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Abstract

In this paper, we present a unified mathematical model for linkage analysis that allows for inbreeding among founders in all families.

The identical by descent (IBD) configuration of each pedigree is modeled as a Markov process containing two parameters; the inverse

inbreeding and kinship coefficient and a rate parameter proportional to the inverse expected length of chromosome segments shared IBD

by two different founder haplotypes. We use hidden Markov models and define a forward–backward algorithm for computing the

conditional IBD-distribution given marker data, thereby extending the multipoint method of Lander and Green [1987. Construction of

multilocus genetic maps in humans, Proc. Natl. Acad. Sci. USA 84, 2363–2367] to situations where founders are inbred. Our

methodology is valid for arbitrary pedigree structures. Simulation and theoretical approximations for nonparametric linkage (NPL)

analysis based on affected sib pairs reveal that NPL scores are inflated and type 1 errors increased when the inbreeding coefficient or rate

parameter is underestimated. When the parents are genotyped, we present a general way of modifying the score function to drastically

reduce this effect.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that linkage analysis is sensitive to
misspecification of the inferred relationship between
individuals belonging to the same family. For instance,
an incorrect pedigree structure, such as nonpaternity and
unidentified adoption, for some families in the data set may
affect both significance level and power (Ott, 1999, Chapter
11). Even though the pedigree structure is correct, relation-
ships of the founders might be misspecified. Founders are
traditionally considered unrelated in linkage analysis,
meaning that no founder alleles are identical by descent
(IBD). However, if families belong to a population with
some degree of inbreeding, there are often pairs of founder
haplotypes that share long chromosomal segments (Bro-
man and Weber, 1999). Miano et al. (2000) noticed that
e front matter r 2006 Elsevier Inc. All rights reserved.
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failure to model inbreeding of founders resulted in inflated
lod scores for a sample of three families. As a result, type
one errors are inflated if thresholds are not adjusted
properly. The same is true for nonparametric linkage
(NPL) (Génin and Clerget-Darpoux, 1996, 1998) and MLS
scores (Leutenegger et al., 2002) based on affected sib pair
families. For samples of many small pedigrees, the
potential effect of misspecifying inbreeding of founders
can be much larger than pedigree errors. The reason is that
pedigree errors typically affect a small proportion of
families, whereas misspecified founder relations can be
present in all families.
In this paper we introduce a hidden Markov model for

the IBD configuration of a family with possible inbreeding
among founders. It is valid for arbitrary family structures
and contains (i) the inheritance vector v, which specifies
inheritance at all meioses in the pedigree (Donnelly, 1983)
and (ii) a Markov process u that models IBD-configuration
of founder alleles. The latter process contains two main
parameters; K, an integer which is the inverse of the
inbreeding and kinship coefficient, and l, a rate parameter
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O. Hössjer / Theoretical Population Biology 70 (2006) 146–163 147
which is inversely proportional to the average chromoso-
mal length shared IBD by a pair of founder alleles. In the
special case of one single founder, u reduces to the Markov
model proposed by Stam (1980).

Viewing the IBD-configuration w ¼ ðu; vÞ as the hidden
Markov regime, we compute its conditional distribution
given marker data. This multipoint approach to linkage
analysis can be viewed as a generalization of the one
proposed by Kruglyak et al. (1996), where v is a hidden
Markov regime under Haldane’s map function of no
interference and the forward–backward algorithm for
hidden Markov models (Baum, 1972; Lander and Green,
1987) is used for computing the conditional distribution of
v given marker data at all loci of interest. We extend the
Lander–Green algorithm to inbreeding situations (Ko1)
and compute the conditional distribution of w given data at
all loci of interest.

Our algorithm can be applied to a wide range of genetic
models and score functions, including parametric and NPL
analysis as well as quantitative trait locus methods. In this
paper, we consider NPL scores. Based on simulated data as
well as theoretical approximations for affected sib pair
families we show that NPL scores are inflated and
significance level and power increase when the degree of
inbreeding is underestimated and the average length of
pairwise IBD-segments overestimated. This confirms pre-
vious conclusions of Génin and Clerget-Darpoux (1996,
1998). When the parents are genotyped, we present a
general method of correcting the score function for these
effects. It is based on conditioning the original score
function on the number of different founder alleles that
are IBD.

The paper is organized as follows: In Section 2 we extend
NPL analysis to account for inbreeding among founders.
The Markov model for the IBD-configuration along one
chromosome is defined in Section 3. Simulation and
computation of family scores are treated in Section 4,
where in particular the HMM algorithm is defined. In
Section 5, we extend the HMM algorithm to dense marker
maps, and in the next two Sections 6 and 7, the effect of
misspecifying K and l and choosing score function are
discussed. Numerical results are presented in Section 8 and
a summary and various extensions of our work is provided
in Section 9. Finally, some mathematical details are
collected in the Appendix.

2. Linkage analysis and IBD-configurations allowing for

inbreeding

Consider a collection of N families with occurrence of a
certain disease. For each family, DNA marker data are
collected for as many individuals as possible along one or
several chromosomes. In addition, phenotypes are regis-
tered in all families. These are variables related to the
disease. For instance, it could be quantitative, such as body
mass index or glucose concentration, or a binary affection
status indicator. Suppose we wish to test presence of a
disease causing gene t along a genomic region O. We
formulate this as an hypothesis testing problem, with null
hypothesis H0 that t is unlinked to O, and alternative
hypothesis H1 that it is not:

H0 : t 2 O;

H1 : teO:

Alternatively, we may view the testing procedure as one
where H0 is tested against a family of pointwise alternative
hypotheses H1ðxÞ : t ¼ x.
In NPL, a typical test statistic ZðxÞ for discriminating

between H0 and H1ðxÞ compares whether segregation of
phenotypes in the N families is compatible with their IBD-
configurations at x. For binary phenotypes, ZðxÞ quantifies
the amount of allele sharing IBD at x among affected
pedigree members in the N families (Penrose, 1935;
Whittemore and Halpern, 1994; Kruglyak et al., 1996;
McPeek, 1999). More general NPL scores can be defined
for a large class of phenotypes and genetic models by
comparing the IBD-configuration at x for all families with
their phenotypes, so that ZðxÞ is large when individuals
with concordant (discordant) phenotypes share more (less)
alleles IBD than is expected by chance (Whittemore, 1996;
Hössjer, 2003b, 2005a). When testing H0 against H1, we
use the maximal NPL score

Zmax ¼ sup
x2O

ZðxÞ (1)

as test statistic and reject H0 when Zmax exceeds a given
threshold z. This gives significance level and power

aðzÞ ¼ PH0
ðZmaxXzÞ

bðzÞ ¼ PH1
ðZ0maxXzÞ, ð2Þ

where Z0max is defined as Zmax, but with the maximum
restricted to loci x on the same chromosome as t. A large
class of NPL score statistics

ZðxÞ ¼
XN

i¼1

giZfam;iðxÞ (3)

are defined as a linear combination of the family scores
Zfam;iðxÞ, with the possibility of assigning larger weights gi

to more informative families.
In order to define the family scores, we omit family index

i and consider a fixed family P ¼ f1; . . . ; ng with n

members. These are numbered so that the first f ones,
F ¼ f1; . . . ; f g, are founders, i.e. have no ancestors in the
pedigree, and the remaining n� f ones, N ¼ ff þ 1; . . . ; ng,
are nonfounders.
When defining the IBD-configuration at x for a specific

family, the founders are traditionally treated as unrelated,
meaning that no founder alleles are IBD. This means that
the IBD-configuration at x is a function of the inheritance
vector vðxÞ (Donnelly, 1983). This is a binary vector of
length m ¼ 2ðn� f Þ, the number of meioses in the pedigree.
It summarizes allele transmission in the pedigree at locus x,
such that the sth bit vsðxÞ is 0 or 1 depending on whether
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Table 1

