly
supported kernel k such that k′ is bounded, and with bandwidth h specified below.
Suppose that one of the following conditions holds:

(i) {εi} are independent and identically distributed with Eεi = 0 and σ 2 =
Var(εi) < ∞ and we choose h = an−1/5, where a > 0 is an arbitrary constant;

(ii) Assumption A8 or A9 holds, σ 2
n = Var(

∑n
i=1 εi) and κ2 is defined in (33),

and we choose h = an−1/5, where a > 0 is an arbitrary constant;
(iii) εi = g(ξi) is a long range dependent subordinated Gaussian sequence with

parameters d and r , and β as in (36) and we choose h = l2(n;a)n−rd/(4+rd),
where a > 0 and n �→ l2(n;a) is a slowly varying function defined in the proof
below.

Then, correspondingly, we obtain

d−2
n

(
T[0,1](xn)(t0) − m(t0)

) L→ 1
2m′′(t0)

∫
u2k(u) du + c

∫
k′(u)w(−u)du

+ T
(1

2m′′(t0)s2 + ṽ(s; t0))(0),

as n → ∞, where ṽ(s; t) is defined in (43), dn = h and, respectively:

(i) w = B,c = σa−5/2,
(ii) w = B,c = κa−5/2,

(iii) w = Br,β, c = |ηr |a.

PROOF. (i) (Independent case) We have σ 2
n̂

= σ 2ndn. Thus, d−2
n (nh)−1σn̂ =

σn−1/2h−5/2, and (42) is satisfied with c = σa−5/2 if dn = h = an−1/5. From (32),
it follows that Assumption A1 holds, with w as in (43).

Define gn as in Assumption A2. Notice that

gn(s) = h−2
∫

l(u)m̄n(t0 − hu)du

= h−2
∫

l(u)m(t0 − hu)du + rn(s),

with l(v) = k(v + s) − k(v) − sk′(v). Since∫
vλl(v) dv =

{
0, λ = 0,1,

s2, λ = 2,

it follows by a Taylor expansion of m around t0 that the first term converges to As2,
since A = m′′(t0)/2. The convergence is uniform with respect to s over compact
intervals, since the limit function As2 is convex; see [25] and Theorem 10.8 in [41].
For the second term, notice that

sup
|s|≤c

|rn(s)| ≤ h−2 sup
|s|≤c

∫
|l(u)|du sup

|u−t0|≤(c+1)h

|m̄n(u) − m(u)|

= O(n−1h−2) = o(1)
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since nh−2 = (1 + o(1))ch/σn̂ → 0, because h → 0 and σn̂ → ∞, which proves
Assumption A2.

Assumptions A3 and A4 are satisfied by Proposition 1 and Lemmas B.1 and B.4
in Appendix B, and Assumption A5 holds by properties of Brownian motion. An
application of Theorem 1 shows that

d−2
n

(
T[0,1](xn)(t0) − m(t0)

) L→ T
(1

2m′′(t0)s2 + ṽ(s; t0))(0)(44)

as n → ∞. Furthermore,

d−2
n

(
xn(t0) − xb,n(t0)

)
= d−2

n vn(t0) = d−2
n (nh)−1σn

∫
k′(u)w̄n(t − uh)du

(45)
= d−3

n n−1σnh

∫
k′(u)w̄nh(h

−1t − u)du

L→ c

∫
k′(u)w(−u)du,

d−2
n

(
xb,n(t0) − m(t0)

) → 1
2m′′(t0)

∫
u2k(u) du,(46)

as n → ∞. Since the process w̄n in (45) is the same as in the definition of ṽn, one
can make the rescaling in (44) and (45) simultanously to get joint convergence of
(44) and (45); together with (46), this proves the theorem for the independent data
case.

(ii) (Mixing case) The proof is similar to the proof of (i), replacing σ by κ .
(iii) (Long range dependent data case) We want to choose dn = h so that (42) is

satisfied with c = |ηr |a. Since σ 2
n̂

= η2
r (ndn)

2−rd l1(ndn), we get

|ηr |a = d−3
n n−1|ηr |(ndn)

1−rd/2l1(ndn)
1/2

(47)
⇐⇒ dn = n−rd/(4+rd)l2(n;a),

where l2 is another function slowly varying at infinity, implicitly defined in (47).
We check the assumptions of Theorem 1 similarly as for (i) and (ii). �

In practice, it can be preferable to normalize the estimator, as in (40). It is an
interesting problem to study the asymptotics for the normalized estimator m̃; we
conjecture the same rate of convergence to hold and note that the integrated mean
square error is smaller for the corrected estimator.

3.2.2. The case dn/h → ∞ as n → ∞. This subcase is the least interesting
for us, since the limit processes essentially are white noise processes; see [3].
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3.2.3. The case dn/h → 0 as n → ∞. In this case we can state limit distribu-
tions for T[0,1](xn) centered around xn, the bias term, however, is of a larger order
and thus the estimator has no useful statistical consequence; see [3] for details.

3.3. Kernel estimation followed by isotonic regression. Suppose (ti, yi) are
pairs of data satisfying the relation (31). Assuming that m is increasing, there is an
alternative to doing isotonic regression. Define first

ỹn = yi, ti − 1

2n
< t ≤ ti + 1

2n
, i = 1, . . . , n,

as the piecewise constant interpolation of {yi}. Similarly, we define m̃n and ε̃n

from {m(ti)} and {εi}. Compute the Gasser–Müller kernel estimate (see [19]),

mn(t) = h−1
∫

k

(
t − u

h

)
ỹn(u) du,

of m and then do isotonic regression on the data (t,mn(t))0≤t≤1. We do isotonic
regression according to m̂(t) = T[0,1](xn)

′(t), where

xn(t) =
∫ t

−∞
mn(u)du =

∫
K

(
t − u

h

)
ỹn(u) du(48)

is the primitive of mn, and K(t) = ∫ t
−∞ k(u) du. This is considered in [34], where

the limit distribution is given for i.i.d. data and for the particular choice of band-
width h = n−1/5. In [34] the reverse scheme is treated also, that is, isotonic regres-
sion followed by smoothing, for i.i.d. data.

The deterministic and stochastic parts of xn are defined according to

xn(t) = xb,n(t) + vn(t),

with

xb,n(t) =
∫

K

(
t − u

h

)
m̃n(u) du,

vn(t) =
∫

K

(
t − u

h

)
ε̃n(u) du

= σn

n

∫
k(u)wn(t − uh)du.

Notice that

x′
b,n(t) = h−1

∫
k

(
t − u

h

)
m̃n(u) du

is increasing since m̃n is, and thus xb,n is convex. Notice further that, for the bias
of x′

b,n, we have

x′
b,n(t0) − m(t0) = h−1

∫
k

(
t − u

h

)(
m̃n(u) − m(t0)

)
du

(49)

= 1

2
m′′(t0)h2

∫
u2k(u) du + o(h2) + O(n−1)
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as n → ∞, if we assume that m′′(t0) exists.
For the stochastic part, again we get different results depending on the asymp-

totic size of dn/h.

3.3.1. The case dn = h. The random part can, for s > 0, be rescaled as

ṽn(s; t) = d−2
n n−1σn̂

∫ (
wn̂(h

−1t + s − u) − wn̂(h
−1t − u)

)
k(u) du

L= d−2
n n−1σn̂

∫
[wn̂(s − u) − wn̂(−u)]k(u) du,

with n̂ = ndn, the right-hand side valid also for s < 0, and the last equality being
exact only for t = ti and holding asymptotically otherwise. Assuming that

cn = d−2
n n−1σn̂ → c > 0,(50)

the integrability of k, wn
L→ w on D(−∞,∞) and the continuous mapping theo-

rem imply that

ṽn(s; t) L→ ṽ(s; t) = c

∫ (
w(s − u) − w(−u)

)
k(u) du(51)

on D(−∞,∞) as n → ∞.
Note that (49) implies that in the following two theorems x′

b,n(t0) can be re-
placed by m(t0).

THEOREM 5. Assume m is increasing, m′(t0) > 0 and t0 ∈ (0,1). Assume that
{εi} are independent and identically distributed with E(εi) = 0 and Var(εi) = σ 2.
Define xn as in (48), with a nonnegative and compactly supported kernel k hav-
ing a bounded derivative k′, and with bandwidth h specified below. Let m̂(t) =
T[0,1](xn)

′(t). Suppose that one of the following conditions holds:

(i) {εi} are independent and identically distributed with Eεi = 0 and σ 2 =
Var(εi) < ∞ and we choose h = an−1/3, where a > 0 is an arbitrary constant;

(ii) Assumption A8 or A9 holds, σ 2
n = Var(

∑n
i=1 εi) and κ2 is defined in (33)

and we choose h = an−1/3, where a > 0 is an arbitrary constant;
(iii) εi = g(ξi) is a long range dependent subordinated Gaussian sequence with

parameters d and r , and β as in (36), and we choose h = l2(n;a)n−rd/(2+rd),
where a > 0 and n �→ l2(n;a) is a slowly varying function defined in the proof
below.

Then, correspondingly, we obtain

d−1
n

(
m̂(t0) − x′

b,n(t0)
) L→ (2m′(t0))1/2a · arg min

s∈R

(
s2 + ṽ

(
s√

m′(t0)/2
; t0

))
,

as n → ∞, where, respectively:
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(i) dn = n−1/3, w = B in (51), c = a−3/2σ ,
(ii) dn = n−1/3, w = B in (51), c = a−3/2κ ,

(iii) dn = l2(n;a)n−rd/(2+rd), w = Br,β in (51), c = |ηr |a,

and with c = a−3/2σ,w = B in (51).

PROOF. (i) (Independent data case) Since σ 2
n̂

= σ 2n̂ = σ 2ndn, we get

d−2
n n−1σn̂ = d

−3/2
n n−1/2σ . Putting dn = h = an−1/3, we thus get c = a−3/2σ .

