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Abstract

In this paper, we present a unified mathematical model for linkage analysis that allows for inbreeding among founders in all families.
The identical by descent (IBD) configuration of each pedigree is modeled as a Markov process containing two parameters; the inverse
inbreeding and kinship coefficient and a rate parameter proportional to the inverse expected length of chromosome segments shared IBD
by two different founder haplotypes. We use hidden Markov models and define a forward-backward algorithm for computing the
conditional IBD-distribution given marker data, thereby extending the multipoint method of Lander and Green [1987. Construction of
multilocus genetic maps in humans, Proc. Natl. Acad. Sci. USA 84, 2363-2367] to situations where founders are inbred. Our
methodology is valid for arbitrary pedigree structures. Simulation and theoretical approximations for nonparametric linkage (NPL)
analysis based on affected sib pairs reveal that NPL scores are inflated and type 1 errors increased when the inbreeding coefficient or rate
parameter is underestimated. When the parents are genotyped, we present a general way of modifying the score function to drastically

reduce this effect.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that linkage analysis is sensitive to
misspecification of the inferred relationship between
individuals belonging to the same family. For instance,
an incorrect pedigree structure, such as nonpaternity and
unidentified adoption, for some families in the data set may
affect both significance level and power (Ott, 1999, Chapter
11). Even though the pedigree structure is correct, relation-
ships of the founders might be misspecified. Founders are
traditionally considered unrelated in linkage analysis,
meaning that no founder alleles are identical by descent
(IBD). However, if families belong to a population with
some degree of inbreeding, there are often pairs of founder
haplotypes that share long chromosomal segments (Bro-
man and Weber, 1999). Miano et al. (2000) noticed that
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failure to model inbreeding of founders resulted in inflated
lod scores for a sample of three families. As a result, type
one errors are inflated if thresholds are not adjusted
properly. The same is true for nonparametric linkage
(NPL) (Génin and Clerget-Darpoux, 1996, 1998) and MLS
scores (Leutenegger et al., 2002) based on affected sib pair
families. For samples of many small pedigrees, the
potential effect of misspecifying inbreeding of founders
can be much larger than pedigree errors. The reason is that
pedigree errors typically affect a small proportion of
families, whereas misspecified founder relations can be
present in all families.

In this paper we introduce a hidden Markov model for
the IBD configuration of a family with possible inbreeding
among founders. It is valid for arbitrary family structures
and contains (i) the inheritance vector v, which specifies
inheritance at all meioses in the pedigree (Donnelly, 1983)
and (ii) a Markov process u that models IBD-configuration
of founder alleles. The latter process contains two main
parameters;, K, an integer which is the inverse of the
inbreeding and kinship coefficient, and A, a rate parameter
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which is inversely proportional to the average chromoso-
mal length shared IBD by a pair of founder alleles. In the
special case of one single founder, u reduces to the Markov
model proposed by Stam (1980).

Viewing the IBD-configuration w = (&, v) as the hidden
Markov regime, we compute its conditional distribution
given marker data. This multipoint approach to linkage
analysis can be viewed as a generalization of the one
proposed by Kruglyak et al. (1996), where v is a hidden
Markov regime under Haldane’s map function of no
interference and the forward-backward algorithm for
hidden Markov models (Baum, 1972; Lander and Green,
1987) is used for computing the conditional distribution of
v given marker data at all loci of interest. We extend the
Lander—Green algorithm to inbreeding situations (K <o0)
and compute the conditional distribution of w given data at
all loci of interest.

Our algorithm can be applied to a wide range of genetic
models and score functions, including parametric and NPL
analysis as well as quantitative trait locus methods. In this
paper, we consider NPL scores. Based on simulated data as
well as theoretical approximations for affected sib pair
families we show that NPL scores are inflated and
significance level and power increase when the degree of
inbreeding is underestimated and the average length of
pairwise IBD-segments overestimated. This confirms pre-
vious conclusions of Génin and Clerget-Darpoux (1996,
1998). When the parents are genotyped, we present a
general method of correcting the score function for these
effects. It is based on conditioning the original score
function on the number of different founder alleles that
are IBD.

The paper is organized as follows: In Section 2 we extend
NPL analysis to account for inbreeding among founders.
The Markov model for the IBD-configuration along one
chromosome is defined in Section 3. Simulation and
computation of family scores are treated in Section 4,
where in particular the HMM algorithm is defined. In
Section 5, we extend the HMM algorithm to dense marker
maps, and in the next two Sections 6 and 7, the effect of
misspecifying K and 4 and choosing score function are
discussed. Numerical results are presented in Section § and
a summary and various extensions of our work is provided
in Section 9. Finally, some mathematical details are
collected in the Appendix.

2. Linkage analysis and IBD-configurations allowing for
inbreeding

Consider a collection of N families with occurrence of a
certain disease. For each family, DNA marker data are
collected for as many individuals as possible along one or
several chromosomes. In addition, phenotypes are regis-
tered in all families. These are variables related to the
disease. For instance, it could be quantitative, such as body
mass index or glucose concentration, or a binary affection
status indicator. Suppose we wish to test presence of a

disease causing gene t along a genomic region 2. We
formulate this as an hypothesis testing problem, with null
hypothesis Hy that 7 is unlinked to @, and alternative
hypothesis H; that it is not:

H()I‘L'G.Q,
H, Z‘C¢Q.

Alternatively, we may view the testing procedure as one
where Hj is tested against a family of pointwise alternative
hypotheses Hj(x) : 1 = x.

In NPL, a typical test statistic Z(x) for discriminating
between Hy and H;(x) compares whether segregation of
phenotypes in the N families is compatible with their IBD-
configurations at x. For binary phenotypes, Z(x) quantifies
the amount of allele sharing IBD at x among affected
pedigree members in the N families (Penrose, 1935;
Whittemore and Halpern, 1994; Kruglyak et al., 1996;
McPeek, 1999). More general NPL scores can be defined
for a large class of phenotypes and genetic models by
comparing the IBD-configuration at x for all families with
their phenotypes, so that Z(x) is large when individuals
with concordant (discordant) phenotypes share more (less)
alleles IBD than is expected by chance (Whittemore, 1996;
Hossjer, 2003b, 2005a). When testing Hy against H;, we
use the maximal NPL score
Zmax = sup Z(x) (1)

xeQ
as test statistic and reject Hy when Z,,x exceeds a given
threshold z. This gives significance level and power

O((Z) = PHO(Zmax >7z)
B(z) = Pu,(Z}, = 2), (2)

where Z; , is defined as Zpy,y, but with the maximum
restricted to loci x on the same chromosome as 7. A large

class of NPL score statistics

N

Z(x) =Y 7iZrami(X) 3)
i=1

are defined as a linear combination of the family scores

Ztam,i(x), with the possibility of assigning larger weights y;

to more informative families.

In order to define the family scores, we omit family index
i and consider a fixed family 2 ={1,...,n} with n
members. These are numbered so that the first f* ones,
Z ={1,...,f}, are founders, i.e. have no ancestors in the
pedigree, and the remaining n — f ones, 4" = {f + 1,...,n},
are nonfounders.