Founder allele IBD-configurations u and founder genotype IBD-configurations MF ¼MFðuÞ when f ¼ 2, as well as probabilities PðuÞ for various values

of K

u fUlg MF PðuÞ

K K ¼ 10 K ¼ 100 K ¼ 1000

(1111) (1234) {(11),(11)} K�3 0.0010 10�6 10�9

(1112) (123)(4) {(11),(12)} ðK � 1ÞK�3 0.0090 9:9� 10�5 10�6

(1121) (124)(3) {(11),(12)} ðK � 1ÞK�3 0.0090 9:9� 10�5 10�6

(1211) (134)(2) {(12),(11)} ðK � 1ÞK�3 0.0090 9:9� 10�5 10�6

(1222) (1)(234) {(12),(11)} ðK � 1ÞK�3 0.0090 9:9� 10�5 10�6

(1122) (12)(34) {(11),(22)} ðK � 1ÞK�3 0.0090 9:9� 10�5 10�6

(1212) (13)(24) {(12),(12)} ðK � 1ÞK�3 0.0090 9:9� 10�5 10�6

(1221) (14)(23) {(12),(12)} ðK � 1ÞK�3 0.0090 9:9� 10�5 10�6

(1123) (12)(3)(4) {(11),(23)} ðK � 1ÞðK � 2ÞK�3 0.072 0.0097 0.0010

(1213) (13)(2)(4) {(12),(13)} ðK � 1ÞðK � 2ÞK�3 0.072 0.0097 0.0010

(1231) (14)(2)(3) {(12),(13)} ðK � 1ÞðK � 2ÞK�3 0.072 0.0097 0.0010

(1233) (1)(2)(34) {(12),(33)} ðK � 1ÞðK � 2ÞK�3 0.072 0.0097 0.0010

(1232) (1)(24)(3) {(12),(13)} ðK � 1ÞðK � 2ÞK�3 0.072 0.0097 0.0010

(1223) (1)(23)(4) {(12),(13)} ðK � 1ÞðK � 2ÞK�3 0.072 0.0097 0.0010

(1234) (1)(2)(3)(4) {(12),(34)} ðK � 1ÞðK � 2ÞðK � 3ÞK�3 0.5040 0.9411 0.9940

Table 2

The number of possible IBD-configurations among f founders when no

restrictions are imposed (jUj) and with at least r different alleles IBD

(jUrj), r ¼ 2f � 2, 2f � 1

f jUj jU2f�2j jU2f�1j

1 2 2 2

2 15 14 7

3 203 81 16

4 4140 295 29

5 115 975 796 46

6 4 213 597 1772 67

7 190 899 322 3459 92
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the sth meiosis corresponds to a grandpaternal or grand-
maternal allele being transmitted to the child. We denote
the collection of all 2m inheritance vectors as V.

In this paper, we define the IBD-configuration at x more
generally as

wðxÞ ¼ ðuðxÞ; vðxÞÞ,

where uðxÞ is the IBD-configuration of the f founders at x

(Thompson, 1974). It can be written as a list of founder
alleles u ¼ ðb1; b2; . . . ; b2f Þ of a fully polymorphic marker,
with b2k�1 and b2k the paternal and maternal alleles of
founder k. Hence, two alleles j and j0 are IBD if and only if
bj ¼ bj0 . The actual numbering of alleles is not important,
any permutation of allele labels will do. Let juj denote the
number of distinct founder alleles IBD of u. If founder
alleles are numbered A ¼ f1; . . . ; 2f g, u defines a disjoint
decomposition A ¼

Sjuj
l¼1Ul , where IBD founder alleles

belong to the same subset. This gives rise to an equivalent
representation u ¼ fU1; . . . ;U jujg. Table 1 shows the set
U ¼ fug of founder allele IBD-configurations when f ¼ 2.
This is the well-known list of IBD-states for a pair of
individuals (Gillois, 1964; Jacquard, 1974). In Table 2, we
list jUj as function of f. The collection W ¼ U�V of all
possible IBD-configurations has size jWj ¼ jUj � jVj ¼
2mjUj. It is seen that jUj and jWj increase rapidly with f.
Later on, we will discuss various ways of reducing the size
of the state space for larger pedigrees.

For a single chromosome of length L Morgans, assume
that marker data M consists of H markers, located at
0px1o � � �oxHpL. If the marker at xh is dh-allelic, we let
ðah;2k�1ah;2kÞ be the marker genotype of k 2 P at xh,
consisting of one paternal allele ah;2k�1 and one maternal
allele ah;2k, both of which are coded as numbers from
f0; 1; . . . ; dh � 1g. The phase of the genotype is unknown
without further information from previous generations, i.e.
no imprinting is assumed. If T � P is the set of genotyped
individuals, Mh ¼ fðah;2k�1ah;2kÞgk2T is the marker data at
xh and M ¼ ðM1; . . . ;MH Þ.
Following Weeks and Lange (1988), Fimmers et al.

(1989), Whittemore and Halpern (1994) and Kruglyak et
al. (1996), the NPL score at x for one family is defined as

ZfamðxÞ ¼ ðEðSðwðxÞjMÞ � nSÞÞ=kS;x, (4)

where S ¼ Sðw;Y Þ is a real-valued score function and Y ¼

ðY 1; . . . ;Y nÞ the phenotypes of one family. The phenotype
of individual k, Y k, is either quantitative or binary (Y k ¼ 0
and Y k ¼ 1 for nonaffecteds/affecteds). The standardiza-
tion by nS ¼ EH0

ðEðSðwðxÞÞjMÞÞ ¼ EðSðwÞÞ and k2S;x ¼
VarH0

ðEðSðwðxÞÞjMÞÞ in (4) ensures that ZfamðxÞ has zero
mean and unit variance under H0. The expectation
and variance in the definitions of nS and k2S;x are taken
with respect to variations in wðxÞ and marker data M,
whereas Y is fixed. Since the variance computation
is often involved, we will use the complete marker data
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approximation

k2S;x ¼ k2S ¼ VarH0
ðSðwðxÞÞÞ. (5)

It can be shown that (5) implies VarH0
ðZfamðxÞÞp1, with

equality for complete marker data (Kruglyak et al., 1996).
By definition of the family scores, the total NPL score (3)

satisfies EH0
ðZðxÞÞ ¼ 0. If the weights are chosen so thatPN

i¼1 g
2
i ¼ 1, we obtain VarH0

ðZðxÞÞp1 when using the
simplified standardization (5), with equality iff marker data
at x is complete in all families.

3. Stochastic model for IBD-configuration

We consider one chromosome of length L Morgans and
assume that the triplets ðwð�Þ;Y ;MÞ, with wð�Þ ¼

fwðxÞ; 0pxpLg, are independent between families. Thus,
we only consider one fixed family in this section.

3.1. IBD-configuration process

We assume that uð�Þ ¼ fuðxÞ; 0pxpLg and vð�Þ ¼

fvðxÞ; 0pxpLg are two independent processes. Under
Haldane’s (1919) model of no interference, the m compo-
nents of the latter process are independent Markov
processes with state space f0; 1g and transitions occurring
according to a Poisson process with intensity 1. Hence, vð�Þ

is a Markov process on f0; 1g�m with intensity matrix

Avðv; v
0Þ ¼

1; jv� v0j ¼ 1;

0; jv� v0j ¼ 2;

�m; v ¼ v0;

8><
>:

and jv� v0j ¼
Pm

j¼1jvj � v0jj is the Hamming distance
between v and v0.

