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MONOTONE REGRESSION AND DENSITY FUNCTION
ESTIMATION AT A POINT OF DISCONTINUITY

D. ANEVSKIa* and O. HÖSSJERa

aCentre for Mathematical Sciences, Lund University, P.O. Box 118, Se22100 Lund, Sweden.
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Pointwise limit distribution results are given for the isotonic regression estimator at a point of discontinuity. The
cases treated are independent data, f- and a-mixing data and subordinated Gaussian long range dependent data.
Pointwise limit results for the nonparametric maximum likelihood estimator of a monotone density are given at a
point of discontinuity, for independent data. The limit distributions are non-standard and differ from the ones
obtained for differentiable regression and density functions.
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Monotone
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1 INTRODUCTION

This paper deals with two nonparametric estimation problems: isotonic regression and non-

parametric maximum likelihood estimation of a monotone density. We consider a regression

model

yi ¼ m tið Þ þ Ei; i ¼ 1; . . . ; n; ð1Þ

with m : ð0; 1Þ 7!R increasing, ti ¼ i=n equidistant design points and fEig a stationary se-

quence of error terms with EðEiÞ ¼ 0 and VarðEiÞ ¼ s2. Define the partial sum process

xn ¼ linear interpolation of ti þ
1

2n
;
Xi

j¼1

yj

 !n

i¼0

( )
; ð2Þ
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where t0 ¼ 0 is assumed. The isotonic regression estimator

m̂m ¼ argmin
Xn

i¼1

yi 	 v tið Þð Þ
2: v increasing on 0; 1ð Þ

( )
ð3Þ

of Brunk [2] is not uniquely defined. However, if we require v to be piecewise constant on all

intervals ðti 	 1=ð2nÞ; ti þ 1=ð2nÞÞ, the solution is given by

m̂m ¼ T 0;1½ � xnð Þ
0;

where TJ maps a function defined on an interval J to its greatest convex minorant,

TJ xð Þ ¼ supfv; v : J 7!R; v convex and v  xg:

Note that we use the convention T ðxÞ0ðtÞ ¼ T ðxÞ0ðtþÞ:
Asymptotic results for m̂mðt0Þ at a fixed interior point to 2 ð0; 1Þ were considered by Brunk

in [3] when m0ðt0Þ > 0 and fEig are independent. Then Wright [13] (cf. also Leurgans [9])

generalized Brunk’s results to the case

m tð Þ ¼ m t0ð Þ þ a sgn t 	 t0ð Þjt 	 t0j
p	1 þ o jt 	 t0j

p	1
� �

ð4Þ

as t ! t0 and 1 < p < 1. A special case of Theorem 1 in Wright [13] is

Cn p	1ð Þ= 2p	1ð Þ m̂m t0ð Þ 	 m t0ð Þð Þ !
L

T B sð Þ þ jsjpð Þ
0 0ð Þ; ð5Þ

with C ¼ ðpðs2p	2aÞ	1
Þ
1=ð2p	1Þ, T ¼ TR and B a twosided standard Brownian motion. Thus

the local behaviour of m around t0 (i.e. the choice of p) influences both the convergence rate

and the limit distribution. The case p ¼ 2 corresponds to the classical result of Brunk [3].

Moreover, when p ¼ 2, the right hand side of (5) can be replaced by

2 argmins2R s2 þ B sð Þ
� �

;

where we use the convention that argmins2RðxðsÞÞ is the infimum of all points in R at which

the minimum of x is attained. For p ¼ 1 the convergence rate is n	1=2, cf. Parsons [10],

Groeneboom and Pyke [8] and Dykstra and Carolan [4].

In Anevski and Hössjer [1], a general asymptotic scheme for isotonic functional estimation

was treated. Theorem 3 in Anevski and Hössjer [1] admits generalization of (5) to weakly

dependent mixing data as well as long range dependent subordinated Gaussian data. In

fact, a somewhat weaker formulation of (4), which suffices for (5) to be deduced as a special

case of Theorem 3 in Anevski and Hössjer [1], is

d	p M t0 þ sdð Þ 	 M t0ð Þ 	 m t0ð Þsdð Þ ! Ajsjp; ð6Þ

uniformly for s on compact sets, as d ! 0, with A ¼ a=p and p > 1, where

M ðtÞ ¼
Ð t

0
mðuÞ du is the primitive function of m. One can show that the fraction of data

that m̂m uses is of the order

dn ¼ n	1= 2p	1ð Þ; ð7Þ
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D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
2:

01
 1

5 
Ja

nu
ar

y 
20

16
 



in the sense that data in a shrinking neighbourhood of t0 with length proportional to

n	1=ð2p	1Þ determines the limit distribution. If m grows faster locally around t0, a smaller pro-

portion of data is used in determining the large sample distributional properties of m̂mðt0Þ; this

can be interpreted as dn ¼ dnðt0Þ being a spatially adaptive bandwidth and m̂m smooth less at

points of large increase of m.