When defining the IBD-configuration at x for a specific
family, the founders are traditionally treated as unrelated,
meaning that no founder alleles are IBD. This means that
the IBD-configuration at x is a function of the inheritance
vector v(x) (Donnelly, 1983). This is a binary vector of
length m = 2(n — f), the number of meioses in the pedigree.
It summarizes allele transmission in the pedigree at locus x,
such that the sth bit v5(x) is 0 or 1 depending on whether
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Table 1
Founder allele IBD-configurations « and founder genotype IBD-configurations Mz = M z(u) when f = 2, as well as probabilities P(u) for various values
of K
u (U1} Mz P(u)

K K=10 K =100 K = 1000
(1111) (1234) {(11),(11)} K3 0.0010 10°° 107
(1112) (123)4) {(1D),(12)} (K —DK3 0.0090 9.9 x 1073 107
(1121) (124)(3) {(1D),(12)} (K — DK~3 0.0090 9.9 x 1073 1076
(1211) (134)(2) {(12),(11)} (K — DK™3 0.0090 9.9 x 1073 107¢
(1222) (1)(234) {(12),(1D)} (K — 1)K™3 0.0090 9.9 x 1073 1076
(1122) (12)(34) {(11),(22)} (K — DK~3 0.0090 9.9 x 1073 1076
(1212) (13)(24) {(12),(12)} (K — DK~3 0.0090 9.9 x 1072 107
(1221) (14)(23) {(12),(12)} (K- K3 0.0090 9.9 x 1073 1076
(1123) (12)(3)4) {(11),(23)} (K — 1)K —2)K3 0.072 0.0097 0.0010
(1213) (13)(2)4) {(12),(13)} (K — 1)K —2)K? 0.072 0.0097 0.0010
(1231) (14)(2)(3) 1(12),(13)} (K — 1)K -=2)K3 0.072 0.0097 0.0010
(1233) (1)(2)(34) {(12),(33)} (K — 1)K —2)K3 0.072 0.0097 0.0010
(1232) (1H(24)(3) {(12),(13)} (K — 1)K —2)K? 0.072 0.0097 0.0010
(1223) (1)(23)(4) {(12),(13)} (K — 1)K —2)K3 0.072 0.0097 0.0010
(1234) (DH(2)(3)(4) {(12),(34)} (K — 1)K —2)(K —3)K~3 0.5040 0.9411 0.9940

the sth meiosis corresponds to a grandpaternal or grand-
maternal allele being transmitted to the child. We denote
the collection of all 2" inheritance vectors as ¥

In this paper, we define the IBD-configuration at x more
generally as

w(x) = (u(x), v(x)),

where u(x) is the IBD-configuration of the f founders at x
(Thompson, 1974). It can be written as a list of founder
alleles u = (b1, bs,...,by) of a fully polymorphic marker,
with by;_; and by the paternal and maternal alleles of
founder k. Hence, two alleles j and ;" are IBD if and only if
bj = by. The actual numbering of alleles is not important,
any permutation of allele labels will do. Let |u| denote the
number of distinct founder alleles IBD of u. If founder
alleles are numbered o7 = {1,...,2f}, u defines a disjoint
decomposition .7 = [J", U;, where IBD founder alleles
belong to the same subset. This gives rise to an equivalent
representation v = {Uy,..., U,}. Table 1 shows the set
9 = {u} of founder allele IBD-configurations when f = 2.
This is the well-known list of IBD-states for a pair of
individuals (Gillois, 1964; Jacquard, 1974). In Table 2, we
list |%| as function of f. The collection #" = % x ¥~ of all
possible IBD-configurations has size || = |%| x |V| =
2"™|9). 1t is seen that |%| and |#7| increase rapidly with f.
Later on, we will discuss various ways of reducing the size
of the state space for larger pedigrees.

For a single chromosome of length L Morgans, assume
that marker data M consists of H markers, located at
0<x;<--- <xyg<L.If the marker at xj, is dj-allelic, we let
(anak—1an2r) be the marker genotype of ke 2 at x,
consisting of one paternal allele aj2¢—1 and one maternal
allele ajr, both of which are coded as numbers from
{0,1,...,d, — 1}. The phase of the genotype is unknown

Table 2

The number of possible IBD-configurations among f founders when no
restrictions are imposed (|%|) and with at least r different alleles IBD
(0), r=2f-2,2f -1

f || |5 U711
1 2 2 2
2 15 14 7
3 203 81 16
4 4140 295 29
5 115975 796 46
6 4213 597 1772 67
7 190 899 322 3459 92

without further information from previous generations, i.e.
no imprinting is assumed. If 7 C £ is the set of genotyped
individuals, M, = {(anox—1an2k)} ke 1s the marker data at
xpand M =(My,...,My).

Following Weeks and Lange (1988), Fimmers et al.
(1989), Whittemore and Halpern (1994) and Kruglyak et
al. (1996), the NPL score at x for one family is defined as

Ztam(x) = (E(SW(X)IM) — v5))/Ks.x5 (4)

where S = S(w; Y) is a real-valued score function and Y =
(Yy,...,Y,) the phenotypes of one family. The phenotype
of individual k, Yy, is either quantitative or binary (Y, =0
and Yj; =1 for nonaffecteds/affecteds). The standardiza-
tion by vs= En (E(S(w(x))|M)) = E(S(w)) and ;céx =
Vary, (E(S(w(x))|M)) in (4) ensures that Zpm(x) has zero
mean and unit variance under Hy. The expectation
and variance in the definitions of vy and x5, are taken
with respect to variations in w(x) and marker data M,
whereas Y is fixed. Since the variance computation
is often involved, we will use the complete marker data
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approximation
Ké,x = Ké = Vary (S(w(x))). (5)

It can be shown that (5) implies Vary,(Zpm(x))<1, with
equality for complete marker data (Kruglyak et al., 1996).

By definition of the family scores, the total NPL score (3)
satlsﬁes Ey,(Z(x)) = 0. If the weights are chosen so that
Zl 17’1 =1, we obtain Vary (Z(x))<1 when using the
simplified standardization (5), with equality iff marker data
at x is complete in all families.

3. Stochastic model for IBD-configuration

We consider one chromosome of length L Morgans and
assume that the triplets (w(), Y,M), with w()=
{w(x); 0<x< L}, are independent between families. Thus,
we only consider one fixed family in this section.

3.1. IBD-configuration process

We assume that u() = {u(x); 0<x<L} and u()=
{v(x); 0<x<L} are two independent processes. Under
Haldane’s (1919) model of no interference, the m compo-
nents of the latter process are independent Markov
processes with state space {0, 1} and transitions occurring
according to a Poisson process with intensity 1. Hence, v(-)

is a Markov process on {0, 1}*" with intensity matrix
1, lv—7|=1,

A (w,0)=1<¢ 0, lv—v| =2,
-m, v="U,

and |v—7| = ij:1|vj — ]
between v and v'.

In order to define u(-), we need a population genetic
model. Consider a diploid population with ancestral
history defined by tracing allele transmission 7" generations
backward in time. Let N, be the population size of
Generation ¢t =0,1,..., T, consisting of N,/2 males and
females. The founder genotypes of the males and females in
the given pedigree are drawn independently with replace-
ment among the males and females of Generation 0. We
regard Generation T as a founder population, and all of its
2N 7 haplotypes as unrelated (non-IBD). For instance, we
may model population evolution by means of a diploid
Wright-Fisher model with crossovers but no mutations.
The genealogy along the whole chromosome is then
determined by the ancestral recombination graph %(-) =
{%(x); 0<x< L} of the Generation 0 population (Hudson,
1983; Griffiths and Majoram, 1997). Here %(x) is the
coalescence tree T generations back in time at locus x
(Kingman, 1982). Two alleles from Generation 0 are IBD
at x iff they originate from the same haplotype or root of
%(x) at Generation 7. Hence u(-) is a function of %(-) and
the f randomly picked individuals of Generation 0 that
constitute the founders of the pedigree of interest. Let K(x)
be the number of haplotypes from Generation 7 that have

is the Hamming distance

survived down to Generation 0 at locus x. We make the
simplifying assumption:

1. K(x) = K at all x, and the descendants in Generation 0
of each of the K haplotypes of Generation 7 divide, at
each locus x, the 2N, alleles of Generation 0 into K
equally large groups. Moreover, at each x, for a
randomly chosen individual k& among the males or
females of Generation 0, the (ordered) pair of ancestral
haplotypes transmitted to k at x is uniformly distributed
on{l,...,K} x{l,...,K}.

Assumption 1 gives the marginal distribution of u(x) at all
loci x: the 2f ancestral founder haplotype numbers at x are
drawn independently and uniformly from {1,..., K}, and
alleles with the same number form the equivalence classes
U; of u(x). Table 1 lists the marginal distribution when
f = 2 for several values of K. It has previously been used in
linkage analysis by Génin and Clerget-Darpoux (1996, 1998)
and Génin et al. (1998). These authors use the condensed list
of nine genotype identity states, which they refer to as IBW
states, rather than the 15 allele identity states.

Let F be the inbreeding coefficient, i.e. the probability
that two alleles of a founder are IBD and ¢ the kinship
coefficient, i.e. the probability that two randomly picked
alleles, one from each of two distinct founders, are IBD.
Then, it follows casily that

F=¢=1/K (6)

independently of the founder or pair of founders chosen.