Let us now verify the theorem from Corollary 1. From (32) and (51), we deduce
Assumption A1. Notice that

xb,n(t) =
∫

k(u)x̄b,n(t − uh)du,

with x̄b,n(t) = ∫ t
1/2 m̃n(u) du a piecewise linear approximation of the convex func-

tion xb(t) = ∫ t
1/2 m(u)du. Thus, the rest of the proof of Assumption A2 is similar

to Theorem 4(i), replacing m̄n and m in Theorem 4(i) with x̄b,n and xb,n respec-
tively. Clearly, |x̄b,n − xb,n| = O(n−1) uniformly on compact subsets of (0,1),
since the same is true for |m̃n − m|. Furthermore, Assumptions A3 and A4 follow
by Proposition 1 and Lemmas B.1 and B.4 in Appendix B.

Since ṽ has stationary increments, Assumption A7 holds and Assumption A5 is
motivated as in previous results. Furthermore, since k′ exists, ṽ is differentiable
and thus, Assumption A6 holds (cf. Note 1). Corollary 1, with A = m′(t0)/2, now
implies the theorem.

(ii) (Mixing data case) For mixing data, σn̂ ∼ κn̂1/2. The rest of the proof is
similar to the independent data case.

(iii) (Long range dependent data) Choose dn = h so that (50) is satisfied with
cn = |ηr |a. Since the variance is σ 2

n̂
= (ndn)

2−rdη2
r l1(ndn), with l1 a slowly vary-

ing function, we get

|ηr |a = d−2
n n−1(ndn)

1−rd/2|ηr |l1(ndn)
1/2

(52)
⇐⇒ dn = n−rd/(2+rd)l2(n;a),

where l2 is another function slowly varying at infinity, implicitly defined by (52).
Thus, with h = dn, we obtain the theorem from Corollary 1. Assumptions A1–A7
are checked as in the last two theorems. �

3.3.2. The case dn/h → ∞ as n → ∞. Rescale the random part as

ṽn(s; t) L= d−2
n n−1σn̂

∫ (
wn̂(s − uh/dn) − wn̂(−uh/dn)

)
k(u) du,

with n̂ = ndn, holding exactly for t = ti and asymptotically for all t . Assume that

d−2
n n−1σn̂ → c(53)
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as n → ∞. Write ṽn(·; t) L= �nwn̂, with �n an operator D(−∞,∞) →
D(−∞,∞). Then �nw → �w = cw as n → ∞ whenever w ∈ C(−∞,∞).
Thus, with w the weak limit of {wn}, the extended continuous mapping theorem
implies

ṽn(s; t0) L→ ṽ(s; t0) = c
(
w(s) − w(0)

) = cw(s).(54)

But (53) and (54) are identical to the results for isotonic regression in Section 3.1
and, thus, the limit distributions must be the same.

For the bandwidths, (53) entails h � n−1/3 in the independent and weakly de-
pendent cases, and h � l2(n)n−rd/(2+rd) in the long range dependent case, with
l2(n) the same slowly varying function as in Theorem 3(iii).

3.3.3. The case dn/h → 0 as n → ∞. We rescale as

ṽn(s; t) = d−2
n n−1σn̂

∫ (
wn̂(sdn/h − u) − wn̂(−u)

)
k(u) du

= d−1
n (nh)−1σn̂

∫
wn̂(u)

k(sdn/h − u) − k(−u)

dn/h
du,

with n̂ = nh. Assume that (dnnh)−1σn̂ → c > 0, and that k is of bounded variation.
Then, since h/dn(k(sdn/h − u) − k(−u)) → k′(−u)s for s in compact sets, we
can use the extended continuous mapping theorem to obtain

ṽn(s; t) L→ ṽ(s; t) = c

∫
w(u)k′(−u)du · s = cω · s,

where w is the weak limit of {wn}. Here ω ∈ N(0,
∫

k2(u) du) for independent
and weakly dependent data, ω is Gaussian for long range dependent data with
rank r = 1 and non-Gaussian for r > 1. Note that

T (s2 + cωs) = s2 + cωs,

T (s2 + cωs)′(0) = cω.

When the limit process is T (s2 + ωs)(0) = 0, this implies that we should study
the rescaling and choice of normalizing constants more carefully, in order to get a
nontrivial limit. In order to keep things simple, we skip this and give proofs only
for the regression function.

We prove limit results for the properly normalized difference T (xn)
′(t)−xb,n(t)

only. Note the relation (49) for the asymptotic bias. For independent data and
with the choice of bandwidth h = an−1/5, we have (nh)1/2 ∼ h2 and, thus,
the asymptotic bias is of the same size as the variance and is by (49) equal to
1
2a2n−2/5m′′(t0)

∫
u2k(u) du. This is consistent with results in [34], where the in-

dependent data part of the following theorem was first proved for the special case
h = an−1/5.
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THEOREM 6. Assume m is increasing, with m′(t0) > 0 and t0 ∈ (0,1). As-
sume that {εi} are independent and identically distributed with E(εi) = 0 and
Var(εi) = σ 2. Define xn as in (48), with a nonnegative and compactly supported
kernel of bounded variation and with bandwidth specified below. Let m̂(t) =
T[0,1](xn)

′(t). Suppose that one of the following conditions holds:

(i) {εi} are independent and identically distributed with Eεi = 0 and σ 2 =
Var(εi) < ∞ and we choose h � an−1/3;

(ii) Assumption A8 or A9 holds, σ 2
n = Var(

∑n
i=1 εi) and κ2 is defined in (33)

and we choose h � an−1/3;
(iii) εi = g(ξi) is a long range dependent subordinated Gaussian sequence with

parameters d and r , and β as in (36), and we choose h � l2(n)n−rd/(2+rd) and
n �→ l2(n) is a slowly varying function defined in the proof below.

Then, correspondingly, we obtain

d−1
n

(
m̂(t0) − xb,n(t0)

) L→ Z

as n → ∞, where, respectively:

(i) dn = (nh)−1/2,Z = N(0, σ 2 ∫
k2(u) du),

(ii) dn = (nh)−1/2,Z = N(0, κ2 ∫
k2(u) du),

(iii) dn = l1(nh)1/2(nh)−rd/2,Z = |ηr | ∫ k′(−u)Br,β(u) du, and with l1 the
slowly varying function defined in (35).

PROOF. (i) (Independent data case) Since we have σ 2
n̂

= nhσ 2, we see that
(dnnh)−1σn̂ = d−1

n (nh)−1/2σ converges to c = σ if we choose dn = (nh)−1/2.
Then the condition dn/h → 0 holds if h � n−1/3. So for the stochastic part of the
estimator, we obtain from Theorem 2

d−1
n

(
m̂(t0) − xb,n(t0)

) L→ σω,

provided all regularity conditions are checked. Assumptions A5 and A6 are triv-
ially satisfied, since ṽ(·, t0) is linear and w is a continuous random variable with
a symmetric distribution. To prove Assumption A2, write xb,n as in the proof of
Theorem 5(i). Then we have

gn(s) = h−2
∫

l(u)x̄b,n(t0 − uh)du

= h−2
∫

l(u)xb(t0 − uh)du + rn(s),

with

l(v) = h2

d2
n

[
k

(
v + s

dn

h

)
− k(v) − s

dn

h
k′(v)

]
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satisfying ∫
vλl(v) dv =

{
0, λ = 0,1,

s2, λ = 2.

Noting that sup|s|≤c |rn(s)| = O(n−1h−2) = o(n−1/3) = o(1) as n → ∞, the rest
of the proof of Assumption A2 proceeds as in the proof of Theorem 4(i). Assump-
tion A1 follows from (32) and the extended continuous mapping theorem, as noted
above. Proposition 1 and Lemmas B.1 and C.1 imply Assumptions A3 and A4,
which ends the proof.

(ii) (Mixing data case) Now we have σ 2
n̂
/n̂ ∼ κ2, and the rest of the proof pro-

ceeds as for independent data.
(iii) (Long range dependent data case) Here

(dnnh)−1σn̂ = (dnnh)−1(nh)1−rd/2|ηr |l1(nh)1/2

= d−1
n (nh)−rd/2|ηr |l1(nh)1/2.

With c = |ηr |, we obtain

|ηr | = d−1
n (nh)−rd/2|ηr |l1(nh)1/2 ⇐⇒ dn = l1(nh)1/2(nh)−rd/2.

Thus,

l1(nh)−1/2(nh)rd/2(
m̂(t0) − xb,n(t0)

) L→ ω|ηr |,
where ω = ∫

k′(−u)Br,β(u) du. The condition dn/h → 0 is satisfied if we let
h � l2(n)n−rd/(2+rd), where l2 is any of the slowly varying functions l2(·;a) de-
fined in the proof of Theorem 5(iii). Assumptions A1–A6 are checked as in parts
(i) and (ii). �

Note that since T (s2 +cws)(0) = (s2 +cws)|s=0 = 0, it follows from Theorems
6 and 1 that∫ t0

0
m̂(s) ds − xn(t0)

= oP (d2
n) =

{
oP ((nh)−1) (independent, weakly dependent data),

oP (l1(nh)(nh)−rd) (long range dependent data).

4. Density and distribution function estimation. The empirical distribution
function is of a fundamental importance in distribution and density function es-
timation. To define this, assume {ti}∞i=−∞ is a stationary sequence of random
variables with a marginal distribution function F . Then the empirical distribution
function is

Fn(t) = 1

n

n∑
i=1

1{ti≤t}.
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Note that Fn is right continuous with left-hand limits and, thus, Fn lies in the space
D(−∞,∞).

Note also that

Fn(t) = F(t) + F 0
n (t),

where

F 0
n (t) = 1

n

n∑
i=1

(
1{ti≤t} − F(t)

)

is the centered empirical process. Consider a sequence δn such that δn ↓ 0, nδn ↑
∞ as n → ∞. Define the centered empirical process locally around t0 on a scale
δn as

wn,δn(s; t0) = σ−1
n,δn

n
(
F 0

n (t0 + sδn) − F 0
n (t0)

)
(55)

= σ−1
n,δn

n∑
i=1

(
1{ti≤t0+sδn} − 1{ti≤t0} − F(t0 + sδn) + F(t0)

)
,

where

σ 2
n,δn

= Var
(
n
(
F 0

n (t0 + δn) − F 0
n (t0)

))

= Var

(
n∑

i=1

(
1{t0<ti≤t0+δn} − F(t0 + δn) + F(t0)

))
.

We will prove weak convergence wn,δn

L→ w, on D(−∞,∞), as n → ∞, for
independent, weakly dependent and subordinated Gaussian long range dependent
data {ti}.