In the present paper we extend the results in Anevski and Hössjer [1] to cover the case

when m is not continuous at the point t0, i.e. when mðt0	Þ;mðt0þÞ both exist and differ

(m is monotone and thus right and left hand limits exist at each point); this is the case

p ¼ 1 with 2A ¼ mðt0þÞ 	 mðt0	Þ in (6). Since it is of interest to see how m̂m is influenced

by the discontinuity at t0 for points close to t0, we will study the estimate on a local scale, i.e.

we study m̂mðt0 þ s0n	1Þ for a fixed s0 2 R (note that formally dn ¼ n	1 in (7) if p ¼ 1).

Suppose now that ftig
n
i¼1 is a stationary sequence of random variables with marginal dis-

tribution function F and density f ¼ F 0. We assume that f is supported on [0, 1] and increas-

ing. In Grenander [6] it was first shown that for independent data, the nonparametric

maximum likelihood estimator (NPMLE)

f̂f ¼ argmax
Yn

i¼1

v tið Þ : v increasing; v � 0;

ð1

0

v tð Þ dt ¼ 1

( )
;

is given by f̂f ¼ T½0;1�ðFnÞ
0 and

Fn tð Þ ¼
1

n

Xn

i¼1

1ftitg ð8Þ

the empirical distribution function formed by ftig. We are not aware of any limit distribution

results for T½0;1�ðFnÞ
0 in the i.i.d. data case when the restriction on F is

d	p F t0 þ sdð Þ 	 F t0ð Þ 	 f t0ð Þsdð Þ ! Ajsjp; ð9Þ

as d ! 0 when 1 < p < 1, other then the classical case p ¼ 2 treated in Prakasa Rao [12]

and Groeneboom [7]. However, it can be deduced from Theorem 2.1 in Leurgans [9] and

Section 3 and 5 in Anevski and Hössjer [1] that if 1 < p < 1,

Cn p	1ð Þ= 2p	1ð Þ f̂f t0ð Þ 	 f t0ð Þ

� �
!L TR jsjp þ B sð Þð Þ

0 0ð Þ; ð10Þ

as n ! 1, with t0 > 0 fixed and C ¼ A	1=ð2p	lÞf ðt0Þ
	ðp	1Þ=ð2p	1Þ. In particular, when p ¼ 2

and A ¼ f 0ðt0Þ=2, (10) reduces to the result obtained in Prakasa Rao [12].

In this paper, we consider the case when f ðt0	Þ and f ðt0þÞ both exist and are different i.e.

p ¼ 1 in (9). It is of interest to note that T ðFnÞ
0 is the NPMLE of a monotone density when

data are i.i.d. no matter what the restrictions on the unknown density f are, and thus also in

the present case.

When p ¼ 1, we obtain ‘‘convergence rate’’ n0 ¼ 1 in (5) and (10), i.e. m̂mðt0Þ and f̂f ðt0Þ are

not consistent. Further, the Brownian motion must be replaced by other stochastic processes.

The reason is that the effective number ndn of data points used for computing m̂mðt0Þ and f̂f ðt0Þ

does not increase with n.

The article is organized as follows: In Section 2 we state the main results of the paper i.e.

the pointwise, at a point of discontinuity, limit distribution results for the isotonic regression

function estimate of an increasing regression function (Theorem 1) and for the NPMLE of an
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increasing density (Theorem 2), respectively. In Section 3 we give a unified derivation of the

limit distributions of T ðxnÞ and T ðxnÞ
0 for a large class of stochastic processes xn, which

equals Fn for density estimation and the partial sum process, defined in (2), for regression.

These results are next applied to the proofs of Theorem 1 and 2. Finally we have collected

some technical results in the appendix.

The results in this paper depend on a truncation result, Theorem 1 in Anevski and Hössjer

[1]. When referring to assumptions in Anevski and Hössjer [1], we denote e.g. A1 in Anevski

and Hössjer [1] as B1.

2 MAIN RESULTS

In this section we give pointwise limit distribution results for the isotonic regression estima-

tor and its primitive function at a point of discontinuity and under various dependence as-

sumptions on the error terms. Furthermore we state the pointwise limit distribution for the

NPMLE of a monotone density at a point of discontinuity in the independent data case.

For I � R an arbitrary interval, define DðI Þ as the set of real valued functions on I that are

right continuous with left hand limits. We equip DðI Þ with the supnorm metric when I is

compact, and Dð	1;1Þ with the supnorm metric on compact intervals. To avoid measur-

ability problems for processes in Dð	1;1Þ, we use the s-algebra generated by the open

balls in this metric, cf. Pollard [11].

We will give a somewhat unified approach to these estimation problems and thus we write

either of the partial sum process defined in (2) and the empirical distribution function defined

in (8) as

xn tð Þ ¼ xb;n tð Þ þ vn tð Þ; t 2 J ð11Þ

where J is the domain of xn, and xn; vn 2 DðJ Þ. Here vn is a sequence of stochastic processes,

and xb;n is a sequence of deterministic functions. Furthermore, given a sequence dn # 0, we

will rescale the stochastic part of xn locally around an interior point t0 of J , according to

~vvn sð Þ ¼ ~vvn s; t0; s0ð Þ ¼ d	1
n vn t0 þ s þ s0ð Þdnð Þ 	 vn t0 þ s0dnð Þð Þ; ð12Þ

and the deterministic part of xn according to

gn sð Þ ¼ d	1
n xb;n t0 þ s þ s0ð Þdnð Þ 	 xb;n t0 þ s0dnð Þ 	 sdn �xx

0
b;n t0ð Þ

� �
; ð13Þ

for s0 fixed and s þ s0 2 Jn;t0 ¼ d	1
n ðJ 	 t0Þ, and with �xx0b;nðt0Þ ¼ ðx0b;nðt0	Þ þ x0b;nðt0þÞÞ=2.