In general %(-) is not a Markov process under Haldane’s
map function (Wiuf and Hein, 1999), and neither is wu(-).
However, we will simplify further and propose a model
under which u(-) is Markov. Let /;(x) € {1,...,K} be the
ancestral haplotype number assigned to the jth founder
allele at x and I(x) = ({1(x),...,I»(x)) the collection of
ancestral haplotype numbers of all founders at x. Then
u(x) = g(I(x)) is a function of I(x), with each U; € u(x)
defined as a set founder alleles j with 1dentlcal Ii(x).

The above discussion implies that {/; (x)} = are indepen-
dent and uniformly distributed on {1,. K } at all x. We
will further assume that

2. {1 j(')};z'i , are independent and stationary Markov
processes on {1,...,K} with the same intensity matrix
Ap, = (A, i')), satisfying

. MK =1), i#i,
Alj(lal):{_i l=l/

where />0 is a given constant.

The constant A can be interpreted by considering the length
Lghareq of a segment shared IBD by a pair of founder alleles
jand /. Then, if chromosome boundary effects are ignored,
Lghared 18 exponentially distributed with

E(Lsharea) = 1/(22). (7
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Similarly, the length of segments not shared IBD is also
exponentially distributed, with mean (1 — F)/(2AF).

More explicitly, we may reformulate the interpretation
of K and Z in terms of the ancestral recombination graph as
follows: consider two distinct founder alleles j and ;.
Tracing their ancestry backward in time at locus x, let Ty
be the generation of coalescence. Hence 7', is a function
of j, j/ and %(x). We assume T .oy = 00 whenever Tepq > T,
reflecting the fact that ancestral founder alleles from
Generation T are regarded as non-IBD. Using interpreta-
tions (6), (7) of K and 4, it follows that

K_l = P(Tcoa1<oo)>
. ZE(T;OlaﬂTcoal <00), ®)

where, in the second row, we used the fact that 27 ..
meioses are needed to join j and j/, each one with intensity 1
to switch state from grandmaternal to grandpaternal
transmission when Haldane’s map function is used and
map distance is measured in Morgans. Since there are
switches that do not change the IBD-configuration of
jandj (Fisher, 1954), we have inequality in the second row
of (8). In other words, an upper bound for A is the
harmonic mean of T, between two distinct founder
alleles, conditional on the event that they are
IBD.

An interesting consequence of (8) is that the same
inbreeding coefficient can be obtained if j and /' have one or
a few close common ancestors on one hand and many
distant common ancestors on the other hand. In the latter
case, Tcon and A will be larger and the mosaic of IBD and
non-IBD segments shorter. See Leutenegger et al. (2003)
for a similar discussion. In fact, using (8), the values of K
and 4 depend on our definition of IBD. If we increase T,
that is, choose to consider a larger population with
ancestral founders further back in time, K will decrease
and Z increase.

An immediate consequence of Assumption 2 is that 7(-)
is a stationary Markov process on {I,...,K}®¥ with
intensity matrix

MK =1), [I-TI=1,
A1, T)=X 0, I —1'=2, ©)
—2f 2, I=1r,

where |I —1I'| = Zfil l{lﬂé,}}. The following proposition

states that u(-) and w(-) are Markov processes as well,
thereby generalizing the Markov model for f = 1 proposed
by Stam (1980).

Proposition 1. Under Assumption 2, u(-) is a stationary
Markov process on U with intensity matrix A, = (A,(u,u)),
where

Ay =" ALT), uFd, (10)
Isg(y=u!

and 1 is chosen arbitrarily such that g(I) = u. Moreover, w(-)
is a stationary Markov process on W with intensity

matrix

Ay(w,w') = A4,,((u,v), W, 0))

Ay, ), uFd, v="1,
=< A,,v), u=u, v#U, (11)
0, u#u and v#U.

The diagonal elements of both A, and A,, are chosen so that
the row sums » ., A,(u,u') and ), , A,,(w,w') are zero.

3.2. Phenotypes

Let G = {(ax—1ax)};_, be the set of genotypes at the
disease locus 7, with ay_; and ay; the paternal and
maternal alleles of k. Notice that G is a function of the
founder alleles at the disease locus, a = {aj}jz 1» and (1),
which we write as G = G(a,v(t)). For a d-allelic disease
locus, we assume that each a; € {0,...,d — 1}. The genetic
model consists of penetrance parameters in P(Y|G) and
disease allele frequencies p, = P(a; =r). We have that Y
and w(-) are independent under Hy, whereas under H;

P(Y|w(-)) = P(Y|w(x)) = ) P(Y|G(a,v())Pa]u(x)).

(12)

In the last step we assumed that ¢ and v are conditionally
independent given u, which holds when there is no
segregation distortion. We further assume that alleles of
the ancestral founder Generation 7 are independent and
then transmitted, without mutations, through 7T genera-
tions to .«/. Hence

Py = [T », (13)

jed ()

whenever a; in constant within each U; € u and P(alu) =0
otherwise, and .o7(u) C o7 is the set of founder alleles that
contains (say) the smallest element from each U, € u.

For affected sib pairs, (12)—(13) was used by Génin and
Clerget-Darpoux (1996) for calculating power for affected
sib pair score functions.

3.3. Marker data

Assuming markers are in linkage equilibrium (LE) with
each other and with the disease locus, we get

H
P(M|w(-), Y) = P(MIw()) = [ [ P(Malw(x1)), (14)
h=1

both under Hy and H,;. This assumption holds, for
instance, if the markers of the ancestral founder popu-
lation are in LE and then the population sizes N,_1,..., Ny
of the next generations are large enough to prevent
genetic drift from inducing linkage disequilibrium. Each
term on the RHS of (14) is defined by conditioning on the
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vector a, = {ahk}i/; , of founder alleles at x;,

P(Mylw(xn) = Y P(Mlay, v(xn)P(aylu(xy))
ap

= >

aps(ap.v(xp)—>My

Plap|u(xp)). (15)

The last equality reflects complete penetrance; each term
P(Mylay, v(xy)) is one if M), is compatible with (ay, v(x;))
and zero otherwise. The founder allele probability is
defined as in (13) for each marker;

Payw)= [T phay: (16)
jeot (u) ’

. 1~ :
with {ph,}jiol the marker allele frequencies at x;,.

When H is large, nearby markers will be in linkage
disequilibrium, and then (14) is a bit inaccurate (Schaid
et al., 2004). A relaxation of the LE assumption is possible
by clustering alleles into haplotypes, see Abecasis and
Wiggington (2005).

4. Algorithms
4.1. Founder phase reduction

In order to decrease the state space # of w(-), we employ
founder phase reduction (Kruglyak et al., 1996). Since the
genotype of each founder £ € & has unknown phase, it is
impossible to distinguish two IBD-patterns w and w’, when
the latter is obtained from the former by switching paternal
and maternal alleles of founder k as well as the parental
origin of all meioses transmitted from k to its children. We
formalize this by letting m; be the permutation of .o/
that switches the two founder alleles of ke 2,
ie. mp(2k — 1) =2k, m(2k) =2k — 1 and =n(j) =/ for all
other j € .o/. Then, 7y induces another mapping 7 : % —
U by 7ir(u) = g(I o my) if u = g(I). (It is easy to check that
7ty 1s well defined, i.e. not dependent upon the choice of 1.)
Moreover, let ¢, € 7~ be the inheritance vector with ones in
positions corresponding to children of k and zeros
elsewhere. Then, if w = (u,v), we let w = (fix(u), v + cx),
where addition of inheritance vectors is componentwise
modulo 2. Combining founder phase switching for
different founders in all 2/ possible ways, we get
equivalence classes of IBD states as follows: given any
binary vector = (¢y,...,¢) of length f, we define
~ ~C1 ~C f
fe=m o ofty, cc =) &kcr and let

W = {(Fe(u), v + co); & €{0,1}¥} (17)

be the equivalence class to which w = (u,v) belongs. The
resulting state space # = {w} has reduced size |#|=
2" 19| instead of |#'|=2"|%| . For instance, for a
nuclear family with two children, we reduce the number of
IBD-configurations from 16 x 15=240 to 4 x 15 = 60.
Formally, we abbreviate (17) as w = (u,7), where 7=
{v + c¢}e is the collection of inheritance vectors obtained by
founder phase switching. Each ¢ € ¥~ can be represented as
an inheritance vector of length m — f as follows: there is a

unique v € ¥ which has zeros at the f bits corresponding to
the first offspring of each founder. Then 7 is represented as
the remaining m — f bits of v'.

