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Pointwise limit distribution results are given for the isotonic regression estimator at a point of discontinuity. The
cases treated are independent data, ¢- and o-mixing data and subordinated Gaussian long range dependent data.
Pointwise limit results for the nonparametric maximum likelihood estimator of a monotone density are given at a
point of discontinuity, for independent data. The limit distributions are non-standard and differ from the ones
obtained for differentiable regression and density functions.
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1 INTRODUCTION

This paper deals with two nonparametric estimation problems: isotonic regression and non-
parametric maximum likelihood estimation of a monotone density. We consider a regression
model

vi=mt)+¢, i=1,...,n, (1

with m : (0, 1) — R increasing, #; = i/n equidistant design points and {¢;} a stationary se-
quence of error terms with E(¢;) = 0 and Var(¢;) = ¢2. Define the partial sum process

&
, = linear interpolation of § [ # + —, » : 2
X mnear interpolation o +2n j;yj » 2)
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where #p = 0 is assumed. The isotonic regression estimator

m = argmin Z(yl- — w(t;))*: v increasing on (0, 1)} 3)
i=1
of Brunk [2] is not uniquely defined. However, if we require v to be piecewise constant on all
intervals (¢; — 1/(2n), t; + 1/(2n)), the solution is given by

m = Tio.1y(xa)
where 7; maps a function defined on an interval J to its greatest convex minorant,
Ty(x) = sup{v;v:J — R, v convex and v < x}.

Note that we use the convention T(x)'(f) = T(x)' (t+).

Asymptotic results for m(#y) at a fixed interior point #, € (0, 1) were considered by Brunk
in [3] when m/(¢y) > 0 and {¢;} are independent. Then Wright [13] (cf. also Leurgans [9])
generalized Brunk’s results to the case

m(t) = m(to) + asgn(t — to)lt — tol’~" + o(It — to/"~") @

ast — fy and 1 < p < 0o. A special case of Theorem 1 in Wright [13] is

CnP=D/@=D (1) — m(ty)) = T(B(s) + 1sP) (0), (5)

with C = (p(6%2a)" ")~V T = Ty and B a twosided standard Brownian motion. Thus
the local behaviour of m around #; (i.e. the choice of p) influences both the convergence rate
and the limit distribution. The case p = 2 corresponds to the classical result of Brunk [3].
Moreover, when p = 2, the right hand side of (5) can be replaced by

2 argmin, g (s* + B(s)),

where we use the convention that argmin, g (x(s)) is the infimum of all points in R at which
the minimum of x is attained. For p = oo the convergence rate is n~'/2, cf. Parsons [10],
Groeneboom and Pyke [8] and Dykstra and Carolan [4].

In Anevski and Hossjer [1], a general asymptotic scheme for isotonic functional estimation
was treated. Theorem 3 in Anevski and Hossjer [1] admits generalization of (5) to weakly
dependent mixing data as well as long range dependent subordinated Gaussian data. In
fact, a somewhat weaker formulation of (4), which suffices for (5) to be deduced as a special
case of Theorem 3 in Anevski and Héssjer [1], is

0P (M(ty + s0) — M(to) — m(tg)s6) — Alsl”, (6)
uniformly for s on compact sets, as 6 - 0, with 4 =a/p and p > 1, where

M(t) = Jg m(u)du is the primitive function of m. One can show that the fraction of data
that m uses is of the order

d, = n—l/(prl)’ (7)



Downloaded by [Stockholm University Library] at 12:01 15 January 2016

MONOTONE REGRESSION AND DENSITY FUNCTION ESTIMATION 281

in the sense that data in a shrinking neighbourhood of # with length proportional to
n~1/@=1 determines the limit distribution. If m grows faster locally around ¢, a smaller pro-
portion of data is used in determining the large sample distributional properties of 7(ty); this
can be interpreted as d, = d,(fy) being a spatially adaptive bandwidth and m smooth less at
points of large increase of m.