Consider again the regression model (1). The partial sum process defined in (2) can also be

written

xn tð Þ ¼

ðt

1= 2nð Þ

~yyn uð Þ du ¼ xb;n tð Þ þ vn tð Þ;
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D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
2:

01
 1

5 
Ja

nu
ar

y 
20

16
 



with

~yyn tð Þ ¼ yn; t 2 ti 	
1

2n
; ti þ

1

2n

 �
; i ¼ 1; . . . ; n;

xb;n tð Þ ¼

ðt

1= 2nð Þ

~mmn uð Þ du;

vn tð Þ ¼

ðt

1= 2nð Þ

~EEn uð Þ du;

and ~mmn, ~EEn defined as ~yyn with fyig
n
i¼1 replaced by fmðtiÞg

n
i¼1 and fEig

n
i¼1 respectively. Notice

that xb;n is convex, since m is increasing.

As noted in Section 1, T½0;1�ðxnÞ
0 is the solution (3) to the isotonic regression problem.

Classically pointwise limit distribution results have been shown at points when m is contin-

uous, such as in Eq. (4). Instead, we will assume:

A1 The regression function m is right continuous and increasing on [0,1], and t0 is a fixed

point in (0,1) such that

m t0þð Þ 	 m t0	ð Þ ¼ 2A > 0:

The behaviour of m̂m close to t0 depends critically on the positioning of the surrounding design

points ti < t0  tiþ1. Since nðti 	 t0Þ is not convergent, we will not center our local scale at

t0 þ s0n	1, but rather at ~tt0 þ s0n	1, where

~tt0 ¼ ~tt0 nð Þ ¼ maxfti : ti < t0g þ
1

2n
:

Thus the rescaled deterministic part of xn is

gn sð Þ ¼ d	1
n xb;n ~tt0 þ s þ s0ð Þdn

� �
	 xb;n ~tt0 þ s0dn

� �
	 sdn �xx

0
b;n

~tt0
� �� �

¼

ðs

0

~mmn ~tt0 þ u þ s0ð Þdn

� �
	 ~mmn

� �
du

with �mmn ¼ ðmð~tt0 	 1=ð2nÞÞ þ mð~tt0 þ 1=ð2nÞÞÞ=2, and the rescaled stochastic part

~vvn sð Þ ¼ d	1
n vn ~tt0 þ s þ s0ð Þdn

� �
	 vn ~tt0 þ s0dn

� �� �
¼

ðs

0

~EEn ~tt0 þ u þ s0ð Þdn

� �
du:

Assume we can extend the error terms to a doubly infinite stationary sequence fEig
1
i¼	1.

Then with

~EE1 tð Þ ¼ Ei; t 2 i 	
1

2
; i þ

1

2

 �
; i 2 Z;
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our discrete analogue of the Brownian motion becomes

Z tð Þ ¼
1

s

ðt

0

~EE1 u þ
1

2

 �
du;

which is defined by linear interpolation between the points ði;	S0
j¼iEj=sÞi<0 and

ði;Si
j¼1Ej=sÞi�0. Then if dn ¼ n	1 it is straightforward to check that

~vvn sð Þ ¼

ðs

0

~EE1 n~tt0 þ u þ s0

� �
du ¼

L
ðs

0

~EE1

1

2
þ u þ s0

 �
du

¼ s Z s þ s0ð Þ 	 Z s0ð Þð Þ ¼: ~vv sð Þ: ð14Þ

Define �mm ¼ ðmðt0	Þ þ mðt0þÞÞ=2. In order to be able to state the limit results more com-

pactly, define the function

rB;C sð Þ ¼
Bs; s > 0;

	Cs; s < 0;

�

for B;C > 0, and denote rB ¼ rB;B. The next theorem gives the limit distribution of the iso-

tonic regression estimate and of it’s primitive function, for an increasing regression function

satisfying the discontinuity condition A1.

THEOREM 1 Assume m satisfies A1, fEig are independent and identically distributed, and

EðEiÞ ¼ 0; s2 ¼ VarðEiÞ < 1. Then the solution to the isotonic regression problem

m̂m ¼ TðxnÞ0 satisfies

P m̂m ~tt0 þ s0n	1
� �

	 ~mm < a
� �

! P argmins2R rðA	aÞ=s;ðAþaÞ=s s þ s0ð Þ þ Z s þ s0ð Þ

h i
> 0

� �
;

as n ! 1, for each jaj < A such that the limit is continuous (viewed as a function of a).

Further

n

ð~tt0þs0n	1

0

m̂m uð Þ du 	 xn ~tt0 þ s0n	1
� � !