THEOREM 7. Assume {ti} are independent, f (t0) = F ′(t0) exists and δn ↓ 0,
nδn ↑ ∞ as n → ∞. Then

σ 2
n,δn

nδnf (t0)
→ 1

and

wn,δn(s; t0) L→ B(s)

on D(−∞,∞), as n → ∞, where B is a standard Brownian motion.

The proof of this theorem is a standard application of the Cramér–Wold device
and tightness; see the technical report of Anevski and Hössjer [3].
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For weakly dependent data, we will use mixing conditions. Define the σ -algeb-
ras

Fk = σ {ti : i ≤ k},
F̄k = σ {ti : i ≥ k}.

Then the sequence {ti} is said to be φ-mixing if Definition 1 in Section 4 is ap-
plicable, with ti in place of εi .

THEOREM 8. Assume the stationary sequence {ti} is φ-mixing with∑∞
i=1 iφ1/2(i) < ∞, that δn → 0, nδn → ∞ as n → ∞, f (t0) = F ′(t0) exists,

as well as the joint density fk(s1, s2) of (t1, t1+k) on [t0 − δ, t0 + δ]2 for some
δ > 0, and k ≥ 1. Assume also that we have the bound

∞∑
k=1

Mk < ∞,

with Mk = supt0−δ≤s1,s2≤t0+δ |fk(s1, s2) − f (s1)f (s2)|. Then

σ 2
n,δn

nδnf (t0)
→ 1(56)

and

wn,δn(s; t0) L→ B(s)

on D(−∞,∞), as n → ∞.

For a proof of this theorem, see the technical report of Anevski and Hössjer [3].
In the long range dependent case, as in the partial sum process case, we make an

expansion in Hermite polynomials of the terms in the sum defining the empirical
distribution function at t ∈ R. In this case, however, the terms depend on t , which
makes the analysis somewhat different.

Thus, assume {ξi}i≥1 is a stationary Gaussian process with mean zero and
covariance function Cov(k) = E(ξiξi+k) such that Cov(0) = 1 and Cov(k) =
k−d l0(k), where l0 is a function slowly varying at infinity and 0 < d < 1 is fixed.
Let g : R �→ R be a measurable function and ti = g(ξi). For a fixed t , expand the
function 1{t1≤t} − F(t) in Hermite polynomials

1{t1≤t} − F(t) =
∞∑

k=r(t)

1

k!ηk(t)hk(ξ1).

Here hk is the Hermite polynomial of order k, and

ηk(t) = E
[(

1{t1≤t} − F(t)
)
hk(ξ1)

] =
∫ (

1{g(u)≤t} − F(t)
)
hk(u)φ(u)du
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are the L2(φ)-projections on hk , and r(t) is the first nonzero coefficient in
the expansion. Now let t vary and define the Hermite rank of the functions
{1{g(·)≤t} − F(t) : t ∈ R} as r = inft r(t). Assume that 0 < d < 1/r . With a slight
abuse of notation, we say that the sequence {ti} is long range dependent subordi-
nated Gaussian with parameters d and r .

This implies that the sequence {1{ti≤t} − F(t)}i≥1 exhibits long range depen-
dence, and σ 2

n = Var(
∑n

i=1 hr(ξi)) is asymptotically proportional to n2−rd l1(n),
with l1 defined in (35). From Theorem 1.1 in [17], under the above assumptions it
follows that

σ−1
n nF 0

n (t)
L→ ηr(t)

r! zr

on D[−∞,∞] equipped with the supnorm-metric. The random variable zr is the
evaluation zr = zr(1) of the process defined in Section 4, with β as in (36). Note
that zr is Gaussian for r = 1 and non-Gaussian for r ≥ 2. Note also that the space
here is the compact D[−∞,∞] and the metric is the supnorm-metric over the
whole extended real line.

THEOREM 9. Assume {ti} is a long range dependent subordinated Gaussian
sequence with parameters d and r and 0 < d < 1/r . Define

κ1 = min(d,1 − rd)/2,

κ2 = min(2d,1 − rd)/2.

Assume that δn → 0 as n → ∞ and, for some ε > 0,

δn � n−κ1+ε if d ≥ 1/(1 + r),

δn � n−κ2+ε if 0 < d < 1/(1 + r).

Then if ηr and F are differentiable at t0 with η′
r (t0) �= 0,

σ 2
n,δn

∼ σ 2
n

(
η′

r (t0)

r!
)2

δ2
n(57)

and

wn,δn(s; t0) L→ s · sgn(η′
r (t0))zr(58)

as n → ∞, on D(−∞,∞).

PROOF. Write

nF 0
n (t) = ηr(t)

n∑
i=1

hr(ξi)

r! + σnSn(t),
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with Sn containing the higher-order terms in the Hermite expansion,

Sn(t) = σ−1
n

∞∑
k=r+1

1

k!ηk(t)

n∑
i=1

hk(ξi).

Then

n
(
F 0

n (t0 + δn) − F 0
n (t0)

) = δn

(
η′

r (t0) + o(1)
) n∑

i=1

hr(ξi)

r!
+ σn

(
Sn(t0 + δn) − Sn(t0)

)
as n → ∞. Thus, to prove (57) it suffices to show that

Var
(
Sn(t0 + δn) − Sn(t0)

) = o(δ2
n)

as n → ∞. With σ̃ 2
n = Var(

∑n
i=1 hr+1(ξi)) we get, for large enough n,

Var
(
Sn(t0 + δn) − Sn(t0)

) ≤ 2
(
Var

(
Sn(t0 + δn)

) + Var(Sn(t0))
)

∼ 4ηr+1(t0)
2(σ̃n/σn)

2 ≤ n−2κ1+ε

proving (57) if d ≥ 1/(1 + r), since then, by assumption, δn � n−κ1+ε .
If instead d < 1/(1 + r), we define S̃n by

σnSn(t) = ηr+1(t)

(r + 1)!
n∑

i=1

hr+1(ξi) + σ̃nS̃n(t)

and, thus,

|Sn(t0 + sδn) − Sn(t0)|
≤ σ̃n

σn

(∑n
i=1 hr+1(ξi)

σ̃n(r + 1)! |ηr+1(t0 + sδn)(59)

− ηr+1(t0)| + |S̃n(t0 + sδn) − S̃n(t0)|
)
.

Using the relations (cf. page 997 of [12]),(
ηr+1(t0 + δn) − ηr+1(t0)

)2 ≤ (r + 1)!(F(t0 + δn) − F(t0)
)
,(60)

σ̃ 2
n ≤ σ 2

nn−d+ε,(61)

Var(S̃n(t)) ≤ n−2κ2+d+ε,

which hold for large enough n, from (59) we get

Var
(
Sn(t0 + δn) − Sn(t0)

)
≤

(
σ̃n

σn

)2

O
[
δ2
n + 4

(
Var

(
S̃n(t0 + δn)

) + Var(S̃n(t0))
)]

= O(n−d+εδ2
n + n−2κ2+ε) = o(δ2

n)
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as n → ∞, since, by assumption, δn � n−κ2+ε .
To prove (58), notice that

wn,δn(s; t0) = σ−1
n,δn

n
(
F 0

n (t0 + sδn) − F 0
n (t0)

)

= (
1 + o(1)

)ηr(t0 + sδn) − ηr(t0)

δn|η′
r (t0)|

σ−1
n

n∑
i=1

hr(ξi)

+ Cnδ
−1
n

(
Sn(t0 + sδn) − Sn(t0)

)
,

where Cn → r!/|η′
r (t0)|, as n → ∞. Since σ−1

n

∑n
i=1 hr(ξi)

L→ zr , and

ηr(t0 + sδn) − ηr(t0)

δn|η′
r (t0)|

→ s · sgn(η′
r (t0))

uniformly on compacts as n → ∞, (58) will follow if we establish

sup
s∈R

δ−1
n |Sn(t0 + sδn) − Sn(t0)| P→ 0(62)

as n → ∞.
If d ≥ 1/(1 + r), then from formula (2.2) in [12] we obtain

δ−1
n |Sn(t0 + sδn) − Sn(t0)| ≤ 2δ−1

n sup
t∈R

|Sn(t)|

= OP (δ−1
n n−κ1+ε),

which proves (62), since δn � n−κ1+ε . If d < 1/(1 + r), then from (59), (60), (61)
and formula (2.3) in [12], we have

δ−1
n |Sn(t0 + sδn) − Sn(t0)| ∼ δ−1

n n−d/2+ε(δ1/2
n + OP (n−κ2+d/2+ε)

)
as δn → 0. Since δn � n−κ2+ε , implying also δn � n−d+ε , (62) holds and thus,
(58) is proved. �

4.1. Estimating an increasing density function. Suppose we have observa-
tions from an unknown density f lying in the class F = {f : (−∞,0] �→ [0,∞),

f ≥ 0,
∫

f (u)du = 1, f increasing}, and assume we want to estimate f at a fixed
point t . In the case of independent data, we can easily write down the likelihood
and try to maximize this over the class F . The solution is the nonparametric max-
imum likelihood estimate, and it is known to be given by T(−∞,0](Fn)

′ (see [20]),
where Fn is the empirical distribution function. In the case of independent data,
also the limit distribution of T(−∞,0](Fn) and T(−∞,0](Fn)

′ are known; see [21,
22, 39] and [46]. We will put these results into a more general framework.

The algorithm T(−∞,0](Fn)
′ produces an increasing density also in the case of

dependent data, with marginal f , while of course the likelihood is more difficult
to work with. Thus, T(−∞,0](Fn)

′ is an ad hoc estimator of an increasing density in
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the case of dependent data which lies in F , and for which we will derive the limit
distribution.

Let

xn(t) = Fn(t),

xb,n(t) = F(t),

vn(t) = F 0
n (t).

Under various dependence assumptions, we have

ṽn(s; t0) = cnwn,dn(s; t0) L→ w(s) =: v(s; t0)
on D(−∞,∞), as n → ∞, where {dn} is chosen so that

cn = d−2
n n−1σn,dn → 1.