It turns out that the Markov property is not lost during
founder phase switching:

Proposition 2. The founder phase reduced process w(-) =
{w(x); 0<x< L} is Markov with intensity matrix

As(B W) = > Au(w,w), (18)

W =/
where w is any IBD-configuration belonging to w.

In absence of imprinting, phenotype and marker
probabilities are invariant with respect to founder phase
switching. We also impose the same (mild) requirement on
the score function S and obtain

S(w) = S(w),
P(Y () = P(Y|w(-)),
P(MWw(-)) = P(Mw(-)). (19)

Proposition 2 and (19) are utilized in the next two
subsections to simulate marker data and compute family
scores Zpym(x).

4.2. Simulation of marker data

Simulation of linkage scores under the null and
alternative hypotheses has been considered by Boehnke
(1986), Ploughman and Boehnke (1989), Ott (1989) and
Terwilliger et al. (1993). We briefly show how to extend
their results to incorporate inbreeding among founders.

When marker data M is simulated under H,, it is
convenient to generate the pair (M, w(-)) using

H
P(M,i()) = POR() [ ] P(Mali(x)). (20)
h=1
The term w(-) is simulated in the standard way as a finite
state Markov process in continuous time, using Proposi-
tion 2. Given w(x;), marker data at x; is generated by
first choosing (arbitrarily) any w = (u,v) such that
(u, v) = Ww(x;,), then simulating marker founder alleles given
u and segregating them to nonfounders according to v,
using the third equation of (19) and P(Mj,ap|w) =
P(ap|lu)P(Mylay, v). The term P(ap|u) is given by (16), and
founder alleles are generated independently in each group
U, € u according to the marker allele frequencies at x;. The
term P(Mplay,v) involves no simulation, since M, is a
deterministic function of a;, and v.
Simulation of M|Y under H; is similar, using

H
P(M,w()|Y) = PG()|Y) [ P(MalwCxn) 1)
h=1

instead of (20). The first term on the RHS of (21) is
simulated by first generating w(r) and then propagating
w(-) independently to the left and right from 7 according to
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the same Markov process as under Hy, i.e.
PW()IY) = POw(0)| Y)P(W(t—)w(1)) POw(t+)|w(7)),

where w(t—) = (W(x); 0<x<7t} and w(t+) = {(W(x); <
x< L}. When generating w(t), we use P(i(1)|Y) o« P(w(7))
P(Y|w(7)) and (12).

4.3. HMM algorithm for family score

Using (19), the family score (4) can be written

Zian(x) = (Z SOD)POI(x) = ¥ M) —VS> / Ksw (22)

The inheritance distribution P(w(x) = w|M) is evaluated at
a grid of loci x of interest by applying the forward—back-
ward algorithm for hidden Markov models. Our starting
point is the Markov property of the hidden regime w(-) in
Proposition 2, together with the conditional distribution of
M given w(-), see (14) and (19). Suppose we wish to
evaluate Z(-) on a grid 0<x'< ... <xS<L. Let M,_ =
(M, 0<x,<x°}, My, = {M}, x*<x,<L} and define for-
ward probabilities oy(Ww) = P(M,_,w(x*) = w) and back-
ward  probabilities (W) = P(M . |w(x*) =w)  for
s=1,...,S. Then, because of Proposition 2, (14) and (19),

o5 (W) (09)

POv(x*) = wiM) = S (PR’ s=1,..

.S

(23)

The forward probabilities are computed recursively from
left to right, and the backward probabilities recursively
from right to left, see the appendix for details. The intuition
behind (23) is the following: let w = (W(x!),..., w(x>))
denote the trajectory of IBD-states along the chromosome.
Then P(M) = > ,P(M,w) is obtained by summing over all
trajectories and (P(w(x*) = w)|M) is the fraction of this
sum obtained when summing over trajectories passing
through w at x*. Since ) P(M,w) = o,(w)B,(W), we
obtain (23).

ww(x$)=w

5. Dense marker map

The limit of dense marker maps (H — oo,
max; <,<g—1(xpe1 — xp) = 0) facilitates closed form ap-
proximations of the significance level and power (2) as
function of the amount and type of inbreeding among
founders (K and 1) and the set of genotyped pedigree
members 7. For a single chromosome of length L
Morgans, we let M = {M(x); 0<x<L} denote marker
data when the marker map is dense. Intuitively, with H
large, M(x) can be thought of as a combination of M;, for
loci xj, in close vicinity of x, forming a haplotype (Abecasis
and Wiggington, 2005). This construction does not require
LE between nearby markers, only that the neighborhood of
x is small enough so that recombination events in the
pedigree can be ignored and yet large enough so that the
haplotype (to a good approximation) is fully polymorphic.

Table 3

List of all nine marker genotype IBD-configurations M = M , =
{(bsbe), (b7bg)} for a nuclear family when the two children (k = 3,4) are
genotyped, as well as the mean sharing score function Sigp(M)

M Step (M)

{(12), 34}
{(12),(13)}
{(12),(12)}
{(1D), (22)}
{(1D), 23)}
{(12),(33)}
(D, (12)}
{(12), (11}
{(aD, an}

N —— O oo N =0

The quality of this approximation depends on the LD
structure around x and hence on the studied population.
Assuming that it holds exactly, M(x) is a genotype IBD-
configuration of all genotyped family members. Formally,
we write M = {(by_1bx), k € 7} for a genotype IBD-
configuration, where by;_; and by, are the maternal and
paternal alleles (in unknown order, unless information is
available from previous generations) for individual k at a
fully polymorphic marker. That is, b; = by iff the two
alleles are IBD. Notice that any other representation of M,
obtained by permuting allele labels, will do. For a nuclear
family with two children, the marker genotype configura-
tions are listed in Tables 3 and 5 when the children and all
family members are genotyped, respectively.
It is clear that

M = f(iv) (24)

is a function of the founder phase reduced IBD-configura-
tion of the whole pedigree. Therefore, the marker
penetrance function is

PMW(-)) = Lymi)=M(x) for all 0<x<L)

for dense marker maps. To evaluate the inheritance
distribution  P(w(x) = w|M) at a grid of points
0<x!<...<xS<L, we use (23), provided the forward
and backward probabilities are redefined as oy(Ww) =
PM(x*—),w(x) =w) and f,(W) = P(M(x*+)|W(x*) = W),
where M(x—) = {M(x'), 0<x'<x} and M(x+) = {M(X),
x<x'<L}. Recursive algorithms for computing forward
and backward probabilities are described in the Appendix.

6. Misspecifying K and /1

Given marker data, computation of family scores
depends on the assumed values of K and A. From now
on, we write K and A for assumed and K and Agyye for
true values. Writing vs = vs(K) and k% = k%(K), the family
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score (22) with standardization (5) becomes

Zam(x; K, 2)

= (Z P ;(00(x) = wIM)S(Ww) — VS(K)> / Ks(K),

(25)

both for nondense and dense marker maps.

When K = oo, it suffices to consider the restriction of
S = S(w) = S(u, ?) to IBD-configurations with no inbreed-
ing among founders (NIF). Since there is only one founder
allele configuration uy, = (1,2,...,2f) with positive prob-
ability ( = 1) when K = oo, we can restrict the sum in (25)
to NIF-configurations w = (U, 7). With

SN(@) = S(ttoo, D),
the family score becomes

Zfam(x; OO)

= (Z Poo(ii(x) = 8|M)SN' (5) — VS(00)> / K5(00),
(26)

when K = oo. This is the traditional definition used e.g. by
Kruglyak et al. (1996) for nondense marker maps
M = {M}}, involving only the (founder phase reduced)
inheritance vector ©. Notice, however, for dense marker
maps M = {M(x)} there is a positive probability that (26)
is not well defined when K e <00.!

When generating marker data M, the true values Ky
and Ay are used in (20)—(21). Hence, the statistical
properties of the family scores as well as the total score Z(-)
will depend on K, Kye, A and Ayye. As a result, we will find
that the power and significance level (2) are often quite
sensitive to misspecification of K. and Ayye.