!
L

T A js þ s0j 	 js0jð Þð Þ þ s Z s þ s0ð Þ 	 Z s0ð Þð Þ½ � 0ð Þ;

as n ! 1, provided jaj < A.

When fEig are dependent, ~vvn is still given by (14), although Zð�Þ has a different distribution

then. It is possible to establish Theorem 3 for weakly dependent and subordinated Gaussian

long range dependent data as well. The main technical difficulty is to verify Eq. (29) in the

Appendix, which is done in Appendix II of Anevski and Hössjer [1].

Next we will treat monotone density estimation. Assume that ftig
1
i¼	1 is an i.i.d. sequence

of random variables with distribution function F. For the density function f ¼ F 0 we assume

the following:

284 D. ANEVSKI AND O. HÖSSJER
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A2 The density function f is increasing on [0,1], and t0 is a fixed point in (0,1) such that

f t0þð Þ 	 f t0	ð Þ ¼ 2A > 0:

As mentioned in Section 1, the NPMLE is f̂f ¼ T ðFnÞ
0, where Fn is the empirical distribution

function defined in (8). Thus we put xn ¼ Fn. Further, assume xb;n ¼ xb ¼ F, so that

vn tð Þ ¼ Fn tð Þ 	 F tð Þ ¼
1

n

Xn

i¼1

1ftitg 	 F tð Þ
� �

;

is the centered empirical process.

Notice that with dn ¼ n	1, the rescaled stochastic part is

~vvn sð Þ ¼
Xn

i¼1

1ftit0þ sþs0ð Þn	1g 	 1ftit0þs0n	1g

�
	F t0 þ s þ s0ð Þn	1

� �
þ F t0 þ s0n	1

� ��
:

Let s 7!N ðsÞ be a twosided Poisson process with constant intensity 1, i.e. if fYig
1
	1 are i.i.d.

Exp(1) random variables we put Ti ¼ Si
j¼1Yj if i � 0, Ti ¼ 	S1

j¼I Yj if i < 0 and

N tð Þ ¼
S1

i¼11fTitg; t � 0;
	S1

i¼11fT	i>tg; t < 0:

�

Define the martingale

N0 sð Þ ¼ N sð Þ 	 s

as the centered version of N ð�Þ. Then from e.g. Corollary 2.2 in Einmahl [5], it follows that

~vvn sð Þ !
L

~vv sð Þ :¼ N0

ðs

0

l uð Þ du

 �
; ð15Þ

as n ! 1, where

l uð Þ ¼
f t0þð Þ; u > 	s0;
f t0	ð Þ; u < 	s0:

�

Let �ff ¼ ðf ðt0	Þ þ f ðt0þÞÞ=2. The next result gives the limit distribution for the NPMLE,

and it’s primitive function, of an increasing density satisfying the discontinuity condition A2.

THEOREM 2 Let ftigi	1 be an i.i.d. sequence with a marginal density function f satisfying

A2. Then if FnðtÞ is the empirical distribution function and f̂fnðtÞ ¼ TðFnÞ0ðtÞ,

Pf f̂fn t0 þ s0n	1
� �

	 �ff < ag

! Pfargmins2R rA	a;Aþa s þ s0ð Þ þ ~vv sð Þ
� �

> 0g;
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as n ! 1, for each jaj < A such that the limit is continuous (viewed as a function of a).

Further

n

ðt0þs0n	1

0

f̂fn uð Þ du 	 Fn t0 þ s0n	1
� � !

!L T A js þ s0j 	 js0jð Þ þ ~vv sð Þð Þ 0ð Þ;

as n ! 1, for each s0 2 R with ~vv defined in (15).

Theorem 2 can also be established for weakly dependent data, since the local Poisson beha-

viour of Fn (on a scale n	1) can be proved in this case as well.

We would here shortly like to discuss why the discontinuities of the target functions (m and

f) give essentially more different limit results in Theorems 1 and 2 than in the regular cases.

For instance for the regression problem, in the regular case (i.e. when the primitive function

of the target function satisfies (6) with p > 1) the isotonic functional estimation m̂m uses data

in a shrinking neighbourhood of t0 of length dn ¼ n	1=ð2p	1Þ, as noted in the introduction, and

which follows from Lemma 2 in Section 3; this means that m̂m is a local estimator analogously

to a kernel regression estimator. Thus in the regular case, we have dn � n	1 and the number

of data in this shrinking interval converges to 1. Since m̂m, for a finite n, is a (nonlinear) func-

tional of the partial sum process, it will follow that the limit functional in the regular case is a

nonlinear functional of a Brownian motion (for the independent data case), cf. Eq. (5). As a

contrast, in the discontinuous case, i.e. when p ¼ 1 and thus dn ¼ n	1, the amount of data in

the shrinking interval does not increase; thus the functional central limit theorem is not in

force to obtain a Brownian motion as a limit of the partial sum process and the limit random

variable will not be a functional of a Brownian motion, cf. Theorem 4 of Section 3. The fact

that m̂m (and f̂f ) is not consistent is also explained by the fact that the amount of data does not

increase in the shrinking interval determining the limit distribution of the estimator. Further-

more the deterministic part rðA	aÞ=s;ðAþaÞ=s (and rA	a;Aþa) in the limit random variable is sim-

ply the limit of the rescaled deterministic part gn (on the same scale as the rescaled process

part ~vvn), and the derivative of r is essentially the (rescaled) target function, which explains

the form of the deterministic part r.