In order to define uð�Þ, we need a population genetic
model. Consider a diploid population with ancestral
history defined by tracing allele transmission T generations
backward in time. Let Nt be the population size of
Generation t ¼ 0; 1; . . . ;T , consisting of Nt=2 males and
females. The founder genotypes of the males and females in
the given pedigree are drawn independently with replace-
ment among the males and females of Generation 0. We
regard Generation T as a founder population, and all of its
2NT haplotypes as unrelated (non-IBD). For instance, we
may model population evolution by means of a diploid
Wright–Fisher model with crossovers but no mutations.
The genealogy along the whole chromosome is then
determined by the ancestral recombination graph Gð�Þ ¼
fGðxÞ; 0pxpLg of the Generation 0 population (Hudson,
1983; Griffiths and Majoram, 1997). Here GðxÞ is the
coalescence tree T generations back in time at locus x

(Kingman, 1982). Two alleles from Generation 0 are IBD
at x iff they originate from the same haplotype or root of
GðxÞ at Generation T. Hence uð�Þ is a function of Gð�Þ and
the f randomly picked individuals of Generation 0 that
constitute the founders of the pedigree of interest. Let KðxÞ

be the number of haplotypes from Generation T that have
survived down to Generation 0 at locus x. We make the
simplifying assumption:
1.
 KðxÞ � K at all x, and the descendants in Generation 0
of each of the K haplotypes of Generation T divide, at
each locus x, the 2N0 alleles of Generation 0 into K

equally large groups. Moreover, at each x, for a
randomly chosen individual k among the males or
females of Generation 0, the (ordered) pair of ancestral
haplotypes transmitted to k at x is uniformly distributed
on f1; . . . ;Kg � f1; . . . ;Kg.

Assumption 1 gives the marginal distribution of uðxÞ at all
loci x: the 2f ancestral founder haplotype numbers at x are
drawn independently and uniformly from f1; . . . ;Kg, and
alleles with the same number form the equivalence classes
Ul of uðxÞ. Table 1 lists the marginal distribution when
f ¼ 2 for several values of K. It has previously been used in
linkage analysis by Génin and Clerget-Darpoux (1996, 1998)
and Génin et al. (1998). These authors use the condensed list
of nine genotype identity states, which they refer to as IBW
states, rather than the 15 allele identity states.
Let F be the inbreeding coefficient, i.e. the probability

that two alleles of a founder are IBD and f the kinship
coefficient, i.e. the probability that two randomly picked
alleles, one from each of two distinct founders, are IBD.
Then, it follows easily that

F ¼ f ¼ 1=K (6)

independently of the founder or pair of founders chosen.
In general Gð�Þ is not a Markov process under Haldane’s

map function (Wiuf and Hein, 1999), and neither is uð�Þ.
However, we will simplify further and propose a model
under which uð�Þ is Markov. Let I jðxÞ 2 f1; . . . ;Kg be the
ancestral haplotype number assigned to the jth founder
allele at x and IðxÞ ¼ ðI1ðxÞ; . . . ; I2f ðxÞÞ the collection of
ancestral haplotype numbers of all founders at x. Then
uðxÞ ¼ gðIðxÞÞ is a function of IðxÞ, with each Ul 2 uðxÞ

defined as a set founder alleles j with identical I jðxÞ.
The above discussion implies that fI jðxÞg

2f
j¼1 are indepen-

dent and uniformly distributed on f1; . . . ;Kg at all x. We
will further assume that
2.
 fI jð�Þg
2f
j¼1 are independent and stationary Markov

processes on f1; . . . ;Kg with the same intensity matrix
AIj
¼ ðAIj

ði; i0ÞÞ, satisfying

AIj
ði; i0Þ ¼

l=ðK � 1Þ; iai0;

�l; i ¼ i0;

(

where l40 is a given constant.

The constant l can be interpreted by considering the length
Lshared of a segment shared IBD by a pair of founder alleles
j and j0. Then, if chromosome boundary effects are ignored,
Lshared is exponentially distributed with

EðLsharedÞ ¼ 1=ð2lÞ. (7)
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Similarly, the length of segments not shared IBD is also
exponentially distributed, with mean ð1� F Þ=ð2lF Þ.

More explicitly, we may reformulate the interpretation
of K and l in terms of the ancestral recombination graph as
follows: consider two distinct founder alleles j and j0.
Tracing their ancestry backward in time at locus x, let T coal

be the generation of coalescence. Hence Tcoal is a function
of j, j0 and GðxÞ. We assume T coal ¼ 1 whenever Tcoal4T ,
reflecting the fact that ancestral founder alleles from
Generation T are regarded as non-IBD. Using interpreta-
tions (6), (7) of K and l, it follows that

K�1 ¼ PðTcoalo1Þ,

l�1XEðT�1coaljTcoalo1Þ, ð8Þ

where, in the second row, we used the fact that 2T coal

meioses are needed to join j and j0, each one with intensity 1
to switch state from grandmaternal to grandpaternal
transmission when Haldane’s map function is used and
map distance is measured in Morgans. Since there are
switches that do not change the IBD-configuration of
j and j0 (Fisher, 1954), we have inequality in the second row
of (8). In other words, an upper bound for l is the
harmonic mean of T coal between two distinct founder
alleles, conditional on the event that they are
IBD.

An interesting consequence of (8) is that the same
inbreeding coefficient can be obtained if j and j0 have one or
a few close common ancestors on one hand and many
distant common ancestors on the other hand. In the latter
case, T coal and l will be larger and the mosaic of IBD and
non-IBD segments shorter. See Leutenegger et al. (2003)
for a similar discussion. In fact, using (8), the values of K

and l depend on our definition of IBD. If we increase T,
that is, choose to consider a larger population with
ancestral founders further back in time, K will decrease
and l increase.

An immediate consequence of Assumption 2 is that Ið�Þ

is a stationary Markov process on f1; . . . ;Kg�2f with
intensity matrix

AI ðI ; I
0Þ ¼

l=ðK � 1Þ; jI � I 0j ¼ 1;

0; jI � I 0jX2;

�2f l; I ¼ I 0;

8><
>: (9)

where jI � I 0j ¼
P2f

j¼11fIjaI 0
j
g. The following proposition

states that uð�Þ and wð�Þ are Markov processes as well,
thereby generalizing the Markov model for f ¼ 1 proposed
by Stam (1980).