In the present paper we extend the results in Anevski and Hdssjer [1] to cover the case
when m is not continuous at the point £, i.e. when m(ty—), m(ty+) both exist and differ
(m is monotone and thus right and left hand limits exist at each point); this is the case
p = 1 with 24 = m(ty+) — m(to—) in (6). Since it is of interest to see how m is influenced
by the discontinuity at #, for points close to #), we will study the estimate on a local scale, i.e.
we study ity + son~") for a fixed so € R (note that formally d, = n~! in (7) if p = 1).

Suppose now that {#}?_, is a stationary sequence of random variables with marginal dis-
tribution function F and density f = F’. We assume that f'is supported on [0, 1] and increas-
ing. In Grenander [6] it was first shown that for independent data, the nonparametric
maximum likelihood estimator (NPMLE)

n 1
f = argmax l_[ v(t;) : v increasing, v > 0, J v(t)dt = 1},
i=1 0

is given byf = Tjo,1(F,) and
F(t)—1§n:1 (8)
=52 {h<t)

the empirical distribution function formed by {#;}. We are not aware of any limit distribution
results for T[0,1](F,,)' in the i.1.d. data case when the restriction on F' is

O7P(F(to + $0) — F(to) — f (t0)s0) — Als|”, )

as 0 — 0 when 1 < p < oo, other then the classical case p = 2 treated in Prakasa Rao [12]
and Groeneboom [7]. However, it can be deduced from Theorem 2.1 in Leurgans [9] and
Section 3 and 5 in Anevski and Hdssjer [1] that if 1 < p < oo,

CHr=D/CD (F 1) = £ (1)) £ Tie(lst + Bs)) 0), (10)

as n — oo, with 7o > 0 fixed and C = A~ Y@=Df(4)~P=1/@=D Iy particular, when p = 2
and 4 = f"(t))/2, (10) reduces to the result obtained in Prakasa Rao [12].

In this paper, we consider the case when f(#p—) and f(¢y+) both exist and are different i.e.
p = 1in (9). It is of interest to note that T(F,)" is the NPMLE of a monotone density when
data are i.i.d. no matter what the restrictions on the unknown density f are, and thus also in
the present case. A

When p = 1, we obtain “convergence rate” n° = 1 in (5) and (10), i.e. #(ty) and f(¢,) are
not consistent. Further, the Brownian motion must be replaced by other stochastic processes.
The reason is that the effective number nd,, of data points used for computing 7(¢) and f'())
does not increase with n.

The article is organized as follows: In Section 2 we state the main results of the paper i.e.
the pointwise, at a point of discontinuity, limit distribution results for the isotonic regression
function estimate of an increasing regression function (Theorem 1) and for the NPMLE of an
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increasing density (Theorem 2), respectively. In Section 3 we give a unified derivation of the
limit distributions of T(x,) and T(x,)" for a large class of stochastic processes x,, which
equals F), for density estimation and the partial sum process, defined in (2), for regression.
These results are next applied to the proofs of Theorem 1 and 2. Finally we have collected
some technical results in the appendix.

The results in this paper depend on a truncation result, Theorem 1 in Anevski and Hossjer
[1]. When referring to assumptions in Anevski and Hossjer [1], we denote e.g. Al in Anevski
and Hoéssjer [1] as BI.

2 MAIN RESULTS

In this section we give pointwise limit distribution results for the isotonic regression estima-
tor and its primitive function at a point of discontinuity and under various dependence as-
sumptions on the error terms. Furthermore we state the pointwise limit distribution for the
NPMLE of a monotone density at a point of discontinuity in the independent data case.

For I C R an arbitrary interval, define D(/) as the set of real valued functions on / that are
right continuous with left hand limits. We equip D(/) with the supnorm metric when [ is
compact, and D(—o0, 0o) with the supnorm metric on compact intervals. To avoid measur-
ability problems for processes in D(—o0, 00), we use the g-algebra generated by the open
balls in this metric, cf. Pollard [11].