3 DERIVATION OF LIMIT DISTRIBUTIONS

In this section we prove limit distributions for T ðxnÞ and T ðxnÞ
0 for processes xn satisfying

(11) at a point t0 of discontinuity of xb;n. The main results (Theorems 3 and 4) are obtained

under somewhat more general assumptions than strictly necessary for the proof of Theorems

1 and 2, to allow for possible future work on e.g. other forms of dependence. Next we apply

the obtained results to the proofs of Theorems 1 and 2, i.e. to the cases xn equal to the partial

sum process and xn equal to the empirical distribution function, respectively.

Denote Tc ¼ T½	c;c� and T ¼ TR. The next two assumptions are the main restrictions on the

stochastic and deterministic part of xn respectively, and are sufficient to imply local limit dis-

tribution results for T ðxnÞ and T ðxnÞ
0.
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A3 [Weak convergence of rescaled stochastic term] Assume there exists a stochastic

process ~vvð�Þ ¼ ~vvð�; t0; s0Þ 6¼ 0 such that

~vvn sð Þ !
L

~vv sð Þ;

on Dð	1;1Þ as n ! 1.

The limit process ~vv corresponds e.g. to the increment in the interpolated random walk

sðZðs þ s0Þ 	 Zðs0ÞÞ in (14), for the regression problem, or to the centered nonhomogenous

Poisson process N0

Ð s

0
lðuÞ du

� �
in (15), for the density estimation problem.

A4 [Local uniform convergence of rescaled bias term] Assume that fxb;ngn�1 are convex

functions. Assume that, with gn defined in (13), for some A > 0 and each c > 0,

sup
jsjc

jgn sð Þ 	 A js þ s0j 	 js0jð Þj ! 0; ð16Þ

as n ! 1.

We remark that for most of our applications there exists a function xb such that

xb tð Þ ¼ lim
t!1

xb;n tð Þ; t 2 J ;

and

x0b t0þð Þ 	 x0b t0	ð Þ ¼ 2A > 0;

(cf. A1 and A2). To see the connection with (16), assume for simplicity that xb;n ¼ xb. Then

gn sð Þ ¼ d	1
n

ðt0þ sþs0ð Þdn

t0þs0dn

x0b uð Þ 	 �xx0b t0ð Þ
� �

du

¼ d	1
n

ðt0þ sþs0ð Þdn

t0þs0dn

A sgn u 	 t0ð Þ du þ o 1ð Þ

¼ A js þ s0j 	 js0jð Þ þ o 1ð Þ;

as n ! 1.

The next lemma is the local limit distribution result for T ðxnÞ. Define the greatest convex

minorant on a shrinking interval Tc;n ¼ T½t0þðs0	cÞdn;t0þðs0þcÞdn�.

LEMMA 1 Let t0 2 J be fixed, and assume that A3 and A4 hold. Then for each c > 0

d	1
n Tc;n xnð Þ t0 þ s0dnð Þ 	 xn t0 þ s0dnð Þ
� �
!L Tc A js þ s0j 	 js0jð Þ þ ~vv sð Þ½ � 0ð Þ;

as n ! 1, with A as in A4.

Lemma 1 is proved in the Appendix. The next restriction on the tail behaviour of ~vvn is

assumption B6 in Anevski and Hössjer [1]: it is used in Lemma 2 below to show that the

MONOTONE REGRESSION AND DENSITY FUNCTION ESTIMATION 287

D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
2:

01
 1

5 
Ja

nu
ar

y 
20

16
 



local limit distribution result implies the global limit distribution, i.e. that truncation does not

matter.

A5 [Tail behaviour of rescaled process] The function

yn sð Þ ¼ gn sð Þ þ ~vvn sð Þ; ð17Þ

satisfies: given d > 0 there are finite t ¼ tðdÞ > 0 and k ¼ kðdÞ > 0 such that

lim inf
n!1

P inf
jsj>t

yn sð Þ 	 kjsjð Þ > 0

 �
> 1 	 d;

and given E; d; ~tt > 0

lim sup
n!1

P inf
~ttsc

yn sð Þ

s
	 inf

~tts

yn sð Þ

s
> E

 �
< d;

lim sup
n!1

P inf
	cs	~tt

yn sð Þ

s
	 inf

s	~tt

yn sð Þ

s
< 	E

 �
< d;

for all large enough c > 0.

The following result uses Theorem 1 in Anevski and Hössjer [1] to show that the difference

between the local map Tc;n and global map TJ diminishes as first n and then c grows.