THEOREM 10 (Independent and mixing data). Assume {ti}i≥1 is a station-
ary sequence with an an increasing marginal density function f such that
f ′(t0) > 0 and t0 < 0. Let Fn(t) be the empirical distribution function and
f̂n(t) = T(−∞,0](Fn)

′(t). Suppose that one of the following conditions holds:

(i) {ti}i≥1 is an i.i.d. sequence;
(ii) {ti}i≥1 satisfies the assumptions of Theorem 8.

Then we obtain

n1/3c1(t0)
(
f̂n(t0) − f (t0)

) L→ arg min
s∈R

(
s2 + B(s)

)
,

n2/3c2(t0)

(∫ t0

0
f̂n(s) ds − F(t0)

)
L→ T

(
s2 + B(s)

)
(0)

as n → ∞, with

c1(t0) = f (t0)
−1/3(1

2

)2/3
f ′(t0)−1/3,

c2(t0) = f (t0)
−2/3(1

2f ′(t0)
)1/3

,

and B a standard two-sided Brownian motion.

PROOF. (i) (Independent data case) To determine the constants, we use Theo-
rem 7,

σ 2
n,dn

∼ ndnf (t0)

⇐⇒ cn = d−2
n n−1

√
ndnf (t0) = d−3/2

n n−1/2f (t0)
1/2 ∼ 1

⇐⇒ dn ∼ f (t0)
1/3n−1/3.
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Since xb,n = F is convex and x′′
b (t0) = f ′(t0), Assumption A2 is satisfied with

A = 1
2f ′(t0). From Theorem 7, it follows that Assumption A1 is satisfied, and

Proposition 1 and Lemma C.1 imply Assumptions A3 and A4. Assumptions A5,
A6 and A7 hold by properties of Brownian motion (cf. [42] for an LIL for Brown-
ian motion implying Assumption A6 by Note 1), so that Corollary 1 implies

d−1
n

(
f̂n(t0) − f (t0)

) L→ 2
√

A arg min
s∈R

(
s2 + B

(
s√
A

))

L= 2A1/3 arg min
s∈R

(
s2 + B(s)

)
as n → ∞ and, thus, c1(t0) has the form stated in the theorem. Then Theorem 1
implies

d−2
n

(∫ t0

0
f̂n(s) ds − F(t0)

)
L→ T

(
As2 + B(s)

)
(0)

L= A−1/3T
(
s2 + B(s)

)
(0)

as n → ∞ and, thus, c2(t0) has the form stated in the theorem.
(ii) (Mixing data case) The proof is completely analoguous to the i.i.d. case and

uses Theorem 8 instead of Theorem 7. �

THEOREM 11 (Long range dependent data). Assume {ti}i≥1 is a long range
dependent subordinated Gaussian sequence with parameters r = 1 and 0 < d <

1/2, and β as in (36). Let f be the marginal density function of {ti}, and assume
f is increasing with f ′(t0) > 0 and t0 < 0. Then with Fn the empirical distribution
function and f̂n(t) = T(−∞,0](Fn)

′(t),

|η′
1(t0)|−1l1(n)−1/2nd/2(

f̂n(t0) − f (t0)
) L→ N(0,1)

as n → ∞, with l1 a function slowly varying at infinity, defined as in (35).

PROOF. We have

cn = d−2
n n−1σn,dn ∼ d−1

n n−1σn|η′
r (t0)|/r! ∼ 1

⇐⇒ dn ∼ |η′
r (t0)|l1(n)1/2n−rd/2/r!,

where σn and l1 are defined before Theorem 9. Note that the assumptions in The-
orem 9, with δn = dn, are only satisfied for r = 1,0 < d < 1/2, for which case

we have wn,dn

L→ s · z1 =: w(s) as n → ∞, with z1 a standard Gaussian random
variable. Theorem 2 implies

d−1
n f̂n

(
(t0) − f (t0)

) L→ T (s2 + z1s)
′(0) = z1

as n → ∞, implying the theorem. Assumption A1 follows from Theorem 9, As-
sumption A2 is established as in Theorem 10(i), Assumptions A3 and A4 follow
from Proposition 1 and Lemma C.1 and Assumptions A5 and A6 are trivially sat-
isfied; see Note 1. �
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4.2. Estimating a convex density function. Suppose f : [0,∞) �→ [0,∞) is a
convex density function, and we want to find an estimator of f at a fixed point
t0 > 0. For independent data, it is possible to define the nonparametric maximum
likelihood estimate. The algorithm for calculating this is quite complicated though;
see [30]; see also [23, 24] for the limit distribution. We present the following alter-
native estimator: Let

xn(t) = n−1h−1
n∑

i=1

k

(
t − ti

h

)

be the kernel estimator of the density f , with k a density function supported on
[−1,1], and h > 0 the bandwidth. Define the (nonnormalized) density estimate
f̂n(t) = T (xn)(t), and note that f̂n is convex and positive, but does not integrate
to one [note that the estimator T[0,∞)(xn)/In is a convex density function, where
In = ∫

T[0,∞)(xn)(s) ds]. We will state the limit distributions for f̂n in the weakly
dependent cases; see Section 1 for an interpretation. In the long range dependent
case the limit process is pathological [ṽ(s; t0) = 0], so that the rate of convergence
is faster than indicated by our approach. Since a further study of this case is not
straightforward, we refrain from more work on this; see the remark after Theo-
rem 12.

We can write

xn(t) = h−1
∫

k′(u)Fn(t − hu)du,

xb,n(t) = h−1
∫

k′(u)F (t − hu)du,

vn(t) = h−1
∫

k′(u)F 0
n (t − hu)du.

4.2.1. The case dn = h. The rescaled process is

ṽn(s; t0) = cn

∫
k′(u)

(
wn,dn(s − u; t0) − wn,dn(−u; t0))du,

with cn = d−2
n (nh)−1σn,dn . Choosing dn so that cn → c as n → ∞, for some con-

stant c, we obtain

ṽn(s; t0) L→ c

∫
k′(u)

(
w(s − u) − w(−u)

)
du =: ṽ(s; t0)(63)

on D(−∞,∞) as n → ∞, using the continuous mapping theorem as in Sec-
tion 4.2.1, and with w the weak limit of {wn}, assuming that k′ is bounded and
since k has compact support.

Recall the definition of the (nonnormalized) density estimate f̂n(t) = T (xn)(t).
The rate n−2/5 for the estimator f̂n in Theorem 12 is the same as in the limit
distribution of the NPMLE; see [23, 24]. This is also the optimal rate for estimating
a convex density from independent observations; see [2].
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THEOREM 12 (Independent and mixing data). Let {ti}i≥1 be a stationary se-
quence with a convex marginal density function f such that f ′′(t0) > 0 and t0 > 0.
Let xn(t) be the kernel density function above with k a compactly supported den-
sity such that k′ is bounded , h = an−1/5 and a > 0 an arbitrary constant. Suppose
that one of the following conditions holds:

(i) {ti}i≥1 is an i.i.d. sequence;
(ii) {ti}i≥1 satisfies the assumptions of Theorem 9.

Then we obtain

n2/5(
f̂n(t0) − f (t0)

)
L→ a2T

(1
2f ′′(t0)s2 + ṽ(s; t0))(0)

+ 1
2a2

∫
u2k(u) duf ′′(t0) + ca2

∫
k′(u)w(−u)du

as n → ∞, with c = a−5/2f (t0)
1/2, ṽ(s; t) as in (63) and w a standard two-sided

Brownian motion.

PROOF. (i) (Independent data case) We have σ 2
n,dn

∼ ndnf (t0), so that

d−2
n (nh)−1σn,dn ∼ d−5/2

n n−1/2f (t0)
1/2.

If dn = an−1/5, we get c = a−5/2f (t0)
1/2 and

n2/5(
f̂n(t0) − f (t0)

) L→ a2T
(1

2f ′′(t0)s2 + ṽ(s; t0))(0)(64)

follows from Theorem 1, provided the conditions in Theorem 1 hold. Notice that

xb,n(t) = h−1
∫

k

(
t − u

h

)
f (u)du

is convex, which establishes Assumption A2, with A = 1
2f ′′(t0), similar to the

argument in Section 4.2.1. Assumptions A1, A3 and A4 and A5 are also verified
analogously to the argument in Section 4.2.1. Finally,

d−2
n

(
xn(t0) − xb,n(t0)

) = d−3
n n−1σndn

∫
k′(u)wndn(−u; t0) du

(65)
L→ c

∫
k′(u)w(−u)du

d−2
n

(
xb,n(t0) − f (t0)

) → 1
2

∫
u2k(u) duf ′′(t0).(66)

The joint convergence in (64) and (65) (cf. the proof of Theorem 4), together
with (66), shows the statement of the theorem for the independent data case.

(ii) (Mixing data case) Similar to the proof of case (i). �
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For long range dependent data, as in Section 4.1, we are restricted to the case
r = 1,0 < d < 1/2. But now

ṽ(s; t0) = c

∫
k′(u)

(
(s − u)zr − (−u)zr

)
du

= cszr

∫
k′(u) du = 0,

where the first equality holds since w(s)
L= s ·z1. This indicates that the rate of con-

vergence is faster than obtained solving cn = d−3
n n−1σn,dn = c. We refrain from

further work for this case.

4.2.2. The cases dn/h → ∞ and dn/h → ∞ as n → ∞. We refer the inter-
ested reader to the technical report of Anevski and Hössjer [3].

5. Self similarity and rates of convergence. In many of the examples treated
in Sections 3 and 4, the stochastic part vn of xn is asymptotically self similar in
the following sense: There exists a sequence an ↓ 0 such that a−1

n vn converges in
distribution on a scale bn around t0. More precisely, we assume the existence of a
limit process v̄(·; t0) such that

a−1
n vn(t0 + sbn)

L→ v̄(s; t0).(67)

For local estimators, bn ↓ 0 and the convergence in (67) takes place in D(−∞,∞).
For global estimators, we have bn ≡ 1 and then the convergence takes place in
D(J − t0). Further, assume that v̄(·; t0) is locally self similar, in the sense that, for
some β > 0 and some process ṽ(·; t0),

δ−β(
v̄(δs; t0) − v̄(0; t0)) L→ ṽ(s; t0)(68)

on D(−∞,∞) as δ → 0. Suppose that dn � bn and put δn = dn/bn. If we can
interchange limits between (67) and (68), we obtain

d−p
n

(
vn(t0 + sdn) − vn(t0)

) L≈ d−p
n an

(
v̄(sδn; t0) − v̄(0; t0))

(69)
L≈ d−p

n anδ
β
n ṽ(s; t0).