We will give a somewhat unified approach to these estimation problems and thus we write
either of the partial sum process defined in (2) and the empirical distribution function defined
in (8) as

Xo(t) = xp () +vu(1), teJ (11)

where J is the domain of x,,, and x,,, v, € D(J). Here v, is a sequence of stochastic processes,
and x; , is a sequence of deterministic functions. Furthermore, given a sequence d, | 0, we
will rescale the stochastic part of x, locally around an interior point #, of J, according to

Val(s) = i"'n(S; fy, So) = dy:l(vn(to + (5 + s0)dy) — valto + Sodp)), (12)
and the deterministic part of x,, according to
gn(s) = dy, " (xp.n(to + (s + 50)dn) — Xp.(to + s0dn) — sdu%,, (1)), (13)

for s fixed and s + 59 € J,,py = dn’l(J — to), and with x; (t) = (x}, ,(to—) + x}, ,(fo+))/2.
Consider again the regression model (1). The partial sum process defined in (2) can also be
written

ll) = j Fu(u0) dut = x5.0(0) + v ),
1/(2n)
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with

1 1
In(l) =y, 1€ <ti__n,ti+—i|, i=1,...,n,
t
Xpu(?) :J m,(u) du,

1/(2n)

t
vu(t) = J €,(u) du,
1/(2n)

and m,, €, defined as y, with {y;}]_, replaced by {m(t;)}\_, and {¢;}}_, respectively. Notice
that x;, is convex, since m is increasing.

As noted in Section 1, Tjo 1j(x,)" is the solution (3) to the isotonic regression problem.
Classically pointwise limit distribution results have been shown at points when m is contin-
uous, such as in Eq. (4). Instead, we will assume:

A1 The regression function m is right continuous and increasing on [0,1], and t, is a fixed
point in (0,1) such that

m(ty+) — m(ty—) = 24 > 0.

The behaviour of m close to 7y depends critically on the positioning of the surrounding design
points #; < #y < t;4,. Since n(t; — ty) is not convergent, we will not center our local scale at
to + son~', but rather at 7y + son~", where

- - 1
ty =to(n) =max{t; : t; < to} +—.
2n

Thus the rescaled deterministic part of x,, is

gn(s) = dn_l (xb,n (;0 + (S + SO)dn) — Xb,n (;0 + SOdn) - Sdni;,’n (;0))

- JS (1 (o + (u + s0)dy) — i) du
0

with m, = (m(fy — 1/(2n)) + m(ty + 1/(2n)))/2, and the rescaled stochastic part

Val(s) = dn_l (Vn (;O +(s+ SO)dn) — Vn (;0 + SOdn))

= J €n (;0 + (u+ so)dn) du.
0

oo
i=—00"

Assume we can extend the error terms to a doubly infinite stationary sequence {¢;}
Then with

- 1
a@ =g, te(i—— i+—:|, ieZ,
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our discrete analogue of the Brownian motion becomes

1(. 1
Z(t)zgjoél u+§ du,

which is defined by linear interpolation between the points (i, —Zfziej/a)Ko and
(1, Xi_1€/0)io- Then if d, = n~! it is straightforward to check that

s

§ ~ S~ l
f)n(s):J Zl(m‘o—i—u—i—so)dué J 61<§+u+so>du
0 0

= 0(Z(s + 50) — Z(s0)) =: W(s). (14)

Define m = (m(ty—) + m(ty+))/2. In order to be able to state the limit results more com-
pactly, define the function

Bs, s>0,
pB,C(s) = —Cs s<0

for B, C > 0, and denote pp = pp p. The next theorem gives the limit distribution of the iso-
tonic regression estimate and of it’s primitive function, for an increasing regression function
satisfying the discontinuity condition Al.

THEOREM 1  Assume m satisfies Al, {¢;} are independent and identically distributed, and
E(¢)) = 0,6% = Var(e;)) < oo. Then the solution to the isotonic regression problem
i = T(x,) satisfies

P(m(to +son™") —m < a)

- P(argminseR I:p(Afa)/o,(A+a)/o(S +50) + Z(s + So)] > 0)’

as n — o0, for each |a| < A such that the limit is continuous (viewed as a function of a).
Further

;()-‘rSonil 5
n J m(u) du — x, (to + sonfl)
0

LA + sol — Iso]) + 0(Z(s + 50) — Z(s0))](0),
as n — 00, provided |a| < A.