LEMMA 2 Assume that A3, A4 and A5 hold. Define An;D ¼ ½t0 � Ddn; t0 þ Ddn�. Then for

each finite D > 0 and E > 0

lim
c!1

lim
n!1

P sup
An;D

d	1
n jTc;n xnð Þ �ð Þ 	 TJ xnð Þ �ð Þj  E

" #
¼ 1;

lim
c!1

lim
n!1

P sup
An;D

jTc;n xnð Þ
0
�ð Þ 	 TJ xnð Þ

0
�ð Þj  E

" #
¼ 1:

Lemma 2 is proved in the Appendix. The next assumption is the analog of assumption A5 for

the limit process, (cf. Proposition 1 in the Appendix).

A6 [Tail behaviour of limit process] For each E; d > 0 there is a t ¼ tðE; dÞ > 0, so that

P sup
jsj�t

j~vv sð Þj

jsj
> E

 !
 d:

Finally, we arrive at the following global limit distribution result for T ðxnÞ.
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THEOREM 3 Let t0 and s0 be fixed and suppose A3–A6 hold. Then

d	1
n TJ xnð Þ t0 þ s0dnð Þ 	 xn t0 þ s0dnð Þ½ �

!L T A js þ s0j 	 js0jð Þ þ ~vv sð Þ½ � 0ð Þ; ð18Þ

with A > 0 as in A4; as n ! 1.

Proof Clearly

d	1
n TJ xnð Þ t0 þ s0dnð Þ 	 xn t0 þ s0dnð Þð Þ

¼ d	1
n TJ xnð Þ t0 þ s0dnð Þ 	 Tc;n xnð Þ t0 þ s0dnð Þ
� �

þ d	1
n Tc;n xnð Þ t0 þ s0dnð Þ 	 xn t0 þ s0dnð Þ
� �

:

Lemma 2 implies

d	1
n Tc;n xnð Þ t0 þ s0dnð Þ 	 TJ xnð Þ t0 þ s0dnð Þ
� �

!
P

0;

if we let n ! 1. Lemma 1 implies that

d	1
n Tc;n xnð Þ t0 þ s0dnð Þ 	 xn t0 þ s0dnð Þ
� �
!L Tc A js þ s0j 	 js0jð Þ þ ~vv sð Þ½ � 0ð Þ

as n ! 1. Then use Theorem 1 in Anevski and Hössjer [1] with ynðsÞ ¼ Aðjs þ s0j 	

js0jÞ þ ~vvðsÞ, to deduce

Tc A js þ s0j 	 js0jð Þ þ ~vv sð Þð Þ 0ð Þ 	 T A js þ s0j 	 js0jð Þ þ ~vv sð Þð Þ 0ð Þ!
P

0

as c ! 1. Notice that B1 and B2 of Theorem 1 in Anevski and Hössjer [1] follow from A6

and the convexity of Aðjs þ s0j 	 js0jÞ as in the proof of Proposition 1 in Anevski and

Hössjer [1] and B3 follows from A3 and (16). The proof is completed by applying Slutsky’s

theorem, first letting n ! 1 and then c ! 1. u

The next condition replaces an assumption on the continuity of the functional

x 7!TcðxÞ
0
ð0Þ. This functional is not continuous on all of Dð	1;1Þ, cf. Proposition 2

and Notes 2 and 3 in Anevski and Hössjer [1], and thus we cannot use the continuous map-

ping theorem together with A3 and A4 to obtain limit results for T ðxnÞ
0.

A7 Define yn as in (17). Then

Tc ynð Þ
0 0ð Þ !L Tc Ajs þ s0j þ ~vv sð Þð Þ

0 0ð Þ

as n ! 1 for each c > 0.

The next result is the global limit distribution result for T ðxnÞ
0.

MONOTONE REGRESSION AND DENSITY FUNCTION ESTIMATION 289

D
ow

nl
oa

de
d 

by
 [

St
oc

kh
ol

m
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
2:

01
 1

5 
Ja

nu
ar

y 
20

16
 



THEOREM 4 Assume A3–A7 hold. Then

T xnð Þ
0 t0 þ s0dnð Þ 	 �xx0b;n t0ð Þ !L T Ajs þ s0j þ ~vv sð Þ½ �

0 0ð Þ; ð19Þ

as n ! 1 with A and �xx0b;nðt0Þ as in A2. If further jaj < A and

P T Ajs þ s0j þ ~vv sð Þ½ �
0 0ð Þ ¼ a

� �
¼ 0;

then

lim
n!1

PfT xnð Þ
0 t0 þ s0dnð Þ 	 �xx0b;n t0ð Þ < ag

¼ P argmins2R rA	a;Aþa s þ s0ð Þ þ ~vv sð Þ
� �

> 0
� �

:

Proof From (27) and (26) in the Appendix we obtain

Tc;n xnð Þ
0 t0 þ s0dnð Þ 	 �xx0b;n t0ð Þ ¼ Tc ynð Þ

0 0ð Þ;

with yn as defined in (17). Now A3 and A4 imply

yn sð Þ !L A js þ s0j 	 js0jð Þ þ ~vv sð Þ ¼: y sð Þ; ð20Þ

on DðIcÞ, where Ic ¼ ½	c; c�. Then A7 implies

Tc;n xnð Þ
0 t0 þ s0dnð Þ 	 �xx0b;n t0ð Þ !L Tc yð Þ

0 0ð Þ

for each c > 0. This result can be extended to (19) in the same way as in Theorem 3 in An-

evski and Hössjer [1], using Lemma 2, Theorem 1 of Anevski and Hössjer [1] and Slutsky’s

Theorem.