Proposition 1. Under Assumption 2, uð�Þ is a stationary

Markov process on U with intensity matrix Au ¼ ðAuðu; u0ÞÞ,
where

Auðu; u
0Þ ¼

X
I 0;gðI 0Þ¼u0

AI ðI ; I
0Þ; uau0, (10)

and I is chosen arbitrarily such that gðIÞ ¼ u. Moreover, wð�Þ

is a stationary Markov process on W with intensity
matrix

Awðw;w
0Þ ¼ Awððu; vÞ; ðu

0; v0ÞÞ

¼

Auðu; u0Þ; uau0; v ¼ v0;

Avðv; v0Þ; u ¼ u0; vav0;

0; uau0 and vav0:

8>><
>>: ð11Þ

The diagonal elements of both Au and Aw are chosen so that

the row sums
P

u0 Auðu; u0Þ and
P

w0 Awðw;w0Þ are zero.
3.2. Phenotypes

Let G ¼ fða2k�1a2kÞg
n
k¼1 be the set of genotypes at the

disease locus t, with a2k�1 and a2k the paternal and
maternal alleles of k. Notice that G is a function of the
founder alleles at the disease locus, a ¼ fajg

2f
j¼1, and vðtÞ,

which we write as G ¼ Gða; vðtÞÞ. For a d-allelic disease
locus, we assume that each aj 2 f0; . . . ; d � 1g. The genetic
model consists of penetrance parameters in PðY jGÞ and
disease allele frequencies pr ¼ Pðaj ¼ rÞ. We have that Y

and wð�Þ are independent under H0, whereas under H1

PðY jwð�ÞÞ ¼ PðY jwðtÞÞ ¼
X

a

PðY jGða; vðtÞÞÞPðajuðtÞÞ.

(12)

In the last step we assumed that a and v are conditionally
independent given u, which holds when there is no
segregation distortion. We further assume that alleles of
the ancestral founder Generation T are independent and
then transmitted, without mutations, through T genera-
tions to A. Hence

PðajuÞ ¼
Y

j2AðuÞ

paj
(13)

whenever aj in constant within each Ul 2 u and PðajuÞ ¼ 0
otherwise, and AðuÞ �A is the set of founder alleles that
contains (say) the smallest element from each Ul 2 u.
For affected sib pairs, (12)–(13) was used by Génin and

Clerget-Darpoux (1996) for calculating power for affected
sib pair score functions.
3.3. Marker data

Assuming markers are in linkage equilibrium (LE) with
each other and with the disease locus, we get

PðMjwð�Þ;Y Þ ¼ PðMjwð�ÞÞ ¼
YH
h¼1

PðMhjwðxhÞÞ, (14)

both under H0 and H1. This assumption holds, for
instance, if the markers of the ancestral founder popu-
lation are in LE and then the population sizes Nt�1; . . . ;N0

of the next generations are large enough to prevent
genetic drift from inducing linkage disequilibrium. Each
term on the RHS of (14) is defined by conditioning on the
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vector ah ¼ fahkg
2f
k¼1 of founder alleles at xh,

PðMhjwðxhÞÞ ¼
X

ah

PðMhjah; vðxhÞÞPðahjuðxhÞÞ

¼
X

ah;ðah;vðxhÞÞ!Mh

PðahjuðxhÞÞ. ð15Þ

The last equality reflects complete penetrance; each term
PðMhjah; vðxhÞÞ is one if Mh is compatible with ðah; vðxhÞÞ

and zero otherwise. The founder allele probability is
defined as in (13) for each marker;

PðahjuÞ ¼
Y

j2AðuÞ

ph;ahj
, (16)

with fphrg
dh�1

r¼0 the marker allele frequencies at xh.
When H is large, nearby markers will be in linkage

disequilibrium, and then (14) is a bit inaccurate (Schaid
et al., 2004). A relaxation of the LE assumption is possible
by clustering alleles into haplotypes, see Abecasis and
Wiggington (2005).

4. Algorithms

4.1. Founder phase reduction

In order to decrease the state spaceW of wð�Þ, we employ
founder phase reduction (Kruglyak et al., 1996). Since the
genotype of each founder k 2F has unknown phase, it is
impossible to distinguish two IBD-patterns w and w0, when
the latter is obtained from the former by switching paternal
and maternal alleles of founder k as well as the parental
origin of all meioses transmitted from k to its children. We
formalize this by letting pk be the permutation of A
that switches the two founder alleles of k 2 P,
i.e. pkð2k � 1Þ ¼ 2k, pkð2kÞ ¼ 2k � 1 and pðjÞ ¼ j for all
other j 2A. Then, pk induces another mapping ~pk : U!
U by ~pkðuÞ ¼ gðI � pkÞ if u ¼ gðIÞ. (It is easy to check that
~pk is well defined, i.e. not dependent upon the choice of I.)
Moreover, let ck 2V be the inheritance vector with ones in
positions corresponding to children of k and zeros
elsewhere. Then, if w ¼ ðu; vÞ, we let w0 ¼ ð ~pkðuÞ; vþ ckÞ,
where addition of inheritance vectors is componentwise
modulo 2. Combining founder phase switching for
different founders in all 2f possible ways, we get
equivalence classes of IBD states as follows: given any
binary vector x ¼ ðx1; . . . ; xf Þ of length f, we define
~px ¼ ~px11 � � � � � ~p

xf

f , cx ¼
Pf

k¼1xkck and let

w̄ ¼ fð ~pxðuÞ; vþ cxÞ; x 2 f0; 1g�f g (17)

be the equivalence class to which w ¼ ðu; vÞ belongs. The
resulting state space W̄ ¼ fw̄g has reduced size jW̄j ¼
2m�f jUj instead of jWj ¼ 2mjUj . For instance, for a
nuclear family with two children, we reduce the number of
IBD-configurations from 16� 15 ¼ 240 to 4� 15 ¼ 60.
Formally, we abbreviate (17) as w̄ ¼ ðu; v̄Þ, where v̄ ¼

fvþ cxgx is the collection of inheritance vectors obtained by
founder phase switching. Each v̄ 2 V̄ can be represented as
an inheritance vector of length m� f as follows: there is a
unique v0 2 v̄ which has zeros at the f bits corresponding to
the first offspring of each founder. Then v̄ is represented as
the remaining m� f bits of v0.
It turns out that the Markov property is not lost during

founder phase switching:

Proposition 2. The founder phase reduced process w̄ð�Þ ¼

fw̄ðxÞ; 0pxpLg is Markov with intensity matrix

Aw̄ðw̄; w̄
0Þ ¼

X
w0;w0¼w̄0

Awðw;w
0Þ, (18)

where w is any IBD-configuration belonging to w̄.

In absence of imprinting, phenotype and marker
probabilities are invariant with respect to founder phase
switching. We also impose the same (mild) requirement on
the score function S and obtain

Sðw̄Þ ¼ SðwÞ,

PðY jw̄ð�ÞÞ ¼ PðY jwð�ÞÞ,

PðMjw̄ð�ÞÞ ¼ PðMjwð�ÞÞ. ð19Þ

Proposition 2 and (19) are utilized in the next two
subsections to simulate marker data and compute family
scores ZfamðxÞ.