When {¢;} are dependent, v, is still given by (14), although Z(-) has a different distribution
then. It is possible to establish Theorem 3 for weakly dependent and subordinated Gaussian
long range dependent data as well. The main technical difficulty is to verify Eq. (29) in the
Appendix, which is done in Appendix II of Anevski and Hossjer [1].

Next we will treat monotone density estimation. Assume that {#,}7°__ is an i.i.d. sequence
of random variables with distribution function F'. For the density function /' = F’ we assume
the following:
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A2 The density function f is increasing on [0,1], and ty is a fixed point in (0,1) such that
flto+) — f(to—) =24 > 0.

As mentioned in Section 1, the NPMLE is f = T(F,), where F,, is the empirical distribution
function defined in (8). Thus we put x, = F),. Further, assume x; , = x;, = F, so that

) = Fu0) = FO) = 3 (1 — F0).

i=1

is the centered empirical process.
Notice that with d, = n~!, the rescaled stochastic part is

n

Va(s) = Z(l{nsnﬂr(sﬂo)n*‘} = Ly=tgtson )

i=1

—F(to + (s + so)n_l) +F(t0 + son_])).

Let s i— N(s) be a twosided Poisson process with constant intensity 1, i.e. if {Y;}>°,, are i.i.d.
Exp(1) random variables we put 7; =X, _,Y; if i > 0, T; = —Z]!:,Yj if i <0 and

2 Un<y, t20,
Mo = { —IZ 75y, t<O.

Define the martingale
No(s) = N(s) —s

as the centered version of N(-). Then from e.g. Corollary 2.2 in Einmahl [5], it follows that
Ba(s) 5 ¥(s) = N (J M) du), (15)
0

as n — oo, where

| ft+), u> —so,
Aw) = {f(tg—), "< s

Let f = (f(to—) + f(to+))/2. The next result gives the limit distribution for the NPMLE,
and it’s primitive function, of an increasing density satisfying the discontinuity condition A2.

THEOREM 2 Let {t;},., be an i.i.d. sequence with a marginal density function f satisfying
A2. Then if F,(t) is the empirical distribution function and f,(t) = T(F,)'(t),

P{f,,(to +s0n_') —j_r < a}
— Plargmin, i [ps o 414(s +50) + ()] > 0},
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as n — oo, for each |a| < A such that the limit is continuous (viewed as a function of a).
Further

tn+son’l n
n(J fn(u)du—F,,(to —I—Son_l))

0
ST(A(ls + sol — Iso]) + 1())(0),

as n — oo, for each so € R with v defined in (15).

Theorem 2 can also be established for weakly dependent data, since the local Poisson beha-
viour of F, (on a scale n~!) can be proved in this case as well.

We would here shortly like to discuss why the discontinuities of the target functions (m and
f) give essentially more different limit results in Theorems 1 and 2 than in the regular cases.
For instance for the regression problem, in the regular case (i.e. when the primitive function
of the target function satisfies (6) with p > 1) the isotonic functional estimation m uses data
in a shrinking neighbourhood of #y of length d, = n~'/?~1 as noted in the introduction, and
which follows from Lemma 2 in Section 3; this means that  is a local estimator analogously
to a kernel regression estimator. Thus in the regular case, we have d,, > n~! and the number
of data in this shrinking interval converges to co. Since 71, for a finite 7, is a (nonlinear) func-
tional of the partial sum process, it will follow that the limit functional in the regular case is a
nonlinear functional of a Brownian motion (for the independent data case), cf. Eq. (5). As a
contrast, in the discontinuous case, i.e. when p = 1 and thus d,, = n~!, the amount of data in
the shrinking interval does not increase; thus the functional central limit theorem is not in
force to obtain a Brownian motion as a limit of the partial sum process and the limit random
variable willAnot be a functional of a Brownian motion, cf. Theorem 4 of Section 3. The fact
that 7 (and f) is not consistent is also explained by the fact that the amount of data does not
increase in the shrinking interval determining the limit distribution of the estimator. Further-
more the deterministic part p,_y)/¢. (4-+a)/0 (@0 P4_4 44,) 0 the limit random variable is sim-
ply the limit of the rescaled deterministic part g, (on the same scale as the rescaled process
part v,,), and the derivative of p is essentially the (rescaled) target function, which explains
the form of the deterministic part p.