The second part of the theorem follows from the first and the fact that

fT yð Þ
0 0ð Þ < ag ¼ fargmins2R y sð Þ 	 asð Þ > 0g

¼ fargmins2R rA	a;Aþa s þ s0ð Þ þ ~vv sð Þ
� �

> 0g:

u

Notice that

PðjT xnð Þ
0
ðt0 þ s0dnÞ 	 �xx0b;nðt0Þj  aÞ ! C

as n ! 1, for any a > 0, with C ¼ 1 if a � A but C < 1 if 0 < a < A. Thus the variance of

T ðxnÞ
0
ð�Þ does not tend to zero as n ! 1 at neighbourhoods of t0 of size dn.

Next we prove the main results, Theorems 1 and 2.

Proof (Theorem 1) We will show that the assumptions of Theorem 1 imply assumptions

A3–A7 of Theorems 3 and 4.
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Since ~vvn ¼ ~vv on Jn;t0 , A3 holds. Lemma 4 in the Appendix shows that A1 implies A4.

Applying Lemma 6 in Anevski and Hössjer [1] with m ¼ 1 (we can put m0 ¼ 1 in that

lemma for independent data) we deduce that for each E; d > 0 there is a finite t ¼ tðE; dÞ
such that

lim sup
n!1

P sup
jsj�t

~vvn sð Þ

gn sð Þ

����
���� > E

 !
< d: ð21Þ

By Proposition 1 in the Appendix, this implies A5. Since ~vvn ¼
L
~vv, A6 follows from A5. In

order to check A7, notice that T ðynÞ ¼
L

T ð~yynÞ, where ~yyn ¼ gn þ ~vvn. Further

~yyn sð Þ 	 y sð Þ ¼ gn sð Þ 	 A js þ s0j 	 js0jð Þ ¼: cn sð Þ; ð22Þ

with yn defined in (20). From the proof of Lemma 4 in the Appendix, it follows that for each

E > 0 we can find d > 0 such that

jsj  d ) jcn sð Þj  Ejsj

whenever n � n0ðE; dÞ. Defining Xn ¼ Tcð~yynÞ
0
ð0Þ and X ¼ TcðyÞ

0
ð0Þ we obtain

P Xn  yð Þ ¼

ð
P Xn  yjX ¼ xð Þ dFX xð Þ

!

ð
1fx<yg dFX xð Þ ¼ P X  yð Þ;

for every continuity point y of FX , and thus A7 holds. Thus Theorems 3 and 4 are in force

and this ends the proof. u

Proof (Theorem 2) We will show that the assumptions of Theorem 2 imply assumptions

A3–A7.

Since xb;n ¼ xb, A4 follows from A2 and the remark after A4. Further A3 follows from

(15) and A6 from properties of the Poisson process. In order to check A7, we introduce

the functional hðzÞ ¼ T ðzÞ0ð0Þ, for which the set of discontinuities is

Dh ¼ fz : T zð Þ
0 0ð Þ > T zð Þ

0 0	ð Þg:

By A3 and A4, yn !L y on Dð	1;1Þ and

y sð Þ ¼ N

ðs

0

l uð Þ du

 �
	 �ff s:

With probability one, N is differentiable at the origin, and so y is almost surely differentiable

at the origin, implying by Note 2 in Anevski and Hössjer [1] that Pðy 2 DhÞ ¼ 0. However,

even though yn !
L y, we cannot use the continuous mapping theorem directly to conclude

hðynÞ!
L hðyÞ, since the limit process y is not supported on a separable subset of
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Dð	1;1Þ, with probability one. Instead, we will use approximation arguments to deduce

A7. Given E > 0, there exist d > 0 such that PðAnÞ � 1 	 E and PðAÞ � 1 	 E, where

An ¼ fti 62 t0 	 ddn; t0 þ ddn½ �; i ¼ 1; . . . ; ng;

A ¼ fN dð Þ 	 N d	ð Þ ¼ 0g:

Since A7 only deals with distributional convergence we introduce a new probability space

O ¼ OE as

O ¼ A � A1 � A2 � � � �

and new independent random variables �yy; �yyn : O 7!Dð	1;1Þ defined ‘‘coordinatewise’’

from o 2 O, according to

�yyn ¼
L

ynjAn;

�yy ¼
L

yjA;

with j denoting restriction. Since �yy0nð0Þ and �yy0ð0Þ exist for all o 2 O, we have

�yynðOÞ \ Dh ¼ �yyðOÞ \ Dh ¼ ;. Therefore, h is continuous on �yyðOÞ [ ð[1
n¼1 �yynðOÞÞ. It may be

seen that �yyn 	!
L

�yy and thus by the continuous mapping theorem

h �yynð Þ !L h �yyð Þ: ð23Þ

But

P h yð Þ  xð Þ ¼ P Að ÞP h yð Þ  xjAð Þ þ P Acð ÞP h yð Þ  xjAcð Þ;

P h �yyð Þ  xð Þ ¼ P h yð Þ  xjAð Þ;

so that

jP h �yyð Þ  xð Þ 	 P h yð Þ  xð Þj  2E ð24Þ

and similarly

jP h �yynð Þ  xð Þ 	 P h ynð Þ  xð Þj  2E: ð25Þ

Thus A7 follows from (23)–(25), since E > 0 is arbitrary.