7. Choosing score functions

Traditionally, most score functions used in linkage
analysis are functions of the (founder phase reduced)
inheritance vector 7. With a slight abuse of notation, write

S = S(5) 27)

to denote the fact that S(w) = S(u, 7) is independent of wu.
We refer to (27) as a transmission-based score function.
Typical choices of such score functions are Spairs and Sai
(Whittemore and Halpern, 1994) and S;opdgom (McPeek,
1999). Another possibility is to let

S = S(M) (28)

depend on the genotype IBD-configuration M among the
genotyped pedigree members. By this we mean that S(w) is
constant over all sets £~ (M), with fas in (24). We refer to

"More precisely, Poo(i(x)=3M) is not well defined when
Pk (M) = 0. This happens when K. <00, K =00 and, for at least
one x’', M(x') is such that several founder alleles are IBD.

(28) as an IBD-based score function. When there is NIF,
(27) and (28) are essentially equivalent, in the sense that
any IBD-based score function is transmission based, and
any transmission-based score function used in practice is
IBD based.

With inbreeding among founders, (27) and (28) are no
longer equivalent. To see this, consider a nuclear family
with father (kK =1), mother (k=2) and two children
(k = 3,4). The IBD-based score function Sigp of Table 3
counts the number of alleles shared IBD by the two sibs,
the so-called mean sharing score function. However, it is
possible to define a transmission-based score function that
checks whether the parents transmit the same grand-
parental alleles or not to the children. Let v = (vy, v, v3, v4)
be the inheritance vector, with v; and v, the outcomes of
the paternal and maternal meioses of the k = 3 child and v;
and vy the outcomes of the paternal and maternal meioses
of the k = 4 child. Since ¢; = (1,0,1,0) and ¢; = (0, 1,0, 1),
we have 7 = (¢}, 0;), where @, is zero or one depending on
whether the father transmits the same allele to his two
children or not. Similarly, 7, is zero or one depending on
whether the mother transmits the same allele to her
children or not. Then

Su(@) = 15,20y + li5,=0 (29)
is equivalent to S;pp when there is NIF, i.e. S = SNF
Still, Sigp # Sy, as can be seen by considering u = (1123).
Then 7= (0,0), S:() =2 and 7= (1,0), S(¥) =1 both
correspond to M = {(12)(12)}, Sip(M) = 2.

An IBD-based score function is biologically more
reasonable, since it is the accumulation of alleles IBD,
not the nonuniform transmission, that determines the
probability of certain phenotypes Y. In fact, S(w)=
P(Y|w(t) = w) is IBD but not transmission based.

In (25), the sum ) Pk ,(W(x) = wIM)S(¥) is less
sensitive to misspecification of Ky and Ayye for an IBD-
based score function, at least when there are many markers
H. In fact, it can be shown that the sum converges to
S(M(x)) in the limit of a dense marker map. The reason is
that M(x) can be recovered for a dense marker map and an
IBD-based score function is, by definition, constant over
f~'(M(x)). On the other hand, the mean vg(K) and
variance x%(K) are independent of K for transmission-
but not for IBD-based score functions. The reason is that
the distribution of # is independent of K., whereas the
distribution of M is not. For instance, the score function
(29) satisfies vg,, = 1 and x5, = 0.7071. The corresponding
values for Sigp depend on K as shown in Table 4.

Ideally, we would prefer an IBD-based score function
with little dependence of vg(K) and x%(K) on K. This is
possible at least when all family members are genotyped.
Write M = M 7 to indicate that M depends on the set of
genotyped individuals. Then, when all family members are
genotyped, M = My = (M #, M ), with M~ and M - the
genotype IBD-configurations of the founders and non-
founders, respectively. It can be shown that the number
|M #| of distinct founder alleles is a minimal sufficient
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Table 4

Standardizing constants vy and xg for the IBD-based mean sharing score
function S = Sigp, as well as the mean and standard deviations p, =
Eyy(Z(x)) and 0y = /Varp,(Z(x)) for the NPL score based on N affected
sib pairs when a dense marker map is used

K Kire VS1BD (K) KS1gp (K) N Ho 9]
00 10 1 0.7071 100 1.9870 0.9479
100 0.2107 0.9950
1000 0.0212 0.9995
[’ 0 1
10 1000 6.2834 0.9479
100 0.6664 0.9950
1000 0.0670 0.9995
o] 0 1
100 10 1.0149 0.7035 100 1.7852 0.9527
100 0 1
1000 —0.1905 1.0046
o] —0.2118 1.0051
10 1000 5.6454 0.9527
100 0 1
1000 —0.6024 1.0046
o] —0.6697 1.0051

Formulas for y, and oy are given in the Appendix. The former simplifies to
Hy = '\/N(VS(KIYUC) - VS(K))/KS(K) in this case.

statistic for K (cf. Table 1). Given any IBD-based
score function S, we let Vs = Ey (S(M)||M7|) and
fcé = Vary (S(M)[|M 7|) and define the robustified version
vs(00) + Ks(00)(S(M) — Ts) /i,

VS(OO):

Ks>0,

S(M) = { (30)

ks =10

of S. It agrees with S when there is NIF, i.e. SN = SN
Moreover, v5(K) = vg(oo) for all K and x%(K) =~ k(o)
with a difference of order P(ikg = 0) that is often negligible.
The robustified mean sharing score function Sipp is listed in
Table 5. It has VSIBD(K) =1 and KSIBD(K) ~ 0.7071 for all K.

8. Numerical results

We simulated the NPL score (3) of N = 1000 affected sib
pair families along one chromosome of length 150cM,
using equal weights y; = 1/+/N. The three versions of the
mean-sharing score function described in Section 7 were
used; S = Sy, Sisp Or Sipp. Figs. 1 and 2 display the NPL
score for one such simulation under Hy when all four and
two family members (the sibs) are genotyped, respectively.
Figs. 3 and 4 display another simulation under H;, with a
biallelic disease locus (d = 2) placed in the middle of the
chromosome. The disease allele frequency p = p; was set to
0.1, and the penetrance parameters to ¥, =¥, = 0.1 and
¥, = 0.8. Here, y; is the probability that an individual with
j disease alleles in his or her genotype becomes affected.
For each combination of hypothesis H;, S and number of
genotyped individuals, four marker maps were used; a less
informative map with markers of heterozygosity 0.8 every
10cM, a very informative map with markers of hetero-

zygosity 0.9 every 1cM, a dense marker map and finally,
and ideal dense marker map requiring knowledge of
S(Ov(x)) at all loci x for all families.” The reason for
including the ideal dense marker map is that its NPL scores
can be analyzed theoretically. In all cases, K = 10000,
Kirue = 100 and A = Ayye = 10.

By construction, Z(-) should be unbiased under Hy at all
loci when Ky and Ayye are correctly specified. As seen
from Figs. 1 and 2, misspecification of K. leads to a
strong upward bias of the dense NPL score of Sigp. (That
is, the NPL score based on a dense marker map.) A
somewhat smaller upward bias can also be noted for the
dense NPL scores based on S, or Sipp when the sibs are
genotyped. When all four pedigree members are genotyped,
neither Sigp nor S, gives any significant bias in the dense
NPL score. Overall, Sigp is least affected by misspecifica-
tion of Ky, followed by S, and Sigp. This can be
explained by looking at the ideal dense NPL scores: these
are unbiased for S, and Sigp, but has positive bias for
Sigp. On the other hand, the ideal dense and dense NPL
scores agree only for Sigp and, when all four family
members are genotyped, for Sigp. In the remaining cases
the dense NPL score is upward biased compared to the
ideal dense one. This implies that the dense NPL score is
unbiased only in one case, for Sigp when all family
members are genotyped (although it is nearly unbiased also
for Sy in this case when K is close to o). Similar
phenomena can also be seen under H; in Figs. 3 and 4. In
this case, the true peak of Z(-) in the middle of the
chromosome is dominated by a false peak to the right
for Sigp, and, when only the sibs are genotyped, for S
and SIBD-

Among the finite marker maps, the more informative
one gives NPL scores very close to the dense marker map in
all cases. The less informative one also gives NPL scores
fairly close to the dense marker map in all cases except one;
when Sigp is used and all four family members are
genotyped. We believe this to be caused by founder
inbreeding being mixed up with IBS-sharing of founder
alleles. This decreases Sipp, whereas Sy and Sigp. being
much less sensitive to the degree of founder inbreeding, are
less affected.