3 DERIVATION OF LIMIT DISTRIBUTIONS

In this section we prove limit distributions for T(x,) and T(x,) for processes x, satisfying
(11) at a point ¢y of discontinuity of x; ,. The main results (Theorems 3 and 4) are obtained
under somewhat more general assumptions than strictly necessary for the proof of Theorems
1 and 2, to allow for possible future work on e.g. other forms of dependence. Next we apply
the obtained results to the proofs of Theorems 1 and 2, i.e. to the cases x,, equal to the partial
sum process and x, equal to the empirical distribution function, respectively.

Denote T, = Tj_.,q and T = Tr. The next two assumptions are the main restrictions on the
stochastic and deterministic part of x,, respectively, and are sufficient to imply local limit dis-
tribution results for T(x,) and T(x,)".
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A3 [Weak convergence of rescaled stochastic term] Assume there exists a stochastic
process V(+) = V(+; ty, s9) Z 0 such that

- L .
Vu(s) = Ws),
on D(—00, 00) as n — oo.

The limit process v corresponds e.g. to the increment in the interpolated random walk
a(Z(s + so) — Z(s9)) in (14), for the regression problem, or to the centered nonhomogenous
Poisson process No( J; A(u)du) in (15), for the density estimation problem.

A4 [Local uniform convergence of rescaled bias term] Assume that {x; ,},>, are convex
functions. Assume that, with g, defined in (13), for some A > 0 and each ¢ > 0,

sup |ga(s) — A(ls + sol — Isol)] = 0, (16)

Is|<c
as n — oo.

We remark that for most of our applications there exists a function x; such that

xp(t) = tl_igloxb,n(t)a teld,

and
xp,(to+) — xi(to—) =24 > 0,
(cf. A1 and A2). To see the connection with (16), assume for simplicity that x; , = x;. Then
to+(5+50)dy

(s =d! J (,0) — %) (1)) du

t0+50dn

to+(s+s0)dn
:dn’IJ Asgn(u — ty) du + o(1)
to+sody

= A(ls + sol — Isol) + o(1),
as n — oo.
The next lemma is the local limit distribution result for T'(x,). Define the greatest convex
minorant on a shrinking interval Te., = Tjiy+(so—c)dy.to+(s0-+c)d,]-

LEMMA 1| Let ty € J be fixed, and assume that A3 and A4 hold. Then for each ¢ > 0

dn_l [Tc,n(xn)(to + sody) — x(to + SOdn)]
£ T[A(ls + 50| = Iso]) + #())(0).

as n — oo, with A as in A4.

Lemma 1 is proved in the Appendix. The next restriction on the tail behaviour of v, is
assumption B6 in Anevski and Hoéssjer [1]: it is used in Lemma 2 below to show that the
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local limit distribution result implies the global limit distribution, i.e. that truncation does not
matter.

AS5 [Tail behaviour of rescaled process] e function
Yu($) = gn(s) + Vu(s), (17)

satisfies: given 0 > 0 there are finite T = 1(0) > 0 and k = k() > 0 such that
lim ian(iIllf(y,,(s) —Kls|) > O> >1-9,
n—0Q S|>T

and given ¢,9,7 > 0

limsupP( inf Yals) — infy"—(s) > e) <0,

=00 i<s<c § i<s S

limsupP< inf 228 _ e 2100 _ —e) <9,

N—>00 —c<s<—-T § s<—-1 §

for all large enough ¢ > 0.