Thus, Assumption A1 requires [up to a factor 1 + o(1)]

d−p
n anδ

β
n = 1 ⇐⇒ dn = (anb

−β
n )1/(p−β),(70)

which is then a general formula for choosing dn. As a consequence of this

T (xn)(t0) − xn(t0) = OP (dp
n ) = OP

(
(anb

−β
n )p/(p−β)),

T (xn)
′(t0) − x′

b,n(t0) = OP (dp−1
n ) = OP

(
(anb

−β
n )(p−1)/(p−β)).
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TABLE 1
Convergence rates dn for various choices of an, bn and β

Theorem an bn β dn

3(i), (ii), 10(i), (ii) n−1/2 1 1/2 n−1/3

3(iii) n−rd/2 1 1 − rd/2 n−rd/(2+rd)

6(i), (ii) n−1/2h1/2 h 1 (nh)−1/2

6(iii) n−rd/2h1−rd/2 h 1 (nh)−rd/2

11 n−d/2 1 1 n−d/2

For instance, in Theorem 3(i) we have, by Donsker’s theorem, an = n−1/2, bn = 1
and v̄(s; t0) = σB(s + t0), s ∈ J − t0, with B a standard Brownian motion. Since
the Brownian motion has stationary increments and is self similar with β = 1/2,

we can put ṽ(s; t0) L= σB(s) on D(−∞,∞) so that

dn = a1/(p−β)
n = n−1/2(1/(p−1/2)) = n−1/(2p−1),

that is, dn = n−1/3 when p = 2.
Table 1 lists values of an, bn,β and dn for all examples with dn � bn in Sec-

tions 3 and 4 when p = 2. For the long range dependent examples, we have sim-
plified and put l1(n) = 1 for the slowly varying function l1 in (35). For general l1,
formula (67) is not valid. We have also ignored constants (not depending on n)
of dn.

For Theorem 6, we have replaced (67) with the more general requirement

a−1
n

(
vn(t0 + sbn) − vn(t0)

) L→ v̄(s; t0).(71)

Otherwise, an will be too large to give the correct value of dn when plugged
into (70). Notice that the derivation of (69) is still valid, even though we re-
place (67) with (71). For instance, in Theorem 6(i) we write vn(t) = n−1/2σ ×∫

k(u)B(t − uh)du + oP (1) and put an = n−1/2h1/2, bn = h, so that

a−1
n

(
vn(t0 + sbn) − vn(t0)

)
= h−1/2σ

∫
k(u)

(
B(t0 + sh − uh) − B(t0 − uh)

)
du + oP (1)

L= σ

∫
k(u)

(
B(s − u) − B(−u)

)
du + oP (1).

In the last step, we have used the fact that B has stationary increments and is self
similar. Thus, from (71) we obtain

v̄(s; t0) = σ

∫
B(u)

(
k(s − u) − k(−u)

)
du,
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from which follows β = 1 and

ṽ(s; t0) = lim
δ→0

σs

∫
B(u)

k(sδ − u) − k(−u)

δs
du

= σs

∫
B(u)k′(−u)du =: σsZ,

where Z ∈ N(0,
∫

k2(u) du).

6. Concluding remarks. Several of the applications in Sections 3 and 4 are
not stated in the most general form, because of a desire to keep the paper self-
contained. Therefore, we would like to point out some generalizations that can
be made. Section 3 on regression could be made more inclusive by allowing for
heteroscedasticity and nonequidistant design points, as considered by Wright [47];
see also [33] and [34].

Furthermore, we have not made an extensive study of all possible mixing con-
ditions, and whether, for instance, in these cases the bounds derived in Appendices
B and C apply; neither have we tried to apply our results to short range dependent
subordinated Gaussian data as defined in [15]. Long range dependent data limit
results under exponential subordination are derived in [18]; we have not tried to
apply our results to this case.

In Section 4 it is possible to prove results for estimators of a monotone density
and of its derivative, by isotonization of a kernel density estimate; the calculations
are similar to Section 3.3.

It is also possible to use Theorems 1 and 3 for p �= 2, which would general-
ize the theorems in Sections 3 and 4. Since existing results, as Wright [47] and
Leurgans [33], deal with independent data, this would constitute new results for
weakly dependent and long range dependent data.

Unimodal density estimation, with known or unknown mode, is related to den-
sity estimation under monotonicity assumptions, and the distributional limit results
are identical to ours when using the respective NPMLE. We conjecture that the
results for long range dependent data in Section 4 hold also for unimodal densi-
ties.

The case p = 1, corresponding to nondifferentiable target functions, is not cov-
ered in this paper. It is treated in [4]; the approach is somewhat different and the
limit distributions are different from the ones obtained in this paper.

It would be interesting to extend our results to process results, such as in, for
example, [5, 28, 31]; we have not attempted to do so in this paper.

Alongside regression and density estimation, a third topic which can be treated
with arguments similar to this paper is the monotone deconvolution problem;
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see [45]. In fact, in [1], the asymptotic theory of Section 2 is applied to the
monotone deconvolution problem.

APPENDIX A: PROOFS OF RESULTS IN SECTION 2

In this appendix we prove the statements in Section 2.

PROOF OF PROPOSITION 1. We first show that if Assumption A2 holds, then
gn can be bounded in the following manner: for any constant κ > 0, there is a
τ < ∞, such that

lim inf
n→∞ inf|s|≥τ

(
gn(s) − κ|s|) ≥ 0.(72)

To prove this, from (12) it follows that, given any τ > 0 and ε such that 0 < ε <

Aτp/2,

gn(±τ) ≥ Aτp − ε,

if n ≥ n0 for some finite n0 = n0(ε). Since gn(0) = 0 and gn is convex, it follows
that

gn(s) ≥ (Aτp − ε)|s|/τ ≥ 1
2Aτp−1|s|,

when |s| ≥ τ , for all n ≥ n0. Thus, (72) holds with κ = 1
2Aτp−1. Since τ can be

chosen arbitrarily large, so can κ .
We are now ready to establish Assumptions A3 and A4. Choose τ = τ(δ, ε) as

in (14). Then (14) and (72) imply

lim inf
n→∞ P

(
inf|s|≥τ

(
yn(s) − κ(1 − ε)|s|) ≥ 0

)
> 1 − δ,

and this proves Assumption A3 [with κ(1 − ε) in place of κ]. To establish As-
sumption A4, we notice that the convexity of gn and gn(0) = 0 imply that gn(s)/s

is increasing on R
+. With τ = τ(δ, ε) as above, we get

inf
τ≤s≤c

yn(s)

s
≤ (1 + ε) inf

τ≤s≤c

gn(s)

s
= (1 + ε)

gn(τ )

τ

and, similarly,

inf
s≥c

yn(s)

s
≥ (1 − ε) inf

s≥c

gn(s)

s
≥ (1 − ε)

gn(c)

c
≥ (1 − ε)

gn(τ )

τ
.

Choose M > 0 so that supn |gn(τ )| ≤ M . Then

inf
τ≤s≤c

yn(s)

s
− inf

s≥c

yn(s)

s
≤ 2ε

gn(τ )

τ
≤ 2εM

τ
.

Since ε can be made arbitrarily small, the first part of Assumption A4 is proved.
The second part is proved in the same way. �
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PROOF OF PROPOSITION 2. Define h(z) as in (17). Then since T (z)′(0) =
T (z)′(0−) if and only if h is a functional continuous at z, the set of discontinuities
of h is

Dh = {z :Tc(z)
′(0) > Tc(z)

′(0−)}
[recall that Tc(z)

′ denotes the right-hand derivative of Tc(z)]. Let

�c(a, ε) = {z : z(s) − z(0) − as ≥ ε|s| for all s ∈ [−c, c]}.
Then Dh ⊂ ⋃∞

i=1 �c(ai, εi) for some countable sequence {(ai, εi)}. Thus, (18) im-

plies P(Dh) = 0, and Assumptions A1 and A2 imply yn
L→ y. By assumption Dc

h

is separable and completely regular and, thus, the continuous mapping theorem (cf.

Theorem 4.12 in [38]) implies h(yn)
L→ h(y). �

We will next go through a sequence of results that were used in the proofs of
Theorems 1 and 2 and Corollary 1. We start by stating some elementary properties
of the functionals. A point t such that T (y)(t) = Tc(y)(t) we call a point of touch
of T (y) and Tc(y).

LEMMA A.1. Assume y ∈ D(R). If T (y) and Tc(y) have no points of touch
on the interval I ⊂ R, then T (y) is linear on I . If A ⊂ B are finite subsets of R

and y is bounded from above by M on A, and bounded from below by the same M

on Bc, then

inf
s∈B

|y(s) − T (y)(s)| = 0.(73)

For any interval O of R, and functions l, h on O such that l is linear and constant a

we have

TO(h + l) = TO(h) + l, TO(ah) = aTO(h),(74)

T is monotone, that is,

y1 ≤ y2 �⇒ T (y1) ≤ T (y2).(75)

If r is another function on O ,

sup
t∈O

|TO(r + h)(t) − TO(h)(t)| ≤ sup
t∈O

|r(t)|.(76)

PROOF. Assume T (y) and Tc(y) have no point of touch on I . Then since
Tc(y) is a minorant of y, T (y) and y also have no point of touch on I and, thus,
T (y) is linear on I .

To prove (73), suppose

inf
s∈B

|y(s) − T (y)(s)| = ε > 0.
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Then T (y) is a straight line l on B , and further, T (y) ≤ M − ε on A. Assume
w.l.o.g. that l′ ≥ 0 and let b be the left end point of B . Then l(s) ≤ M − ε on
(−∞, b] and, thus,

inf
s≤b

(
y(s) − l(s)

) ≥ ε > 0,

which is impossible by the construction of T (y).
Equations (74) and (75) are immediate, and (76) follows from these two, since

for arbitrary t ∈ O ,

TO(h(t)) − sup
s∈O

|r(s)| = TO

(
h(t) − sup

s∈O

|r(s)|
)

≤ TO

(
h(t) + r(t)

)
≤ TO

(
h(t) + sup

s∈O

|r(s)|
)

= TO(h(t)) + sup
s∈O

|r(s)|. �

We next state a local limit distribution theorem.