Next, we studied the effect of misspecifying Ky, on
significance level a(z) and power f(z) for a genome-wide
scan of affected sib pair families over all 22 autosomes,
with chromosome lengths as in Ott (1999, Table 1.2). We
used theoretical approximations defined in the appendix
both for a(z) and fS(z). These are valid for ideal dense NPL
scores, and hence also for dense NPL scores when either
S = Sigp or when S = Sipp and all four pedigree members
are genotyped. We initially assumed K = 00, Kipue = 500,
Atrue = 10 and N = 1000, and then varied one of Kirue, Atrue
and N at a time. Fig. 5 shows plots of a(z) against these

%In more detail, this means that each family score is given by (A.10).
3To be exact, we consider the limit K — oo, since marker data with
K = oo-probability zero occurs with positive probability when Ky <oo.
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List of all 39 marker genotype IBD-configurations M = M, = {(b1b,), (b3b4), (bsbs), (b7bg)} of a nuclear family when all family members (k = 1,2, 3,4)
are genotyped, as well as the robustified mean sharing score function Sipp(M)

|M57| M SIBD (M) |M7| M SIBD (M)

4 {(12),(34),(13),(24)} 0 3 {(11),(23),(12),(12)} 1.8911
{(12),(34),(13),(14)} 1 {(11),(23),(12),(13)} 0.7030
{(12),(34),(13),(23)} 1 {(12),(33),(13),(13)} 1.8911
1(12),(34),(13),(13)} 2 {(12),(33),(13),(23)} 0.7030

3 {(12),(13),(11),(11)} 1.8911 2 {(12),(12),(1D),(11)} 1.6236
{(12),(13),(11),(12)} 0.7030 {(12),(12),(11),(12)} 0.3764
{(12),(13),(12),(11)} 0.7030 {(12),(12),(12),(11)} 0.3764
{(12),(13),(11),(13)} 0.7030 {(12),(12),(12),(12)} 1.6236
{(12),(13),(13),(11)} 0.7030 {(12),(12)(11),(22)} —0.8708
{(12),(13),(12),(12)} 1.8911 {(11),(22),(12),(12)} 1.6236
{(12),(13),(13),(13)} 1.8911 {(11),(12),(11),(11)} 1.6236
{(12),(13),(11),(23)} —0.4852 {(11),(12),(11),(12)} 0.3764
{(12),(13),(23),(11)} —0.4852 {(11),(12),(12),(11)} 0.3764
{(12),(13),(12),(13)} 0.7030 {(11),(12),(12),(12)} 1.6236
{(12),(13),(13),(12)} 0.7030 {(12),(11)(11),(11)} 1.6236
{(12),(13),(12),(23)} 0.7030 {(12),(11),(11),(12)} 0.3764
{(12),(13),(23),(12)} 0.7030 {(12),(11),(12),(11)} 0.3764
{(12),(13),(13),(23)} 0.7030 {(12),(11),(12),(12)} 1.6236
{(12),(13),(23),(13)} 0.7030
{(12),(13),(23),(23)} 1.8911 1 {(A1),(1),(11),(11)} 1
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Fig. 1. Plot of NPL score Z(x) along one chromosome of length 150cM under Hy for 1000 affected sib pairs when all four pedigree members are
genotyped. Three different score functions are used; Sigp (b), Si: (¢) and Sipp (d); and four marker maps; ideal dense (dotted), highly informative (circles),
less informative (squares) and dense (solid for Stpp, dash-dotted for S and dashed for Sipp). The highly informative map has markers at positions
0,1,...,150cM, each one with 10 equally frequent alleles. The less informative map has markers at positions 0, 10, ..., 150 cM, each one with five equally
frequent alleles. Panel (a) shows the dense marker NPL scores for all three score functions. Marker data for all combinations of score functions and maps
are based on the same IBD-configuration processes w(-) for all families. Z(-) is computed at grid points 0, 1, ..., 150cM for all maps. Only NPL scores at
positions 0, 10,...,150cM are shown for the two nondense maps.
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Fig. 2. Plot of NPL score Z(x) along one chromosome of length 150 cM under Hy for 1000 affected sib pairs when the two sibs are genotyped. Marker
data for all combinations of score functions and maps are based on the same IBD-configuration processes 1(-) as in Fig. 1 for all families. For details on

score functions and marker maps, see Fig. 1.
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Fig. 3. Plot of NPL score Z(x) along one chromosome of length 150 cM under H; for 1000 affected sib pairs when all four family members are genotyped.
The disease locus is positioned at 75 cM. It is biallelic, with disease allele frequency 0.1 and penetrance parameters i, =, = 0.1 and y/, = 0.8. For details

on score functions and marker maps, see Fig. 1.
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Fig. 4. Plot of NPL score Z(x) along one chromosome of length 150 cM under H; for 1000 affected sib pairs when the two sibs are genotyped. The disease
locus position, genetic model and IBD-configuration processes #w(-) for all families are the same as in Fig. 3. For details on score functions and marker

maps, see Fig. 1.

three variables for Sigp and Sigp, when the threshold z is
chosen so that a(z) = 0.05 if Ky = K = oo. We find that
o(z) is nearly unaffected by misspecification of K., for
Sipp, whereas it is dramatically inflated for Sigp when
either Ky is small or when any of Ay, and N are large.
Similarly, inflation of the power can be seen in Fig. 6 for
Sigp but hardly at all for Sigp.

When K and/or Aye are misspecified, there are three
important quantities that may change and affect the
significance level; py = En (Z(x)), a9 = ,/Varp,(Z(x))
and the crossover rate p. The latter is defined in the
Appendix and quantifies the amount of fluctuation of Z(-).
The larger p is, the larger is the effective number of
independent tests along the genome, leading to a larger
o(z). For Sigp, choosing K too large implies that g,
increases notably from 0, whereas g¢ decreases very little
from 1. For Spp, both y, and (to a very good
approximation) ¢, are unaffected by the choice of K.
Other computations (not shown here) reveal that p is about
the same for Sipp and Sipp. Hence, we conclude that Uo 18
most important for explaining why o(z) is much more
inflated for Sigp than for Sipp when K is chosen too large
or A too small.

Génin and Clerget-Darpoux (1996, 1998) calculated
pointwise power and significance level for several IBD-
based score functions including Sygp, assuming one fully

polymorphic marker at t. Our results in Figs. 5 and 6 are
extensions that (i) take multiple testing into account and
(i1) include the robustified score function Sygp.

9. Discussion

In this paper we have proposed a novel multipoint
approach for nonparametric linkage analysis which allows
for inbreeding among founders. It is valid for arbitrary
pedigree structures and contains two parameters chosen by
the user, the inverse inbreeding coefficient K and half the
inverse expected length of segments shared IBD, 1. We
have illustrated our methodology for affected sib pair
families, using simulation of NPL scores as well as
theoretical approximations of significance levels and
power. Although we have focused on NPL in this paper,
we believe our inbreeding multipoint approach can be
applied to other kinds of linkage analysis as well. For
instance, Abney et al. (2002) have recently developed a
QTL mapping technique for large inbred pedigrees, with
variance components allowing for inbreeding within
individuals. For smaller pedigrees, we believe their
approach can be combined with ours.

We have demonstrated that significance level and power
are both sensitive to misspecification of K. and Agye. In
order to make our approach fully practical, more work is
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Fig. 5. Plot of nominal (dashed) and actual (solid) significance levels for a genome-wide scan of N affected sib pair families as function of Kiye, Ayue and
N. The marker map is ideal dense and the score functions are Sipp (left panels) and Sipp (right panels). No inbreeding is assumed (K = o0o). The parameter
values not varied in each panel are fixed to Kiye = 500, Ayye = 10 and N = 1000, respectively.

needed on estimating these two parameters. A conservative
approach is to choose K and A too small to avoid
underestimating the level of inbreeding and length of
shared segments IBD. We may also choose K from prior
knowledge of the inbreeding coefficient F through (6). The
latter varies between populations and is often of the order
0.01 and 0.001 for small and large populations, respectively
(Morton, 1992, 2002; Morton and Teague, 1996). Another
possibility is to estimate F and A jointly from data using
maximum likelihood. For such an estimator to be efficient,
most or all of the founders have to be genotyped though.
Leutenegger et al. (2003) have developed an estimator for
individuals (N =f =1, m = 0). One could choose / in
advance and estimate F from data, see e.g., Ayres and
Balding (1998). On the other hand, we have shown that
careful choice (30) of score function decreases the effect of
misspecifying Kye and Agye, especially when all family
members are genotyped and marker data is dense enough.
Using (30), there is much less need for using a (potentially
bad) estimator of inbreeding. In general, we conjecture
though that the robustification (30) sacrifices more power
than one based on estimating K (and ).