The following result uses Theorem 1 in Anevski and Hossjer [1] to show that the difference
between the local map 7., and global map 7; diminishes as first n and then ¢ grows.

LEMMA 2 Assume that A3, A4 and AS hold. Define A, n = [ty — Ad,, to + Ad,]. Then for
each finite A > 0 and € > 0

lim  lim P[Supd;lch,n(xn)(-) — Tyl < 6} =1,
¢—>00 n—00 Apa

Cc—> 00 n—> 00
nA

lim lim P[Sup |Ten (i)' () = Ty (en) ()] < C} =1
A

Lemma 2 is proved in the Appendix. The next assumption is the analog of assumption A5 for
the limit process, (cf. Proposition 1 in the Appendix).

A6 [Tail behaviour of limit process] For each ¢, > 0 there is a T = t(¢, ) > 0, so that

P| sup IV(s)! >c] <6.
|s|>1 ||

Finally, we arrive at the following global limit distribution result for 7'(x;).
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THEOREM 3 Let ty and sy be fixed and suppose A3—A6 hold. Then

d,Zl[TJ(xn)(fo + Sody) — x,(to + Sody)]
£ TLA(Is + sol — Isol) + 9()](0),

with A > 0 as in A4, as n — o0.
Proof Clearly

d; Ty ()t + Sod,) — (o + Sodly)
=d, [T/ (to + sodn) — Ten(xn)to + s0d)]
+ [Tty + S0dy) — xa(to + sody)]-

Lemma 2 implies
P
dy; (T nGen)(to + Sodn) — Ty(xa)(to + sody))—0,
if we let n — co. Lemma 1 implies that

d,,_l (Tc,n(xn)(to + sody) — x,(to + SOdn))
£ T[A(Is + 5ol = Iso) + ¥()I(0)

289

(18)

as n — 0o. Then use Theorem 1 in Anevski and Héssjer [1] with y,(s) = A(|s + so| —

Iso]) + ¥(s), to deduce

Te(A(ls + 50l — Iso]) + H($))(0) — T(A(s + 0] — Iso]) + #(5)(0)>0

as ¢ — 00. Notice that B1 and B2 of Theorem 1 in Anevski and Héssjer [1] follow from A6
and the convexity of A(|s + so| — |so|) as in the proof of Proposition 1 in Anevski and
Héssjer [1] and B3 follows from A3 and (16). The proof is completed by applying Slutsky’s

theorem, first letting » — oo and then ¢ — oo.

O

The next condition replaces an assumption on the continuity of the functional
x — T.(x)'(0). This functional is not continuous on all of D(—co, 00), cf. Proposition 2
and Notes 2 and 3 in Anevski and Héssjer [1], and thus we cannot use the continuous map-

ping theorem together with A3 and A4 to obtain limit results for T(x,)".

A7 Define y, as in (17). Then
T(v) (0) %> Te(Als + 50| + ¥(s))'(0)
as n — oo for each ¢ > 0.

The next result is the global limit distribution result for T(x,)".
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THEOREM 4  Assume A3—A7 hold. Then

T(xa) (to + sody) — X3 ,(t9) > T[Als + so| + ¥(s)]'(0), (19)
as n — oo with A and X, ,(ty) as in A2. If further |a| < A and
P(T[Als + so| + #()](0) = a) = 0,
then

nILI&P{T(xn)’(lO + sodn) — X}, ,(t0) < a}

= P(argminse;[{[pA_a,A+a(s + s0) + f/(s)] > 0).
Proof  From (27) and (26) in the Appendix we obtain

Te () (to + Sodn) — X}, ,(t0) = Te(v4) (0),
with y, as defined in (17). Now A3 and A4 imply

Ya(s) S A(ls + sol = Isol) + ¥(s) =2 ¥(s), (20)
on D(I.), where I, = [—c, ¢]. Then A7 implies

Ten(xa) (10 + s0d,) — %, ,(10) > Te()(0)
for each ¢ > 0. This result can be extended to (19) in the same way as in Theorem 3 in An-
evski and Héssjer [1], using Lemma 2, Theorem 1 of Anevski and Hoéssjer [1] and Slutsky’s

Theorem.
The second part of the theorem follows from the first and the fact that

{T(»)(0) < a} = {argmin,_; ()(s) — as) > 0}
= {argminseli[pA—a,A-‘ra(S + SO) + f)(S)] > 0}.