LEMMA A.2. Let t0 ∈ J be fixed, and assume Assumptions A1 and A2 hold.
Then

d−p
n [Tc,n(xn)(t0) − xn(t0)] L→ Tc[A|s|p + ṽ(s; t0)](0)

as n → ∞, and with A > 0 as in Assumption A2.

PROOF. A t varying in [t0 − cdn, t0 + cdn] can be written as t = t0 + sdn with
s ∈ [−c, c]. Using the representation (23) and (74), we have

d−p
n [Tc,n(xn)(t0) − xn(t0)] = Tc[gn(s) + ṽn(s; t0)](0).

From Assumption A2, and the fact that ṽn
L→ ṽ on D[−c, c], we get that gn(s) +

ṽn(s; t0) L→ A|s|p + ṽ(s; t0) on D[−c, c]. Equations (74) and the fact that T is a
continuous map from D[−c, c] to C[−c, c] [i.e., (76)] imply by the continuous
mapping theorem the statement of the theorem. �

Next we show that the difference between the localized functional Tc,n and the
global T goes to zero as c grows to infinity.

Let us consider a sequence of stochastic processes {yn}n≥1 in D(−∞,∞), for
which we will state a truncation result. First we need the following additional
assumption.
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ASSUMPTION A.1 (Compact boundedness). For every compact set K and
δ > 0, there is a finite M = M(K,δ) such that

lim sup
n→∞

P

(
sup
s∈K

|yn(s)| > M

)
< δ.

THEOREM A.1. Assume yn satisfies Assumptions A3, A4 and A.1. Then for
every finite interval I in R and ε > 0,

lim
c→∞ lim sup

n→∞
P

(
sup
I

|Tc(yn)
′(·) − T (yn)

′(·)| > ε

)
= 0,

lim
c→∞ lim sup

n→∞
P

(
sup
I

|Tc(yn)(·) − T (yn)(·)| > ε

)
= 0.

PROOF. Let δ > 0 be arbitrary and put K = [−1,1]. Define the sets

A(n, τ,M,κ) =
{

sup
s∈K

|yn(s)| < M

}
∩

{
inf|s|≥τ

(
yn(s) − κ|s|) > 0

}
.

If I is an arbitrary interval of [−c, c], define the sets

B(n, c, I, ε) =
{

sup
I

|Tc(yn)
′(t) − T (yn)

′(t)| < ε

}
.

From Lemma A.4, it follows that

B(n, c, {−τ }, ε) ∩ B(n, c, {τ }, ε) ⊂ B(n, c, I, ε)(77)

for any I ⊂ [−τ, τ ], if τ ≤ c.
We will show that, given any δ > 0, if c is large enough,

lim sup
n→∞

P
(
B(n, c, {τ }, ε)c ∩ A(n, τ,M,κ)

) ≤ δ,(78)

lim sup
n→∞

P
(
B(n, c, {−τ }, ε)c ∩ A(n, τ,M,κ)

) ≤ δ.(79)

Combining Assumptions A3 and A.1, we find that if M and τ are large enough
and κ > 0 is small enough, then

lim sup
n→∞

P
(
A(n, τ,M,κ)c

) ≤ δ.

Using (77), this will imply that, with a c large enough and for all large enough n,

P
(
B(n, c, I, ε)c

) ≤ P
(
A(n, τ,M,κ)c

)
+ P

(
B(n, c, {−τ }, ε)c ∩ A(n, τ,M,κ)

)
+ P

(
B(n, c, {τ }, ε)c ∩ A(n, τ,M,κ)

)
≤ 2δ + δ + δ,
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and since δ > 0 is arbitrary, the first assertion of the theorem will follow.
Without loss of generality, we assume that τ is chosen so large that τ ≥ M/κ .

Then, given A(n, s,M), we have, by our choice of τ ,

inf|s|≥τ
yn(s) ≥ M ≥ sup

s∈K

yn(s).

Let ζ(·; c, n, τ ) be the tangent line of Tc(yn)(s) at s = τ , with slope Tc(yn)
′(τ+).

Then exactly one of the following three events can take place. If c > τ , for all large
enough n, we have the following:

1. ζ(s; c, n, τ ) ≤ yn(s) for all s /∈ [−c, c];
2. ζ(s; c, n, τ )

{
> yn(s), for some s ≥ c,

≤ yn(s), for all s ≤ −c;

3. ζ(s; c, n, τ )

{
> yn(s), for some s ≤ −c,

≤ yn(s), for all s ≥ c.

In the case 1, Tc(yn)
′(τ ) = T (yn)

′(τ ) if c > τ .
From the assumptions defining case 2, we get, if c > τ and A(n, τ,M,κ) holds,

inf
s≥c

yn(s) − T (yn)(τ )

s − τ
≤ T (yn)

′(τ ) ≤ Tc(yn)
′(τ )

≤ inf
τ≤s≤c

yn(s) − Tc(yn)(τ )

s − τ
(80)

≤ inf
τ≤s≤c

yn(s) − T (yn)(τ )

s − τ

≤
∣∣∣∣yn(2τ) − T (yn)(τ )

τ

∣∣∣∣,
where the last inequality holds if c > 2τ . Assume that sup|s|≤2τ |yn(s)| ≤ M̃ ,

with M̃ chosen so large that this event has probability larger then 1 − δ/4, for
all large enough n. Then the right-hand side of (80) is bounded by 2M̃/τ . Thus,
T (yn)

′(τ ) = Tc(yn)
′(τ ), unless

inf
s≥c

yn(s) − T (yn)(τ )

s − τ
≤ 2M̃

τ
.(81)

But if (81) holds, we get from the first half of Assumption A4 (with ε/3 in place
of ε) that, with probability ≥ 1 − δ/4,

inf
τ̃≤s≤c

yn(s)

s
≤ inf

s≥c

yn(s)

s
+ ε

3
≤ 2

c − τ

c
inf
s≥c

yn(s)

s − τ
+ ε

3

≤ 2
c − τ

c

(
inf
s≥c

yn(s) − T (yn)(τ )

s − τ
+ M̃

c − τ

)
+ ε

3

≤ 2
c − τ

c

(
2M̃

τ
+ M̃

c − τ

)
+ ε

3
≤ 6M̃

τ
+ ε

3
,
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for c large enough. Using Assumption A4 again with ε/3 in place of ε and for
some large τ̃ > τ , this implies

|Tc(yn)
′(τ ) − T (yn)

′(τ )|
≤ inf

τ̃≤s≤c

yn(s) − Tc(yn)(τ )

s − τ
− inf

s≥τ̃

yn(s) − T (yn)(τ )

s − τ

≤ 2M̃

τ̃ − τ
+ inf

τ̃≤s≤c

yn(s)

s − τ
− inf

s≥τ̃

yn(s)

s − τ

≤ 2M̃

τ̃ − τ
+

(
inf

τ̃≤s≤c

yn(s)

s
− inf

s≥τ̃

yn(s)

s

)
+

(
inf

τ̃≤s≤c

yn(s)

s − τ
− inf

τ̃≤s≤c

yn(s)

s

)

≤ 2M̃

τ̃ − τ
+

(
inf

τ̃≤s≤c

yn(s)

s
− inf

s≥τ̃

yn(s)

s

)
+

(
τ̃

τ̃ − τ
− 1

)
inf

τ̃≤s≤c

yn(s)

s

≤ 2M̃

τ̃ − τ
+ ε

3
+ τ

τ̃ − τ

(
6M̃

τ
+ ε

3

)
≤ ε,

provided τ̃ is chosen large enough and then c is chosen so large that Assump-
tion A4 holds. Thus, given A(n, τ,M,κ) and case 2, B(n, c, {τ }, ε) holds unless
sup|s|≤2τ |yn(s)| > M̃ or if the first half of Assumption A4 fails, which is an event
with probability at most δ/4 + δ/4 = δ/2.

Given A(n, τ,M,κ) and case 3, a similar argument implies that B(n, c, {τ }, ε)
fails with probability at most δ/2. Combining cases 1–3, we deduce (78), and (79)
is proved in the same way.

To show the second part of the theorem, for I an arbitrary interval of (−c, c)

containing [−τ, τ ], define the sets

C(n, c, I, ε) =
{

sup
s∈I

|Tc(yn)(s) − T (yn)(s)| < ε

}
.

Let L = length(I ). Suppose that Assumptions A3 and A.1 hold (an event with
probability ≥ 1 − 2δ). We will apply (73) with A = K as in Assumption A.1 and
B = [−τ, τ ]. Assume also τ ≥ M/κ , with M,τ, κ as in Assumptions A3 and A.1.
Then there is an η ∈ [−τ, τ ] such that |yn(η)−T (yn)(η)| ≤ ε/2. Since T (yn)(η) ≤
Tc(yn)(η) ≤ yn(η), we get |Tc(yn)(η) − T (yn)(η)| ≤ ε/2. Thus,

P
(
C(n, c, I, ε)

) ≤ P
(
B(n, c, I, ε/2L)

) + 2δ,

and the second part of the theorem follows from the first. �

NOTE A.1. If T is replaced with the greatest convex minorant TO on an in-
terval O on R, Theorem A.1 trivially still holds. If T is replaced with TOn where
On is a sequence of intervals such that On ↑ R, the theorem still holds. In the lat-
ter case Assumptions A3, A4 and A.1 may be relaxed somewhat; all suprema and
infima with respect to s over R can be relaxed to suprema and infima with respect
to s over On.
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LEMMA A.3. Assume Assumptions A1, A2, A3 and A4 hold. Define An,	 =
[t0 − 	dn, t0 + 	dn]. Then for every finite 	, and every ε > 0,

lim
c→∞ lim inf

n→∞ P
[

sup
An,	

d−p
n |Tc,n(xn)(·) − TJ (xn)(·)| ≤ ε

]
= 1,

lim
c→∞ lim inf

n→∞ P
[

sup
An,	

d−p+1
n |Tc,n(xn)

′(·) − TJ (xn)
′(·)| ≤ ε

]
= 1.