4.2. Simulation of marker data

Simulation of linkage scores under the null and
alternative hypotheses has been considered by Boehnke
(1986), Ploughman and Boehnke (1989), Ott (1989) and
Terwilliger et al. (1993). We briefly show how to extend
their results to incorporate inbreeding among founders.
When marker data M is simulated under H0, it is

convenient to generate the pair ðM ; w̄ð�ÞÞ using

PðM ; w̄ð�ÞÞ ¼ Pðw̄ð�ÞÞ
YH
h¼1

PðMhjw̄ðxhÞÞ. (20)

The term w̄ð�Þ is simulated in the standard way as a finite
state Markov process in continuous time, using Proposi-
tion 2. Given w̄ðxhÞ, marker data at xh is generated by
first choosing (arbitrarily) any w ¼ ðu; vÞ such that
ðu; vÞ ¼ w̄ðxhÞ, then simulating marker founder alleles given
u and segregating them to nonfounders according to v,
using the third equation of (19) and PðMh; ahjwÞ ¼

PðahjuÞPðMhjah; vÞ. The term PðahjuÞ is given by (16), and
founder alleles are generated independently in each group
Ul 2 u according to the marker allele frequencies at xh. The
term PðMhjah; vÞ involves no simulation, since Mh is a
deterministic function of ah and v.
Simulation of MjY under H1 is similar, using

PðM ; w̄ð�ÞjY Þ ¼ Pðw̄ð�ÞjY Þ
YH
h¼1

PðMhjw̄ðxhÞÞ (21)

instead of (20). The first term on the RHS of (21) is
simulated by first generating w̄ðtÞ and then propagating
w̄ð�Þ independently to the left and right from t according to
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Table 3

List of all nine marker genotype IBD-configurations M ¼MN ¼

fðb5b6Þ; ðb7b8Þg for a nuclear family when the two children (k ¼ 3; 4) are
genotyped, as well as the mean sharing score function SIBDðMÞ

M SIBD ðMÞ

fð12Þ; ð34Þg 0

fð12Þ; ð13Þg 1

fð12Þ; ð12Þg 2

fð11Þ; ð22Þg 0

fð11Þ; ð23Þg 0

fð12Þ; ð33Þg 0

fð11Þ; ð12Þg 1

fð12Þ; ð11Þg 1

fð11Þ; ð11Þg 2
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the same Markov process as under H0, i.e.

Pðw̄ð�ÞjY Þ ¼ Pðw̄ðtÞjY ÞPðw̄ðt�Þjw̄ðtÞÞPðw̄ðtþÞjw̄ðtÞÞ,

where w̄ðt�Þ ¼ fw̄ðxÞ; 0pxotg and w̄ðtþÞ ¼ fw̄ðxÞ; to
xpLg. When generating w̄ðtÞ, we use Pðw̄ðtÞjY Þ / Pðw̄ðtÞÞ
PðY jw̄ðtÞÞ and (12).

4.3. HMM algorithm for family score

Using (19), the family score (4) can be written

ZfamðxÞ ¼
X

w̄

Sðw̄ÞPðw̄ðxÞ ¼ w̄jMÞ � nS

 !,
kS;x. (22)

The inheritance distribution Pðw̄ðxÞ ¼ w̄jMÞ is evaluated at
a grid of loci x of interest by applying the forward–back-
ward algorithm for hidden Markov models. Our starting
point is the Markov property of the hidden regime w̄ð�Þ in
Proposition 2, together with the conditional distribution of
M given w̄ð�Þ, see (14) and (19). Suppose we wish to
evaluate Zð�Þ on a grid 0px1o � � �oxSpL. Let Ms� ¼

fMh; 0pxhpxsg, Msþ ¼ fMh; xsoxhpLg and define for-
ward probabilities asðw̄Þ ¼ PðM s�; w̄ðxsÞ ¼ w̄Þ and back-
ward probabilities bsðw̄Þ ¼ PðMsþjw̄ðx

sÞ ¼ w̄Þ for
s ¼ 1; . . . ;S. Then, because of Proposition 2, (14) and (19),

Pðw̄ðxsÞ ¼ w̄jMÞ ¼
asðw̄Þbsðw̄ÞP

w̄02W̄ asðw̄
0Þbsðw̄

0Þ
; s ¼ 1; . . . ;S.

(23)

The forward probabilities are computed recursively from
left to right, and the backward probabilities recursively
from right to left, see the appendix for details. The intuition
behind (23) is the following: let w̄ ¼ ðw̄ðx1Þ; . . . ; w̄ðxSÞÞ

denote the trajectory of IBD-states along the chromosome.
Then PðMÞ ¼

P
w̄PðM ; w̄Þ is obtained by summing over all

trajectories and ðPðw̄ðxsÞ ¼ w̄ÞjMÞ is the fraction of this
sum obtained when summing over trajectories passing
through w̄ at xs. Since

P
w̄;w̄ðxsÞ¼w̄PðM ; w̄Þ ¼ asðw̄Þbsðw̄Þ, we

obtain (23).

5. Dense marker map

The limit of dense marker maps (H !1,
max1phpH�1 ðxhþ1 � xhÞ ! 0) facilitates closed form ap-
proximations of the significance level and power (2) as
function of the amount and type of inbreeding among
founders (K and l) and the set of genotyped pedigree
members T. For a single chromosome of length L

Morgans, we let M ¼ fMðxÞ; 0pxpLg denote marker
data when the marker map is dense. Intuitively, with H

large, MðxÞ can be thought of as a combination of Mh for
loci xh in close vicinity of x, forming a haplotype (Abecasis
and Wiggington, 2005). This construction does not require
LE between nearby markers, only that the neighborhood of
x is small enough so that recombination events in the
pedigree can be ignored and yet large enough so that the
haplotype (to a good approximation) is fully polymorphic.
The quality of this approximation depends on the LD
structure around x and hence on the studied population.
Assuming that it holds exactly, MðxÞ is a genotype IBD-
configuration of all genotyped family members. Formally,
we write M ¼ fðb2k�1b2kÞ; k 2Tg for a genotype IBD-
configuration, where b2k�1 and b2k are the maternal and
paternal alleles (in unknown order, unless information is
available from previous generations) for individual k at a
fully polymorphic marker. That is, bj ¼ bj0 iff the two
alleles are IBD. Notice that any other representation of M,
obtained by permuting allele labels, will do. For a nuclear
family with two children, the marker genotype configura-
tions are listed in Tables 3 and 5 when the children and all
family members are genotyped, respectively.
It is clear that

M ¼ f ðw̄Þ (24)

is a function of the founder phase reduced IBD-configura-
tion of the whole pedigree. Therefore, the marker
penetrance function is

PðMjw̄ð�ÞÞ ¼ 1ff ðw̄ðxÞÞ¼MðxÞ for all 0pxpLg

for dense marker maps. To evaluate the inheritance
distribution Pðw̄ðxÞ ¼ w̄jMÞ at a grid of points
0px1o � � �pxSpL, we use (23), provided the forward
and backward probabilities are redefined as asðw̄Þ ¼

PðMðxs�Þ; w̄ðxsÞ ¼ w̄Þ and bsðw̄Þ ¼ PðMðxsþÞjw̄ðxsÞ ¼ w̄Þ,
where Mðx�Þ ¼ fMðx0Þ; 0px0pxg and MðxþÞ ¼ fMðx0Þ;
xox0pLg. Recursive algorithms for computing forward
and backward probabilities are described in the Appendix.
6. Misspecifying K and l

Given marker data, computation of family scores
depends on the assumed values of K and l. From now
on, we write K and l for assumed and K true and ltrue for
true values. Writing nS ¼ nSðKÞ and k2S ¼ k2SðKÞ, the family
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score (22) with standardization (5) becomes

Zfamðx;K ; lÞ

¼
X

w̄

PK ;lðw̄ðxÞ ¼ w̄jMÞSðw̄Þ � nSðKÞ

 !,
kSðKÞ,

ð25Þ

both for nondense and dense marker maps.
When K ¼ 1, it suffices to consider the restriction of

S ¼ Sðw̄Þ ¼ Sðu; v̄Þ to IBD-configurations with no inbreed-
ing among founders (NIF). Since there is only one founder
allele configuration u1 ¼ ð1; 2; . . . ; 2f Þ with positive prob-
ability ( ¼ 1) when K ¼ 1, we can restrict the sum in (25)
to NIF-configurations w̄ ¼ ðu1; v̄Þ. With

SNIFðv̄Þ ¼ Sðu1; v̄Þ,

the family score becomes

Zfamðx;1Þ

¼
X

v̄

P1ðv̄ðxÞ ¼ v̄jMÞSNIFðv̄Þ � nSð1Þ

 !,
kSð1Þ,

ð26Þ

when K ¼ 1. This is the traditional definition used e.g. by
Kruglyak et al. (1996) for nondense marker maps
M ¼ fMhg, involving only the (founder phase reduced)
inheritance vector v̄. Notice, however, for dense marker
maps M ¼ fMðxÞg there is a positive probability that (26)
is not well defined when K trueo1.1

When generating marker data M , the true values K true

and ltrue are used in (20)–(21). Hence, the statistical
properties of the family scores as well as the total score Zð�Þ

will depend on K, K true, l and ltrue. As a result, we will find
that the power and significance level (2) are often quite
sensitive to misspecification of K true and ltrue.