Notice that

P(|T(xn)/(t0 + SOdn) - J_C;),n(tON = a) - C
asn — oo, forany a > 0, with C =1 ifa > Abut C < 1if 0 < a < A. Thus the variance of
T(x,)'(-) does not tend to zero as n — oo at neighbourhoods of ¢y of size d,,.

Next we prove the main results, Theorems 1 and 2.

Proof (Theorem 1) We will show that the assumptions of Theorem 1 imply assumptions
A3-A7 of Theorems 3 and 4.
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Since v, = v on J,,4,, A3 holds. Lemma 4 in the Appendix shows that Al implies A4.
Applying Lemma 6 in Anevski and Héssjer [1] with m =1 (we can put my = 1 in that
lemma for independent data) we deduce that for each ¢, d > 0 there is a finite T = 1(¢, J)
such that

Vn(s)
2n(s)

lim sup P (sup

n— 00 |s|>1

> e) < 0. (21)

By Proposition 1 in the Appendix, this implies AS. Since v, éf/, A6 follows from AS5. In
order to check A7, notice that T'(y,) £r (¥u), where y, = g, + V,,. Further

Vn($) = ¥(s) = gn(s) — A(ls + sl — Isol) =: ¥,,(s), (22)

with y, defined in (20). From the proof of Lemma 4 in the Appendix, it follows that for each
¢ > 0 we can find 0 > 0 such that

Is| <0 = |,(s)] < els|

whenever n > ny(c, 6). Defining X,, = T.(3,)(0) and X = T.(y)'(0) we obtain

PO, <) = JP(Xn < JIX = 1) dFx ()

— Jl{x<y} dF)((X) = P(X Sy),

for every continuity point y of Fy, and thus A7 holds. Thus Theorems 3 and 4 are in force
and this ends the proof. Ol

Proof  (Theorem 2) We will show that the assumptions of Theorem 2 imply assumptions
A3-AT.

Since xp,, = xp, A4 follows from A2 and the remark after A4. Further A3 follows from
(15) and A6 from properties of the Poisson process. In order to check A7, we introduce
the functional h(z) = T(z)'(0), for which the set of discontinuities is

Dy ={z: T(2)(0) > T(2)(0-)}.

By A3 and A4, y, £ y on D(—o0, o0) and
y(s) = N(J Au) du) —fs.
0

With probability one, N is differentiable at the origin, and so y is almost surely differentiable
at the origin, implying by Note 2 in Anevski and Hossjer [1] that P(y € D) = 0. However,
even though y, £y, we cannot use the continuous mapping theorem directly to conclude
h(y,) &> h(y), since the limit process y is not supported on a separable subset of
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D(—o00, 00), with probability one. Instead, we will use approximation arguments to deduce
A7. Given ¢ > 0, there exist 6 > 0 such that P(4,) > 1 — ¢ and P(4) > 1 — ¢, where

A, =1{t; €[ty — 0d,, to +9d,),i=1,...,n},
A={N(@©)—N(6-)=0}.

Since A7 only deals with distributional convergence we introduce a new probability space
Q=Q, as

Q=AxA xAy x---

and new independent random variables y, y, : Q — D(—o0, co) defined “coordinatewise”
from w € Q, according to

with | denoting restriction. Since j,(0) and 3/(0) exist for all weQ, we have
u(Q) N Dy, = y(Q) N D, = @. Therefore, & is continuous on y(Q) U (UX,7,(Q)). It may be

n=1

- L _ . .
seen that y, —> y and thus by the continuous mapping theorem

h(@) & h()- (23)
But
P(h(y) < x) = P(A)P(h(y) < x|4) + P(A)P(h(y) < x]4°),
P(h(y) = x) = P(h(y) < x]4),
so that
|P(h(y) < x) — P(h(y) < x)| < 2¢ (24)
and similarly
|P(h(V) < x) — P(h(yn) < X)| < 2e. (25)

Thus A7 follows from (23)—(25), since € > 0 is arbitrary.