PROOF. From (74) and (23), it follows that

sup
An,	

d−p
n |Tc,n(xn)(·) − TJ (xn)(·)| = sup

[−	,	]
∣∣Tc(yn)(·) − TJn,t0

(yn)(·)
∣∣

and

sup
An,	

d−p+1
n |Tc,n(xn)

′(·) − TJ (xn)
′(·)| = sup

[−	,	]
∣∣Tc(yn)

′(·) − TJn,t0
(yn)

′(·)∣∣,
with yn as defined in (13).

If J = R, we use Theorem A.1 with I = [−	,	], and if J �= R, we use
Note A.1 with On = Jn,t0 .

Assumptions A3 and A4 are satisfied because of Proposition 1, and Assump-
tion A.1 is implied by Assumption A1 and (12). Thus, all the regularity conditions
of Theorem A.1 are satisfied, and the lemma follows. �

LEMMA A.4. Suppose y ∈ D(R). Then the function t �→ Tc(y)′(t)−T (y)′(t)
is increasing on [−c, c].

PROOF. Let {Jk} be a sequence of open intervals in (−c, c) such that their
union covers (−c, c). Without loss of generality, we can assume that each Jk ei-
ther contains no points of touch of T (y) and Tc(y) or it contains exactly one simply
connected set �Jk

of points of touch (so then �Jk
consists of either a simple point

or it is an interval). If �Jk
is empty, by the first part of Lemma A.1, T (y) is lin-

ear on Jk , and since Tc(y) is convex, the assertion follows. If �Jk
is nonempty,

since Tc(y) ≥ T (y), for all t ∈ [−c, c], the assertion holds again, and the lemma is
proven. �

APPENDIX B: BOUND ON DRIFT OF PROCESS PART: PARTIAL SUMS

In this appendix we will establish Proposition 1 for the various applications of
Section 3. By Proposition 1, Assumptions A3 and A4 are implied by Assump-
tion A2 and the following:

ASSUMPTION B.1. Assume that for any ε, δ > 0, there exist κ = κ(ε, δ) > 0
and τ = τ(ε, δ) > 0 such that

sup
n

P

(
sup
|s|≥τ

ṽn(s; t)
κ|s| > ε

)
< δ.
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TABLE 2
Rescaled processes

Section ṽn(s; t) cn n̂

3.1 cnwn̂(s) d−2
n (nh)−1σn̂ ndn

3.2.1 cn
∫
(w̄n̂(s − u) − w̄n̂(−u))k′(−u)du d−2

n (nh)−1σn̂ nh

3.3.1 cn
∫
(wn̂(s − u) − wn̂(−u))k(u) du d−2

n (nh)−1σn̂ nh

3.3.2 cn
∫
(wn̂(−uh/dn + s) − wn̂(−uh/dn)k(u)) du d−1

n n−1σn̂ ndn

3.3.3 cn
∫

wn̂(u)
k(sdn/h−u)−k(−u)

dn/h
du (dnnh)−1σn̂ nh

In all the cases of Section 3, the rescaled process ṽn can be written as a function
of the partial sum process wn̂; see Table 2. (Note that in some of the cases in
Section 3, ṽn is a function of w̄n̂ instead of wn̂. However, since w̄n̂ is a smoothed
version of wn̂, the bounds on wn̂ established in this section are easily shown to
translate to bounds on w̄n̂.)

In all the above cases we have cn → c > 0 as n → ∞. Therefore, we start by
establishing the following:

LEMMA B.1. Suppose {εi}i≥1 is a stationary independent process, a weakly
dependent sequence satisfying Assumption A8 or A9 or a long range dependent
subordinated Gaussian sequence with parameters d and r , and β as in (36), and
assume that E(εi) = 0 and Var(εi) = σ 2 < ∞. Then for each ε, δ, κ > 0, there
exist τ = τ(ε, δ, κ) > 0 and m0 = m0(ε, δ, κ) < ∞ such that

sup
m≥m0

P

(
sup
|s|≥τ

|wn̂(s)|
κ|s| > ε

)
< δ.(82)

Observe that, with τ < ∞, ε > 0 and n̂ fixed, we have

P

(
sup
|s|≥τ

|wn̂(s)|
κ|s| > ε

)

≤ 2P

(
sup
s≥τ

|wn̂(s)|
κ|s| > ε

)
(83)

≤ 2
∑
si≥τ

P

(
|wn̂(si)| > ε

2
κsi

)

+ 2
∑
si≥τ

P

(
sup

si−1≤s≤si

|wn̂(s) − wn̂(si−1)| > ε

2
κsi−1

)
,

where · · · < s−1 < 0 < s1 < · · · is a partition of R. Note that we used the fact that
s �→ κ|s| is increasing for s > 0 in the second inequality in (83).
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LEMMA B.2. Under the assumptions in Lemma B.1,

P

(
sup

si≤s≤si+1

|wn̂(s) − wn̂(si)| > ε

2
κ|si |

)
≤ C	

2β
i

ε2s2
i

,

where 	i = si+1 −si , and β = 1/2 in the independent and weakly dependent cases
and 1/2 < β = 1 − rd/2 < 1 in the long range dependent case.

PROOF. Let Sk = ∑k
i=1 εi , ñ = n̂	i and assume that si ≤ s ≤ si+1. Then by

stationarity,

wn̂(s) − wn̂(si)
L= wn̂(s − si),

at least when si = d−1
n (ti − t0) for some observation point ti , which we assume

w.l.o.g. Thus,

P

(
sup

si≤s≤si+1

|wn̂(s) − wn̂(si+1)| > ε

2
κ|si |

)
= P

(
max

1≤k≤ñ
|Sk| > λσñ

)
,

with σ 2
ñ

= Var(Sñ) and

λ = ε

2

σn̂

σñ

κ|si |.
For independent data, equation (10.7) in [8] implies

P

(
max

1≤k≤ñ
|Sk| > λσñ

)
≤ C

λ2 .(84)

Since σñ/σm = 	
1/2
i for independent data, this proves the lemma in this case.

In the weakly dependent mixing case, we use the results of McLeish [36] to
prove (84). Thus, denoting ‖z‖q = (E|z|q)1/q for a random variable z, we call the
sequence {εi} a mixingale if

‖εn − E(εn|Fn+n̂)‖2 ≤ ψn̂+1cn,(85)

‖E(εn|Fn−n̂)‖2 ≤ ψn̂cn,(86)

with cn,ψn̂ finite and nonnegative constants and limn̂→∞ ψn̂ = 0. Since each εn is
Fn-measurable, (85) holds. Assuming that εi has finite variance, or in the case of
α-mixing, finite fourth moment, Lemma 2.1 in [36] implies

‖E(εn|Fn−n̂)‖2 ≤ 2φ(n̂)1/2‖εn‖2,

‖E(εn|Fn−n̂)‖2 ≤ 2
(√

2 + 1
)
α(n̂)1/4‖εn‖4.

Using Assumption A8 or A9, we will apply Theorem 1.6 in [36] with either ψn̂ =
2φ(n̂)1/2 and cn = ‖εn‖2 = σ or ψn̂ = 2(

√
2+1)α(n̂)1/4 and cn = ‖εn‖4. In either

case
∑∞

n̂=1 ψ2−ε
n̂

< ∞ for some ε > 0, which shows that ψ(n̂) is of size −1/2
with the McLeish [36] terminology (as noted on top of page 831 in [36]). Notice
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also that
∑n̂

i=1 c2
i = Cn̂ for some C > 0 and σ 2

n̂
∼ κ2n̂ according to (33). Thus,

Theorem 6.1 in [36] and Chebyshev’s inequality imply (84). Notice that σñ/σn̂ ∼
	

1/2
i as n̂, ñ → ∞.
In the long range dependent case we use Theorem 12.2 in [8]. Thus,

E(S2
ñ) ∼ η2

r l1(ñ)ñ2β,

with l1 as in (35), and according to de Haan [16], equation (12.42) in [8] is satisfied,
with

γ = 2,

α = 2β,

ul = (C1η
2
r l1(ñ))1/2β,

for some constant C1 > 0. Theorem 12.2 in [8] then implies that

P

(
max

1≤k≤ñ
|Sk| > λσñ

)
≤ K ′

2,2β

(λσñ)
2

(
ñ∑

i=1

ui

)2β

= C

λ2 ,(87)

with C = C1K
′
2,2β . From de Haan [16] it follows that

C−1
1 	

2β
i ≤ σ 2

ñ

σ 2
n̂

= l1(n̂	i)(n̂	i)
2β

l1(n̂)n̂2β
≤ C1	

2β
i ,

for all large enough n̂. Substituting for λ in (87) completes the proof. �

PROOF OF LEMMA B.1. From (83) and Lemma B.2, we have

P

(
sup
|s|≥τ

|wn̂(s)|
κ|s| > ε

)
≤ 8

∑
si>τ

Ew2
n̂
(si)

ε2κ2s2
i

+ 2
∑

si+1>τ

C	
2β
i

ε2s2
i

.

In order to take care of the slowly varying factor in Ew2
n̂
(si) for long range depen-

dent data, we write

Ew2
n̂(si) ≤ Cs

2β ′
i ,

where β ′ = 1/2 in the independent and weakly dependent case and β < β ′ < 1 in
the long range dependent case (this is no restriction if we assume 	i ≥ δ > 0 for

all i and some constant δ). Replacing 	
2β
i with 	

2β ′
i , we want to examine whether

the sums

∑
si>τ

s
2β ′
i

s2
i

= ∑
si>τ

s
2β ′−2
i ,

∑
si+1>τ

	
2β ′
i

s2
i
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tend to zero as τ → ∞. Clearly, choosing 	i = δ, the first sum is divergent. Instead
we let si = iρ with ρ > 1. Thus, the sums are of the order∑

i>τ 1/ρ

iρ(2β ′−2) ∼ (τ 1/ρ)2ρ(β ′−1)+1,

∑
i>τ 1/ρ−1

i2(ρ−1)β ′−2ρ ∼ (τ 1/ρ)2(ρ−1)β ′−2ρ+1.

The demand that both expressions should converge to zero as τ → ∞ implies that

−2(1 − β ′) + 1

ρ
< 0,

−2(1 − β ′) − 2β ′ − 1

ρ
< 0,

which shows that we should choose ρ > 1/2(1 − β ′), and this completes the
proof. �

Lemma B.1 immediately proves that ṽn(·; t) in Section 3.1 satisfies Assump-
tion B.1.