7. Choosing score functions

Traditionally, most score functions used in linkage
analysis are functions of the (founder phase reduced)
inheritance vector v̄. With a slight abuse of notation, write

S ¼ Sðv̄Þ (27)

to denote the fact that Sðw̄Þ ¼ Sðu; v̄Þ is independent of u.
We refer to (27) as a transmission-based score function.
Typical choices of such score functions are Spairs and Sall

(Whittemore and Halpern, 1994) and Srobdom (McPeek,
1999). Another possibility is to let

S ¼ SðMÞ (28)

depend on the genotype IBD-configuration M among the
genotyped pedigree members. By this we mean that Sðw̄Þ is
constant over all sets f �1ðMÞ, with f as in (24). We refer to
1More precisely, P1ðv̄ðxÞ ¼ v̄jMÞ is not well defined when

PKtrue ðMÞ ¼ 0. This happens when K trueo1, K ¼ 1 and, for at least

one x0, Mðx0Þ is such that several founder alleles are IBD.
(28) as an IBD-based score function. When there is NIF,
(27) and (28) are essentially equivalent, in the sense that
any IBD-based score function is transmission based, and
any transmission-based score function used in practice is
IBD based.
With inbreeding among founders, (27) and (28) are no

longer equivalent. To see this, consider a nuclear family
with father (k ¼ 1), mother (k ¼ 2) and two children
(k ¼ 3; 4). The IBD-based score function SIBD of Table 3
counts the number of alleles shared IBD by the two sibs,
the so-called mean sharing score function. However, it is
possible to define a transmission-based score function that
checks whether the parents transmit the same grand-
parental alleles or not to the children. Let v ¼ ðv1; v2; v3; v4Þ
be the inheritance vector, with v1 and v2 the outcomes of
the paternal and maternal meioses of the k ¼ 3 child and v3
and v4 the outcomes of the paternal and maternal meioses
of the k ¼ 4 child. Since c1 ¼ ð1; 0; 1; 0Þ and c2 ¼ ð0; 1; 0; 1Þ,
we have v̄ ¼ ðv̄1; v̄2Þ, where v̄1 is zero or one depending on
whether the father transmits the same allele to his two
children or not. Similarly, v̄2 is zero or one depending on
whether the mother transmits the same allele to her
children or not. Then

Strðv̄Þ ¼ 1fv̄1¼0g þ 1fv̄2¼0g (29)

is equivalent to SIBD when there is NIF, i.e. SNIF
IBD ¼ SNIF

tr .
Still, SIBDaStr, as can be seen by considering u ¼ ð1123Þ.
Then v̄ ¼ ð0; 0Þ, Strðv̄Þ ¼ 2 and v̄ ¼ ð1; 0Þ, Strðv̄Þ ¼ 1 both
correspond to M ¼ fð12Þð12Þg, SIBDðMÞ ¼ 2.
An IBD-based score function is biologically more

reasonable, since it is the accumulation of alleles IBD,
not the nonuniform transmission, that determines the
probability of certain phenotypes Y. In fact, Sðw̄Þ ¼

PðY jw̄ðtÞ ¼ w̄Þ is IBD but not transmission based.
In (25), the sum

P
w̄ PK ;lðw̄ðxÞ ¼ w̄jMÞSðw̄Þ is less

sensitive to misspecification of K true and ltrue for an IBD-
based score function, at least when there are many markers
H. In fact, it can be shown that the sum converges to
SðMðxÞÞ in the limit of a dense marker map. The reason is
that MðxÞ can be recovered for a dense marker map and an
IBD-based score function is, by definition, constant over
f �1ðMðxÞÞ. On the other hand, the mean nSðKÞ and
variance k2SðKÞ are independent of K for transmission-
but not for IBD-based score functions. The reason is that
the distribution of v̄ is independent of K true, whereas the
distribution of M is not. For instance, the score function
(29) satisfies nStr ¼ 1 and kStr ¼ 0:7071. The corresponding
values for SIBD depend on K as shown in Table 4.
Ideally, we would prefer an IBD-based score function

with little dependence of nSðKÞ and k2SðKÞ on K. This is
possible at least when all family members are genotyped.
Write M ¼MT to indicate that M depends on the set of
genotyped individuals. Then, when all family members are
genotyped, M ¼MP ¼ ðMF;MNÞ, with MF and MN the
genotype IBD-configurations of the founders and non-
founders, respectively. It can be shown that the number
jMFj of distinct founder alleles is a minimal sufficient
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Table 4

Standardizing constants nS and kS for the IBD-based mean sharing score

function S ¼ SIBD, as well as the mean and standard deviations m0 ¼

EH0
ðZðxÞÞ and s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarH0

ðZðxÞÞ
p

for the NPL score based on N affected

sib pairs when a dense marker map is used

K K true nSIBD
ðKÞ kSIBD

ðKÞ N m0 s0

1 10 1 0.7071 100 1.9870 0.9479

100 0.2107 0.9950

1000 0.0212 0.9995

1 0 1

10 1000 6.2834 0.9479

100 0.6664 0.9950

1000 0.0670 0.9995

1 0 1

100 10 1.0149 0.7035 100 1.7852 0.9527

100 0 1

1000 �0.1905 1.0046

1 �0.2118 1.0051

10 1000 5.6454 0.9527

100 0 1

1000 �0.6024 1.0046

1 �0.6697 1.0051

Formulas for m0 and s0 are given in the Appendix. The former simplifies to

m0 ¼
ffiffiffiffiffi
N
p
ðnSðK trueÞ � nSðKÞÞ=kSðKÞ in this case.

2In more detail, this means that each family score is given by (A.10).
3To be exact, we consider the limit K !1, since marker data with

K ¼ 1-probability zero occurs with positive probability when K trueo1.
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statistic for K (cf. Table 1). Given any IBD-based
score function S, we let ~nS ¼ EH0

ðSðMÞjjMFjÞ and
~k2S ¼ VarH0

ðSðMÞjjMFjÞ and define the robustified version

~SðMÞ ¼
nSð1Þ þ kSð1ÞðSðMÞ � ~nSÞ= ~kS; ~kS40;

nSð1Þ; ~kS ¼ 0

(
(30)

of S. It agrees with S when there is NIF, i.e. SNIF ¼ ~S
NIF

.
Moreover, n ~SðKÞ ¼ n ~Sð1Þ for all K and k2~SðKÞ � k2~Sð1Þ,
with a difference of order Pð ~k2S ¼ 0Þ that is often negligible.
The robustified mean sharing score function ~SIBD is listed in
Table 5. It has n ~SIBD ðKÞ ¼ 1 and k ~SIBD

ðKÞ � 0:7071 for all K.