Other choices of score functions are possible for affected
sib pairs. For instance, S(M) =4 — |M | is constructed to

take advantage of inbreeding, and, compared to Sigp, is
expected to yield higher power in the presence of
inbreeding but also increased sensitivity to the choice of
K. 1t is related to the N,-test of Génin and Clerget-
Darpoux (1996), which is a y>-test with three degrees of
freedom. The test based on S will be more robust to the
choice of K than the one using S, but to the price of lost
power.

For noninformative markers, our definition of family
scores (4)—(5), which is a straigtforward extension of the
one used by Kruglyak et al. (1996), has the disadvantage of
making the theoretical significance approximation too
conservative. An interesting and less conservative alter-
native would be to extend the Kong and Cox (1997) NPL
score approach to inbred founders. Alternatively, we could
use more accurate approximations of significance level and
power, either analytical (Feingold et al., 1993; Tu and
Siegmund, 1999; Tang and Siegmund, 2001; Angquist and
Héssjer, 2005) or by means of importance sampling
(Angquist and Héssjer, 2004). The latter approach works
both for complete and incomplete marker data. In
particular, it would be interesting to investigate how robust
the significance level and power of Sigp is against varying
marker informativeness, although Figs. 1-4 show promise.
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Fig. 6. Plot of nominal (dashed) and actual (solid) power for a genome-wide scan of N affected sib pair families as function of Ky, Ayue and N. The
disease gene is biallelic, with disease allele frequency 0.1 and penetrance parameters i, = ¥, = 0.1 and y, = 0.8. For further details, see Fig. 5.

We have assumed independent family scores. Violation
of this assumptions induces N(N — 1)/2 covariance terms
2V[Y/COVHO(Zfam’[(X), Ztamj(x)) in the expression for
Vary,(Z(x)). Potentially, this yields a standard variation
of the same order O(+/N) as the bias due to inbreeding.
However, for dense marker maps and random mating,
IBD-configurations of different pedigrees are independent.
For incomplete marker data, dependency of marker alleles
across families might introduce some covariance though.
The effect of population substructure or nonrandom
mating is essentially that (K,A) varies randomly over
families. This can be thought of as a new variance
component added to Vary (Z(x)).

Our two parameter Markov model for the founder allele
IBD-configuration process u(-) can be generalized in
several ways:

Firstly, the number of parameters can be enlarged,
allowing, e.g. for inbreeding and kinship coefficients to
vary between founders and pairs of founders. See Weir
(1994), Cannings (1998) and Leutenegger et al. (2002) for
extensions along these lines when f = 2.

Secondly, time- and memory-constraints could be
improved by state space reduction. The most time- and
memory-consuming part involves |#°| x |# |-matrices in
the forward—backward algorithm for HMMs, cf. (A.3)—(A.6).
A nuclear family with two parents and n — 2 children has

2(n —2) meioses. Hence |#]= 15x 2°"272 which is
feasible for most nuclear families of practical interest.
However, for larger pedigrees with many founders, the
state space quickly becomes too large without further
restrictions. To alleviate this, the state space % of founder
allele IBD-configurations can be decreased by requiring
|u|=r for some 2<r<2f. When r = 2f, we are back to
usual linkage analysis with no inbreeding among founder
alleles. The total probability of all states that are removed
is O(K™'=%). If %, and #", denote the reduced state spaces
for u and w, we have

oyl =21 =f+1,
U o] = 2f* — 1413 /3 + 11f%/2 — 11f /6 + 1

and | %] = 2"~ |%,|. This makes the multipoint approach
computationally feasible not only for small but also for
medium sized pedigrees when r equals 2f — 1 or 2f — 2. See
Table 2 for numerical values.

Thirdly, the Markov process model for /(-) could be
generalized, allowing more than one founder allele to
change at a time. This would be more realistic, viewing I(-)
as a function of the f randomly picked founder individuals
and the ancestral recombination process %(-).

Fourthly, the Markov assumption itself can be ques-
tioned. It leads to exponentially distributed segments of
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IBD sharing between pairs of haplotypes, whereas a
distribution with larger coefficient of variation, such a
mixture of exponential distributions, would be more
realistic. See for instance, Chapman and Thompson
(2003) for results along these lines. However, a more
complicated non-Markov model for u(-) and w(-) requires
another method of computing family scores than presented
here.

Finally, we want to emphasize that the dense marker
HMM algorithm of Section 5 is of independent interest for
linkage analysis (with or without inbreeding among
founders). It does not require specification of marker allele
frequencies, and in the future, with very dense marker
maps, it will probably be possible to determine the
piecewise constant genotype IBD-configuration process
M = {M(x)}. When K = oo, M(-) will often be Markov (as
for affected sib pairs), and then family scores based on a
dense marker HMM algorithm coincides with the much
simpler (A.10), which does not require a HMM algorithm.
However, the Markov property is not guaranteed in
general (not even when K = oo) and hence the dense
marker HMM algorithm provides a general way of
computing NPL family scores when marker information
is complete given the set of genotyped individuals.
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Appendix A

In order to prove Propositions 1 and 2, we use the
following lemma, which gives explicit conditions under
which a function of a Markov process is Markov itself.

Lemma 1. Let X() ={X(¢); 0<t<L} be a stationary
Markov process in continuous time with finite state space
Z and intensity matrix Ay. Let Y(t) = g(X(¢)). Then, a
sufficient condition for Y(-) = {Y(t); 0<t< L} to be Markov
with intensity matrix Ay is that

Ay(@p.y)= > Ax(x,x)

¥ig(x)=y'

(A.1)

is well defined, i.e. not dependent upon the choice of x € X
such that g(x) = y. Let {Z'1}]_, be a decomposition of X into
equivalence classes, defined as inverse images g~'(y) of g.
Then, a sufficient condition for (A.1) to hold is the existence
of J one-to-one mappings h; : & — X,j=1,...,J, such that

@) h(ZN=%Z1,1=1,...,n,
(i1) given any | and x,x' € Z;, there exists a sequence
Jiseeesdgs 4= q(x,X'), such that hy, oo h; (x) =,
(i) Ax(x,x") = Ax(hj(x), hi(x")) for all x,x’.

Proof. The sufficiency of (A.1) for Y(-) to be Markov is
well known, see e.g., Dudoit and Speed (1999) and

Rosenblatt (1974). Hence, we only need to prove that the
RHS of (A.1) is independent of x € g~'(y) when (i)(iii)
hold. Given x; € %, assume first that x, = /;(x;) for some
le{l,...,n}and j € {1,...,J}. Then

Z Ax(x1,x') = Z Ax(hi(x1), hj(x"))

x5 g(x)=y X5 g(x)=y

= Z Ax(x2,X),

¥ g(x)=y’

(A.2)

using (iil) in the first identity and (i) in the second. For an
arbitrary x, € Z;, we may find a sequence jj,...,j,
satisfying (ii). Repeating the argument in (A.2) ¢ times
we find that 3. oy Ax(x,x) =300 o Ax (2, X).
Since / and x|, x, € Z; were arbitrarily chosen, this proves
the lemma. [

Proof of Proposition 1. In order to prove that u(:) is a
Markov process, we will use Lemma 1 and verify (A.1) with
X(-)=1(-) and Y(-) = u(-). This is equivalent to verifying
that the RHS of (10) is independent of I € g~!(u). In order
to do so, we will establish (i)—(iii) with J = K! and {hj}_{:1
the set of permutations on {l,...,K}. By definition
of u(x) = g(I(x)), (i) holds as well as (ii)) with g =1.
Since A;(I,I') only depends on [I'—1| and |h(I')—
hi(I)| = |I' — 1|, (iii) follows. Finally, the fact that w(-) is
a Markov process with intensity matrix (11) follows easily
from the fact that w(-) = (u(-), v(-)), with u(-) and v(-) two
independent Markov processes. [