LEMMA B.3. Assume {wn} satisfies (82) in Lemma B.1 and is uniformly
bounded in probability on compact intervals. Let {ln} be a sequence of functions
with supp(ln) ⊂ [−K,K] for some K > 0 and all n, and with supn

∫ |ln(u)|du <

∞. Then

ṽn(s) =
∫ (

wn̂(s − u) − wn̂(−u)
)
ln(u) du

satisfies Assumption B.1.

PROOF. Since

|ṽn(s)| ≤
(

sup
u[−K,K]

|wm(s − u)| + sup
u∈[−K,K]

|wm(−u)|
)∫

|ln(u)|du,

we obtain

sup
|s|≥τ

|ṽn(s)|
κ|s| ≤ C

(
sup
|s|≥τ

sup
u∈[−K,K]

|wm(s − u)|
κ|s|

+ sup
|s|≥τ

sup
u∈[−K,K]

|wm(−u)|
κ|s|

)

≤ C′ sup
|s|≥τ

sup
u∈[−K,K]

|wm(s − u)|
κ|s − u| + C sup

u∈[−K,K]
|wm(−u)|

κ|τ |

= C′ sup
|s|≥τ−K

|wm(s)|
κ|s| + C sup

u∈[−K,K]
|wm(−u)|

κ|τ | ,
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with C = supn

∫ |ln(u)|du and C′ = C sup|s|≥τ supu∈[−K,K]
|s−u|

|s| . Finally, (82)
and the fact that {wm} is uniformly bounded in probability on compact intervals
finish the proof. �

Applying Lemma B.3 with ln(u) equal to cnk
′(−u), cnk(u) and cnk(dnu/h) ×

dn/h, respectively, establishes Assumption B.1 in Sections 3.2.1, 3.3.1 and 3.3.2.

LEMMA B.4. Assume {wn} satisfies (82) in Lemma B.1. Let l be a function
of bounded variation with support in [−1,1], and assume {ρn} is a sequence of
numbers such that limn→∞ ρn = 0. Then

ṽn(s) = wm ∗ l(sρn) − wm ∗ l(0)

ρn

=
∫

wm(−u)
l(sρn + u) − l(u)

ρn

du

satisfies Assumption B.1.

PROOF. We will give different bounds on ṽn(s) for small and large values
of |s|. Assume that |s| ≤ (τ + 1)ρ−1

n , where τ > 0 is a constant that will be chosen
below. Then

|vn(s)| ≤ |s| sup
|u|≤τ+2

|wm(u)|
∫ |l(sρn − u) − l(−u)|

|s|ρn

du

≤ |s| sup
|u|≤τ+2

|wm(u)|
∫

|l′(u)|du.

If instead |s| > (τ +1)ρ−1
n , choose arbitrary ε, δ, κ0 > 0. Then Lemma B.2 implies

the existence of τ = τ(ε, δ, κ0) > 0 such that, with probability larger than 1 − δ,
we have

|vn(s)| ≤ ρ−1
n

(∫
|wm(u)l(−u)|du + εκ0

∫
|u||l(sρn − u)|du

)

≤ ρ−1
n

∫
|l(u)|du

(
sup
|u|≤1

|wm(u)| + εκ0(|s|ρn + 1)

)

≤ |s|
∫

|l(u)|du

(sup|u|≤1 |wm(u)|
τ + 1

+ εκ0

(
1 + 1

1 + τ

))
.

Thus, with probability larger than 1 − δ,

sup
s �=0

|vn(s)|
κ0|s| ≤ max

(
sup

|u|≤τ+2
|wm(u)|

∫
|l′(u)|du,

∫
|l(u)|du

(sup|u|≤1 |wm(u)|
τ + 1

+ εκ0
τ + 2

τ + 1

))
.
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Since we assume that wm is bounded on compacta uniformly over m, with proba-
bility larger than 1 − 2δ, the right-hand side is bounded from above by a constant
C = C(ε, δ, κ0) > 0. Pick κ = κ0C/ε. Then

sup
|s|�=0

|vn(s)|
κ|s| ≤ ε

C
sup
s �=0

vn(s)

κ0|s| ≤ ε,

with a probability larger than 1 − 2δ. �

Applying Lemma B.4 with ρn = dn/h and l(n) equal to k(u) establishes As-
sumption B.1 in Section 3.3.3.

APPENDIX C: BOUND ON DRIFT OF PROCESS PART:
EMPIRICAL DISTRIBUTIONS

In this appendix we will establish Assumption B.1 for the various applica-
tions treated in Section 4. The processes ṽn(s; t0) are functions of wn,δn(s) :=
wn,δn(s; t0) for all cases treated in Section 4, as seen in Table 3.

In all the above cases we have cn → c > 0 as n → ∞.

LEMMA C.1. Assume {ti} is a stationary sequence with marginal distribu-
tion F , such that f (t0) exists, and δn ↓ 0, nδn ↑ ∞ as n → ∞. Then, if {ti} is an
independent or φ-mixing sequence with

∑∞
i=1 nφ(n)1/2 < ∞, there exists for each

ε, δ, κ > 0 a τ = τ(ε, δ, κ) > 0 such that

P

(
sup
|s|≥τ

|wn,δn(s; t0)|
κ|s| > ε

)
< δ,(88)

for all large enough n. If {ti} is a long range dependent subordinated Gaussian
sequence and satisfies the assumptions of Theorem 9, then for each ε, δ > 0, there
exist κ = κ(ε, δ) > 0 and τ = τ(ε, δ) > 0 such that (88) holds.

PROOF. We start by proving the lemma for long range dependent data. Then

wn,δn(s; t0) = ηr(t0 + sδn) − ηr(t0)

δn|η′
r (t0)|

(
1 + o(1)

)
σ−1

n

n∑
i=1

hr(ξi)

+ Cnδ
−1
n

(
Sn(t0 + sδn) − Sn(t0)

)
,

TABLE 3
Rescaled processes

Section ṽn(s; t) cn δn

4.1 cnwn,δn
(s) d−2

n (nh)−1σn,δn
dn

4.2.1 cn
∫
(wn,δn

(s − u) − wn,δn
(−u))k′(−u)du d−2

n (nh)−1σn,δn
h
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where Cn → r!/|ηr(t0)| as n → ∞. Clearly, ‖ηr‖∞ = supt |ηr(t)| < ∞. More-
over, since η′

r (t0) �= 0, there exists a δ̃ > 0 such that |ηr(t0 + s) − ηr(t0)|/|s| ≤
2|η′

r (t0)| whenever |s| ≤ δ̃. Thus,

|ηr(t0 + sδn) − ηr(t0)|
δn|η′

r (t0)|
≤ max

(
2,

2‖η′
r‖∞

δ̃|η′
r (t0)|

)
· |s|.

Further, since

σ−1
n

n∑
i=1

hr(ξi)
L→ zr,β

as n → ∞, and since from [12],

sup
s

δ−1
n |Sn(t0 + sδn) − Sn(t0)| a.s.→ 0

as n → ∞, the result follows.
In the independent and weakly dependent data case, we consider w.l.o.g. the

supremum for s ≥ τ only. Analogously to (83), we have

P

(
sup
s≥τ

|wn,δn(s)|
κ|s| > ε

)

≤ ∑
si≥τ

P

(∣∣wn,δn(si)
∣∣ >

ε

2
κsi

)

+ ∑
si≥τ

P

(
sup

si−1≤s≤si

∣∣wn,δn(s) − wn,δn(si−1)
∣∣ >

ε

2
κsi−1

)
,

where 0 < s1 < s2 < · · · is an increasing sequence. Assume first that F ∼ U(0,1).
To proceed further, we need the following lemma, proved in [3].

LEMMA C.2. Suppose {ti} is an independent or weakly dependent sequence
of random variables, satisfying the assumptions of Lemma C.1. Then

P

(
sup

si≤s≤si+1

∣∣wn,δn(s) − wn,δn(si)
∣∣ ≥ λ

)
≤ K	2

i

(
1

λ4 + 1

λ5

)

for all λ > 0 if 	i = si+1 − si ≥ 1, with K a constant depending only
on {φn}.

The next part of the proof proceeds similarly to the proof of Lemma B.2, so we
highlight only the differences. Let gs be defined as in the proof of Lemma B.1.
Then from [8], page 172, we get

E
(
w2

n,δn

) ≤ σ−2
n,δn

(
1 + 4

∞∑
i=1

φ
1/2
i

)
nE

(
gs(t1) − g0(t1)

)2

≤ 2

(
1 + 4

∞∑
i=1

φ
1/2
i

)
s =: Cs.
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By Lemma C.2 and Chebyshev’s inequality, the lemma is proved for F ∼ U(0,1)

if we can prove that the sums

∑
si≥τ

si

s2
i

,
∑
s2
i ≥τ

	2
i

s4
i

and
∑
s2
i ≥τ

	2
i

s5
i

tend to zero as τ → ∞. But this is true if si = iρ for any ρ > 1.
Consider again a general F with f (t0) > 0. Let wU

n,δn
and σU

n,δn
be the quantities

corresponding to wn,δn and σn,δn when F ∼ U(0,1). Then

wn,δn(s; t0) = wU

n,δ̂n

(
ŝ;F(t0)

)
,(89)

where δ̂n = F(t0 +δn)−F(t0) and ŝ = (F (t0 +sδn)−F(t0))/(F (t0 +δn)−F(t0)).
Choose δ̂ > 0 such that f (t0)/2 < |F(t0 + sδn) − F(t0)|/|s| < 2f (t0) if |s| ≤ δ̂.
Then, since 0 ≤ F(t0 + sδn) − F(t0) ≤ 1, it follows that

sup
s �=0

ŝ

s
≤ max

(
4,

2

δ̂f (t0)

)
(90)

for all n so large that δn ≤ δ̂. Now (89), (90) and the proof of (88) when F ∼
U(0,1) finish the proof of (88) for general F . �

To establish Assumption B.1 for the various choices of ṽn(·; t0) in the table in
this appendix, we proceed as in Appendix B, making use of Lemmas B.3 and C.1.

Acknowledgments. We would like to thank an Associate Editor and referee
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