8. Numerical results

We simulated the NPL score (3) of N ¼ 1000 affected sib
pair families along one chromosome of length 150 cM,
using equal weights gi ¼ 1=

ffiffiffiffiffi
N
p

. The three versions of the
mean-sharing score function described in Section 7 were
used; S ¼ Str, SIBD or ~SIBD. Figs. 1 and 2 display the NPL
score for one such simulation under H0 when all four and
two family members (the sibs) are genotyped, respectively.
Figs. 3 and 4 display another simulation under H1, with a
biallelic disease locus (d ¼ 2) placed in the middle of the
chromosome. The disease allele frequency p ¼ p1 was set to
0.1, and the penetrance parameters to c0 ¼ c1 ¼ 0:1 and
c2 ¼ 0:8. Here, cj is the probability that an individual with
j disease alleles in his or her genotype becomes affected.
For each combination of hypothesis Hi, S and number of
genotyped individuals, four marker maps were used; a less
informative map with markers of heterozygosity 0.8 every
10 cM, a very informative map with markers of hetero-
zygosity 0.9 every 1 cM, a dense marker map and finally,
and ideal dense marker map requiring knowledge of
Sðw̄ðxÞÞ at all loci x for all families.2 The reason for
including the ideal dense marker map is that its NPL scores
can be analyzed theoretically. In all cases, K ¼ 10 000,
K true ¼ 100 and l ¼ ltrue ¼ 10.
By construction, Zð�Þ should be unbiased under H0 at all

loci when K true and ltrue are correctly specified. As seen
from Figs. 1 and 2, misspecification of K true leads to a
strong upward bias of the dense NPL score of SIBD. (That
is, the NPL score based on a dense marker map.) A
somewhat smaller upward bias can also be noted for the
dense NPL scores based on Str or ~SIBD when the sibs are
genotyped. When all four pedigree members are genotyped,
neither ~SIBD nor Str gives any significant bias in the dense
NPL score. Overall, ~SIBD is least affected by misspecifica-
tion of K true, followed by Str and SIBD. This can be
explained by looking at the ideal dense NPL scores: these
are unbiased for Str and ~SIBD, but has positive bias for
SIBD. On the other hand, the ideal dense and dense NPL
scores agree only for SIBD and, when all four family
members are genotyped, for ~SIBD. In the remaining cases
the dense NPL score is upward biased compared to the
ideal dense one. This implies that the dense NPL score is
unbiased only in one case, for ~SIBD when all family
members are genotyped (although it is nearly unbiased also
for Str in this case when K is close to 1). Similar
phenomena can also be seen under H1 in Figs. 3 and 4. In
this case, the true peak of Zð�Þ in the middle of the
chromosome is dominated by a false peak to the right
for SIBD, and, when only the sibs are genotyped, for Str

and ~SIBD.
Among the finite marker maps, the more informative

one gives NPL scores very close to the dense marker map in
all cases. The less informative one also gives NPL scores
fairly close to the dense marker map in all cases except one;
when SIBD is used and all four family members are
genotyped. We believe this to be caused by founder
inbreeding being mixed up with IBS-sharing of founder
alleles. This decreases SIBD, whereas Str and ~SIBD, being
much less sensitive to the degree of founder inbreeding, are
less affected.
Next, we studied the effect of misspecifying K true on

significance level aðzÞ and power bðzÞ for a genome-wide
scan of affected sib pair families over all 22 autosomes,
with chromosome lengths as in Ott (1999, Table 1.2). We
used theoretical approximations defined in the appendix
both for aðzÞ and bðzÞ. These are valid for ideal dense NPL
scores, and hence also for dense NPL scores when either
S ¼ SIBD or when S ¼ ~SIBD and all four pedigree members
are genotyped. We initially assumed K ¼ 1,3 K true ¼ 500,
ltrue ¼ 10 and N ¼ 1000, and then varied one of K true, ltrue
and N at a time. Fig. 5 shows plots of aðzÞ against these
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Table 5

List of all 39 marker genotype IBD-configurations M ¼MP ¼ fðb1b2Þ; ðb3b4Þ; ðb5b6Þ; ðb7b8Þg of a nuclear family when all family members (k ¼ 1; 2; 3; 4)

are genotyped, as well as the robustified mean sharing score function ~SIBDðMÞ

jMFj M ~SIBD ðMÞ jMFj M ~SIBD ðMÞ

4 {(12),(34),(13),(24)} 0 3 {(11),(23),(12),(12)} 1.8911

{(12),(34),(13),(14)} 1 {(11),(23),(12),(13)} 0.7030

{(12),(34),(13),(23)} 1 {(12),(33),(13),(13)} 1.8911

{(12),(34),(13),(13)} 2 {(12),(33),(13),(23)} 0.7030

3 {(12),(13),(11),(11)} 1.8911 2 {(12),(12),(11),(11)} 1.6236

{(12),(13),(11),(12)} 0.7030 {(12),(12),(11),(12)} 0.3764

{(12),(13),(12),(11)} 0.7030 {(12),(12),(12),(11)} 0.3764

{(12),(13),(11),(13)} 0.7030 {(12),(12),(12),(12)} 1.6236

{(12),(13),(13),(11)} 0.7030 {(12),(12),(11),(22)} �0.8708

{(12),(13),(12),(12)} 1.8911 {(11),(22),(12),(12)} 1.6236

{(12),(13),(13),(13)} 1.8911 {(11),(12),(11),(11)} 1.6236

{(12),(13),(11),(23)} �0.4852 {(11),(12),(11),(12)} 0.3764

{(12),(13),(23),(11)} �0.4852 {(11),(12),(12),(11)} 0.3764

{(12),(13),(12),(13)} 0.7030 {(11),(12),(12),(12)} 1.6236

{(12),(13),(13),(12)} 0.7030 {(12),(11),(11),(11)} 1.6236

{(12),(13),(12),(23)} 0.7030 {(12),(11),(11),(12)} 0.3764

{(12),(13),(23),(12)} 0.7030 {(12),(11),(12),(11)} 0.3764

{(12),(13),(13),(23)} 0.7030 {(12),(11),(12),(12)} 1.6236

{(12),(13),(23),(13)} 0.7030

{(12),(13),(23),(23)} 1.8911 1 {(11),(11),(11),(11)} 1
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Fig. 1. Plot of NPL score ZðxÞ along one chromosome of length 150 cM under H0 for 1000 affected sib pairs when all four pedigree members are

genotyped. Three different score functions are used; SIBD (b), Str (c) and ~SIBD (d); and four marker maps; ideal dense (dotted), highly informative (circles),

less informative (squares) and dense (solid for SIBD, dash-dotted for Str and dashed for ~SIBD). The highly informative map has markers at positions

0; 1; . . . ; 150 cM, each one with 10 equally frequent alleles. The less informative map has markers at positions 0; 10; . . . ; 150 cM, each one with five equally

frequent alleles. Panel (a) shows the dense marker NPL scores for all three score functions. Marker data for all combinations of score functions and maps

are based on the same IBD-configuration processes w̄ð�Þ for all families. Zð�Þ is computed at grid points 0; 1; . . . ; 150 cM for all maps. Only NPL scores at

positions 0; 10; . . . ; 150 cM are shown for the two nondense maps.
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Fig. 2. Plot of NPL score ZðxÞ along one chromosome of length 150 cM under H0 for 1000 affected sib pairs when the two sibs are genotyped. Marker

data for all combinations of score functions and maps are based on the same IBD-configuration processes w̄ð�Þ as in Fig. 1 for all families. For details on

score functions and marker maps, see Fig. 1.
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Fig. 3. Plot of NPL score ZðxÞ along one chromosome of length 150 cM under H1 for 1000 affected sib pairs when all four family members are genotyped.