Proof of Proposition 2. We apply Lemma 1 with X(-) =
w(-) and Y(-) = w(-). We need to prove that the RHS of
(A.1) is independent of x € g~!(y), or equivalently that the
RHS of (18) is independent of wew. To do so, we
establish (i)—(iii)) with J=f and /h(w) = h(u,v) =
(Ttr(w),v+cx), k=1,...,J. Conditions (i)—(ii)) follow
directly from the definition of w. In order to establish
(1i1), it suffices, in view of (11), to show that (a) A,(u, ') =
A (7 (u), (1)) and (b) Ay,(v,v') = Ay(v+ ¢k, V' + ¢) for
k=1,...,f. But

Au(u, u/) = Z
Isg=u

A, @) = Y

Ig(I)=m, ()

A1, 1)),

A1, 1Y),

for any I, and I, such that g(/;) = u and g(/») = 7x(u). By
definition of 7, we may choose I, = I o ;. But

oAUy = Y

IsgI= I 9=

- >

I =r4 ()

A[([l o nk,l’l o 7Ik)

A1, 1),

proving (a). To prove (b), notice that 4,(v,v") only depends
on |v/ —v|. Since |(v' +cx)— W+ )| = —v|, (b) fol-
lows. O
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A.1. Recursion formulas for forward and backward
probabilities

Consider first a finite marker map {xh},lle. Let Q) be a
diagonal matrix of order |#°| with entries Q,(W, W)=
P(Mp|w(x,) =w) on the diagonal. Introduce artificial
‘boundary grid points’ x = 0 and x>*! = L. The forward
probabilities are initialized as ao(Ww) = P(w) and then
updated recursively as

ou(9) =D o 1 (F)P(F, w), s=1,...,S, (A.3)

where Py = {P,(w, W)} is a |#'| x |#|-matrix, defined as

eXP((x‘Y_l - -XX)AW) if hs—l = hs»
P E5XP((XX_l - th_1+1)Aﬁ>)QhS,1+1
) XM o — x)40)Qy
X eXp((xlzs - XJ)AW) if hs—l <h.\‘;
(A4)

for s=1,...,8+ 1, where h; satisfies hy =0, hg,1 = H
and x;, <x’<xp4 for s=1,...,S. To make the last
definition well defined for all s, we introduce artificial
‘boundary markers’ xo =0 and xpy,;>L. Similarly, the
backward probabilities are initialized as fg, (%) = 1, and
then updated recursively through

Bi9) =D Peyt(w,)Byy(7), s =8,....1. (A.5)

For dense marker maps we proceed as follows: assume
there are n possible marker IBD-configurations
M=M" . ., M" and decompose ¥ into n components
W' = {w; fO¥) = M}, i =1,...,n, with fas in (24). Define
i(x) € {1,...,n} through M(x) = M'™. Initialize the for-
ward probabilities as o(W) P(W)l{‘;-eyif"("“))' Since a,(W) =

0 when w¢ W i(xs), we only need to update the forward
_ aros—1 _ S
probabilities using (A.3) when w' € #~ O and w e B

. - i) - i(x%) . .
Hence Py is an |/~ | x |#" ’|-matrix which we define
as follows: introduce submatrices A; = {Ax(W, W); w €
W' and W € #7} of Ay for i,j=1,...,n. Since Ww(-) is a
piecewise constant Markov process, M(-) will be piecewise
constant as well, with jumps at O0<z;<.--<zg<lL.
Introduce artificial boundary ‘jump points’ zyp =0 and
zre1>L, and let i, be the constant value of i(x) on

The backward probabilities are computed as before in
(A.5), using (A.6) instead of (A.4).

A.2. Analytical approximations of significance level and
power for dense marker maps

Let /lo = EH(](Z(X))’ .ul(x) = EHI(Z(.X)), :ul = ,Lll(‘[,'),
1y = pi(x), o} = Varp(Z(x)) and o¢}(x) = Vary, (Z(x)).
We assume that Z(-) is stationary, with covariance function
satisfying

rz(t) = Covy,(Z(x), Z(x + 1)) = og(1 — 2plt]) + o(1])
(A.7)

for small lags ¢, where p is the crossover rate. This crucial
assumption requires a dense set of markers. In the above
formulas, expectation and covariance is with respect to
Kirue and gy, whereas the NPL score Z depends on K and
(sometimes also) A.

For large N, we approximate Z(-) by a Gaussian process.
Moreover, assuming a sequence of contiguous alternatives
the distribution of Z(-) under H; is asymptotically the same
as that of {u;(x) — yuy + Z(x); 0<x<L} under Hy (Fein-
gold et al., 1993; Hossjer, 2005b). Hence, we obtain the H;-
distribution of Z(-) from the Hj-distribution simply by
adding the drift function p,(-) — uy. In particular, this
approximation entails ¢2(-) ~ 3. Using results of Lander
and Bolstein (1989), Feingold et al. (1993) and Lander
and Kruglyak (1995), we can approximate the significance
level by

a(z) ~ 1 — exp(—(1 — D())(C + 2pLioa(2))),

where z' = (z — pg) /09, C is the number of chromosomes
and L, the total length of Q2. The power is approximated
by

(A.8)

’ 4 2 1
p)~1—P(z —n)+ oz _")(n_d_m)

(A.9)

where @ and ¢ are the standard normal distribution and
density functions, n = (u; — uy)/oo is the noncentrality
parameter and d = —u} /(2noop) a normalized mean slope
at the disease locus.

The quantities involved in (A.8)—(A.9) are computed as

N
K= Z Vit J=0,1,
i=1

(zhyzhg1) for h=0,..., R —1 and ig the constant value of N
i(x) on (zg,L). Define hy through hy =0, hg,y = H and Wy = Z Vil
zp <X’ <zpqq for s=1,...,S. Then py

exp((xd‘—l - xS)Al'hx,l']ll‘) lf hS*l = hSa

exp(x*™" =z 1) iy iy Vi iy 1 A6
P = i ’ s .6

’ XHhS:hS_lJ,-Z exp((zh—l - Zh)Ai/i—l’[h—l)Aih—l’ih
x exp((zn, — x4, iy ) if hg_y <h.
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N

22
E :“/i 00i>
=1

where gy, f1; 11,5 05; and p; are quantities defined for the
ith family score in the same way as the corresponding
quantities of Z. In particular, for pedigrees of the same
form with identical phenotype vectors Y and equal
weighting y; = 1//N, it follows that W= \/Nuj,-,
1, =Ny, of = og; and p = p;.

We assume familywise NPL scores of the form

Zam,i(X) = Ri(Wi(x)),

where w;(-) is the IBD-configuration process and R; the
standardized score function of family 7. It is evident from
(25) that (A.10) requires a dense set of markers
M = {M(x)}. However, this is not a sufficient condition.
This follows from (4) and the fact that M(-), in general, is
not a Markov process and then P(w(x) = -|M)# P(Ww(x) =
-|M(x)) is not a function of x alone. However, (A.10) holds
if the unstandardized score function S; of family 7 is IBD
based, i.e. S;(W) = S(OW; Y;) = Si(M), where Y; the pheno-
type vector of family i and M = f () the marker genotype
IBD-configuration corresponding to w. Then

Ri(w) = (S:(%) — vs,)/Ks;

in (A.10). Since vs, = v5,(K) and ks, = k5,(K), it follows
that R; as well as the family scores (A.10) depend on K but
not on A.

Put  Po(W) = Py (Wi(x) = W),  P1;(%) = Pu, (Wi(x) =
Ww|Y;) and let A;;, be the intensity matrix of 1;(-). These
three quantities all depend on Ky and Ayu. Then,
generalizing results from Hossjer (2003a) and Angquist
and Hossjer (2005), we find that

Lo = Z Ri(%) Po; (W),

(A.10)

Uy = Z R,(W)Py;(w),
a5 = Y (Ri() — p,)* Poi(0¥),

w
= Pu()Ag, (0, W )R(V) — Ri(7)),
wEW
P =025 % Poi(i) A, (9, )(ROT) — Ri(0D))’.
WwEW

(A.11)

We emphasize that uy; = 4 =0 and ogp; = 09 = 1 when
K = K¢, but not necessarily when K. is misspecified.
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