Finally, A5 follows from Lemma 10 in Anevski and Héssjer [1] with 6, = n~!, via Pro-
position 1. (A careful inspection of the proof of that lemma shows that the assumption
nd, — oo can be dropped for independent data.) O
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4 APPENDIX

Proof (Lemma 1) A ¢t varying in [t + (so — ¢)dn, to + (so + ¢)d,] can be written as
t =ty + (so + s)d, with so + s € [—c, c]. Using (12) and (13), we obtain

Xn(to + (so + $)dy)
= x,(t + SOdn) + dn(gn(s) + f}n(s)) + Sdni;;,n(tO)v (26)

with g, defined in (13). From A3 and A4 we have
€n(8) + Vu(s) & A(ls + 50| — Isol) + ¥(s)
on D(—c, ¢), as n — o0. Thus, by (27), (28) and the continuous mapping theorem

d;l [Tc,n(xn)(to + sody) — xu(fo + SOdn)]
= Telgn(s) + Vu()](0) & T[A(Iso + 5| — Iso]) + ¥()](0),

as n — oQ. |

Proof (Lemma 2) Define the rescaled process y, as in (17) for s € J,4,, as a random element
of D(Jys ). From (27) and (26) it follows that

supd, | Ten()() = Ty(x)()l = sup |Ten)() = Ty, ),
Ana [—A,A]

sup |Tc,n(xn)/(') - TJ(xn)/(')| = [_SXPM ITc(y,,)'(-) — TJMO (yn),()|

Ana

Note first that if J # R then J,,, # R, so that g, is not defined on all of R in that case. If
J = R we use Theorem 1 in Anevski and Hossjer [1] with 7 = [—A, A], and if J # R we use
it with O, = J,,, (cf. Note 1 in Anevski and Hossjer [1]).

It remains to verify conditions B1-B3 of Theorem 1 in Anevski and Héssjer [1]. B1-B2
coincide with A3 and B3 follows from A3 and A4. Thus all the regularity conditions of The-
orem 1 are satisfied, and the first part of the lemma follows. The proof of the second part is
analogous. [

The following lemma is proved in e.g. Lemma 1 in Anevski and Héssjer [1].

LEMMA 3 For any interval I C R, and functions I, h on I, such that | is linear and any
constant a € R, we have

T](h + l) = T[(/’l) + l, T[(ah) = ClT](h), (27)
Further, the map

D(—00,0) 3 y1—> T(y) € C(—00, 00) (28)
is continuous, with both spaces equipped with the supnorm metric on compact intervals.

LEMMA 4 Suppose that m satisfies Al and d, = n~'. Then Xpn Satisfies Ad.
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Proof Clearly x,, is convex, so it suffices to establish (16). Write m(¢) = mo(¢) +
2A1{1210}‘ Then

S0+ 1 1 1

(S):J m(to+ lunn™' +—) —=m( 1ty — —

&n . ) "2 2n
1 /. 1

S—+50 ~ 1
= A(lso +s| — Isol) + J (mo (to + lun]n + %)

50
! Z+1 ! [7 ! d
g\, ) T\ Ty, ) )

— A(ls + sl — Isol),

as n — oo, uniformly on compact sets, since my is continuous at f5. [J

The next result corresponds to Proposition 1 in Anevski and Hdssjer [1], the proof of which
is given in Anevski and Hossjer [1].

PROPOSITION 1  Suppose A4 holds and that for each ¢,0 > 0 there is a finite T = t(¢,0)
such that

Va(s)

2n(s)

lim sup P| sup >e¢] <o. (29)

n—00 |s|>1

Then A5 holds.
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