Finally, A5 follows from Lemma 10 in Anevski and Hössjer [1] with dn ¼ n	1, via Pro-

position 1. (A careful inspection of the proof of that lemma shows that the assumption

ndn ! 1 can be dropped for independent data.) u
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4 APPENDIX

Proof (Lemma 1) A t varying in ½t0 þ ðs0 � cÞdn; t0 þ ðs0 þ cÞdn� can be written as

t ¼ t0 þ ðs0 þ sÞdn with s0 þ s 2 ½�c; c�. Using ð12Þ and ð13Þ, we obtain

xn t0 þ s0 þ sð Þdnð Þ

¼ xn t0 þ s0dnð Þ þ dn gn sð Þ þ ~vvn sð Þð Þ þ sdn �xx
0
b;n t0ð Þ; ð26Þ

with gn defined in (13). From A3 and A4 we have

gn sð Þ þ ~vvn sð Þ !L A js þ s0j 	 js0jð Þ þ ~vv sð Þ

on Dð	c; cÞ, as n ! 1. Thus, by (27), (28) and the continuous mapping theorem

d	1
n Tc;n xnð Þ t0 þ s0dnð Þ 	 xn t0 þ s0dnð Þ
� �
¼ Tc gn sð Þ þ ~vvn sð Þ½ � 0ð Þ !L Tc A js0 þ sj 	 js0jð Þ þ ~vv sð Þ½ � 0ð Þ;

as n ! 1. u

Proof (Lemma 2) Define the rescaled process yn as in (17) for s 2 Jn;t0, as a random element

of DðJn;t0Þ. From (27) and (26) it follows that

sup
An;D

d	1
n jTc;n xnð Þ �ð Þ 	 TJ xnð Þ �ð Þj ¼ sup

	D;D½ �

jTc ynð Þ �ð Þ 	 TJn;t0
ynð Þ �ð Þj;

sup
An;D

jTc;n xnð Þ
0
�ð Þ 	 TJ xnð Þ

0
�ð Þj ¼ sup

	D;D½ �

jTc ynð Þ
0
�ð Þ 	 TJn;t0

ynð Þ
0
�ð Þj:

Note first that if J 6¼ R then Jn;t0 6¼ R, so that gn is not defined on all of R in that case. If

J ¼ R we use Theorem 1 in Anevski and Hössjer [1] with I ¼ ½	D;D�, and if J 6¼ R we use

it with On ¼ Jn;t0 (cf. Note 1 in Anevski and Hössjer [1]).

It remains to verify conditions B1–B3 of Theorem 1 in Anevski and Hössjer [1]. B1–B2

coincide with A3 and B3 follows from A3 and A4. Thus all the regularity conditions of The-

orem 1 are satisfied, and the first part of the lemma follows. The proof of the second part is

analogous. u

The following lemma is proved in e.g. Lemma 1 in Anevski and Hössjer [1].

LEMMA 3 For any interval I � R; and functions l; h on I; such that l is linear and any

constant a 2 R, we have

TI h þ lð Þ ¼ TI hð Þ þ l; TI ahð Þ ¼ aTI hð Þ; ð27Þ
Further; the map

D 	1;1ð Þ 3 y 7! T yð Þ 2 C 	1;1ð Þ ð28Þ

is continuous, with both spaces equipped with the supnorm metric on compact intervals.

LEMMA 4 Suppose that m satisfies A1 and dn ¼ n�1. Then xb;n satisfies A4.
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Proof Clearly xb;n is convex, so it suffices to establish (16). Write mðtÞ ¼ m0ðtÞ þ
2A1ft	t0g. Then

gn sð Þ ¼

ðs0þs

s0

m ~tt0 þ buncn	1 þ
1

2n

 �
	

1

2
m ~tt0 	

1

2n

 �

	
1

2
m ~tt0 þ

1

2n

 ��
du

¼ A js0 þ sj 	 js0jð Þ þ

ðsþs0

s0

m0 ~tt0 þ buncn	1 þ
1

2n

 �

	
1

2
m0 ~tt0 þ

1

2n

 �
	

1

2
m0 ~tt0 	

1

2n

 ��
du

! A js þ s0j 	 js0jð Þ;

as n ! 1, uniformly on compact sets, since m0 is continuous at t0. u

The next result corresponds to Proposition 1 in Anevski and Hössjer [1], the proof of which

is given in Anevski and Hössjer [1].

PROPOSITION 1 Suppose A4 holds and that for each E; d > 0 there is a finite t ¼ tðE; dÞ
such that

lim sup
n!1

P sup
jsj�t

~vvn sð Þ

gn sð Þ

����
���� > E

 !
< d: ð29Þ

Then A5 holds.

Acknowledgement

We wish to thank the referee and associate editor for their comments, that improved the read-

ability of the paper.

References
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