The disease locus is positioned at 75 cM. It is biallelic, with disease allele frequency 0.1 and penetrance parameters c0 ¼ c1 ¼ 0:1 and c2 ¼ 0:8. For details
on score functions and marker maps, see Fig. 1.
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Fig. 4. Plot of NPL score ZðxÞ along one chromosome of length 150 cM under H1 for 1000 affected sib pairs when the two sibs are genotyped. The disease

locus position, genetic model and IBD-configuration processes w̄ð�Þ for all families are the same as in Fig. 3. For details on score functions and marker

maps, see Fig. 1.
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three variables for SIBD and ~SIBD, when the threshold z is
chosen so that aðzÞ ¼ 0:05 if K true ¼ K ¼ 1. We find that
aðzÞ is nearly unaffected by misspecification of K true for
~SIBD, whereas it is dramatically inflated for SIBD when
either K true is small or when any of ltrue and N are large.
Similarly, inflation of the power can be seen in Fig. 6 for
SIBD but hardly at all for ~SIBD.

When K true and/or ltrue are misspecified, there are three
important quantities that may change and affect the
significance level; m0 ¼ EH0

ðZðxÞÞ, s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarH0

ðZðxÞÞ
p

and the crossover rate r. The latter is defined in the
Appendix and quantifies the amount of fluctuation of Zð�Þ.
The larger r is, the larger is the effective number of
independent tests along the genome, leading to a larger
aðzÞ. For SIBD, choosing K too large implies that m0
increases notably from 0, whereas s0 decreases very little
from 1. For ~SIBD, both m0 and (to a very good
approximation) s0 are unaffected by the choice of K.
Other computations (not shown here) reveal that r is about
the same for SIBD and ~SIBD. Hence, we conclude that m0 is
most important for explaining why aðzÞ is much more
inflated for SIBD than for ~SIBD when K is chosen too large
or l too small.

Génin and Clerget-Darpoux (1996, 1998) calculated
pointwise power and significance level for several IBD-
based score functions including SIBD, assuming one fully
polymorphic marker at t. Our results in Figs. 5 and 6 are
extensions that (i) take multiple testing into account and
(ii) include the robustified score function ~SIBD.

9. Discussion

In this paper we have proposed a novel multipoint
approach for nonparametric linkage analysis which allows
for inbreeding among founders. It is valid for arbitrary
pedigree structures and contains two parameters chosen by
the user, the inverse inbreeding coefficient K and half the
inverse expected length of segments shared IBD, l. We
have illustrated our methodology for affected sib pair
families, using simulation of NPL scores as well as
theoretical approximations of significance levels and
power. Although we have focused on NPL in this paper,
we believe our inbreeding multipoint approach can be
applied to other kinds of linkage analysis as well. For
instance, Abney et al. (2002) have recently developed a
QTL mapping technique for large inbred pedigrees, with
variance components allowing for inbreeding within
individuals. For smaller pedigrees, we believe their
approach can be combined with ours.
We have demonstrated that significance level and power

are both sensitive to misspecification of K true and ltrue. In
order to make our approach fully practical, more work is
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Fig. 5. Plot of nominal (dashed) and actual (solid) significance levels for a genome-wide scan of N affected sib pair families as function of K true, ltrue and
N. The marker map is ideal dense and the score functions are SIBD (left panels) and ~SIBD (right panels). No inbreeding is assumed (K ¼ 1). The parameter

values not varied in each panel are fixed to K true ¼ 500, ltrue ¼ 10 and N ¼ 1000, respectively.
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needed on estimating these two parameters. A conservative
approach is to choose K and l too small to avoid
underestimating the level of inbreeding and length of
shared segments IBD. We may also choose K from prior
knowledge of the inbreeding coefficient F through (6). The
latter varies between populations and is often of the order
0.01 and 0.001 for small and large populations, respectively
(Morton, 1992, 2002; Morton and Teague, 1996). Another
possibility is to estimate F and l jointly from data using
maximum likelihood. For such an estimator to be efficient,
most or all of the founders have to be genotyped though.
Leutenegger et al. (2003) have developed an estimator for
individuals (N ¼ f ¼ 1, m ¼ 0). One could choose l in
advance and estimate F from data, see e.g., Ayres and
Balding (1998). On the other hand, we have shown that
careful choice (30) of score function decreases the effect of
misspecifying K true and ltrue, especially when all family
members are genotyped and marker data is dense enough.
Using (30), there is much less need for using a (potentially
bad) estimator of inbreeding. In general, we conjecture
though that the robustification (30) sacrifices more power
than one based on estimating K (and l).

Other choices of score functions are possible for affected
sib pairs. For instance, SðMÞ ¼ 4� jMNj is constructed to
take advantage of inbreeding, and, compared to SIBD, is
expected to yield higher power in the presence of
inbreeding but also increased sensitivity to the choice of
K. It is related to the Na-test of Génin and Clerget-
Darpoux (1996), which is a w2-test with three degrees of
freedom. The test based on ~S will be more robust to the
choice of K than the one using S, but to the price of lost
power.
For noninformative markers, our definition of family

scores (4)–(5), which is a straigtforward extension of the
one used by Kruglyak et al. (1996), has the disadvantage of
making the theoretical significance approximation too
conservative. An interesting and less conservative alter-
native would be to extend the Kong and Cox (1997) NPL
score approach to inbred founders. Alternatively, we could
use more accurate approximations of significance level and
power, either analytical (Feingold et al., 1993; Tu and
Siegmund, 1999; Tang and Siegmund, 2001; Ängquist and
Hössjer, 2005) or by means of importance sampling
(Ängquist and Hössjer, 2004). The latter approach works
both for complete and incomplete marker data. In
particular, it would be interesting to investigate how robust
the significance level and power of ~SIBD is against varying
marker informativeness, although Figs. 1–4 show promise.
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We have assumed independent family scores. Violation
of this assumptions induces NðN � 1Þ=2 covariance terms
2gigjCovH0

ðZfam;iðxÞ;Zfam;jðxÞÞ in the expression for
VarH0

ðZðxÞÞ. Potentially, this yields a standard variation
of the same order Oð

ffiffiffiffiffi
N
p
Þ as the bias due to inbreeding.

However, for dense marker maps and random mating,
IBD-configurations of different pedigrees are independent.
For incomplete marker data, dependency of marker alleles
across families might introduce some covariance though.
The effect of population substructure or nonrandom
mating is essentially that ðK ; lÞ varies randomly over
families. This can be thought of as a new variance
component added to VarH0

ðZðxÞÞ.
Our two parameter Markov model for the founder allele

IBD-configuration process uð�Þ can be generalized in
several ways:

Firstly, the number of parameters can be enlarged,
allowing, e.g. for inbreeding and kinship coefficients to
vary between founders and pairs of founders. See Weir
(1994), Cannings (1998) and Leutenegger et al. (2002) for
extensions along these lines when f ¼ 2.

Secondly, time- and memory-constraints could be
improved by state space reduction. The most time- and
memory-consuming part involves jW̄j � jW̄j-matrices in
the forward–backward algorithm for HMMs, cf. (A.3)–(A.6).
A nuclear family with two parents and n� 2 children has
2ðn� 2Þ meioses. Hence jW̄j ¼ 15� 22ðn�2Þ�2, which is
feasible for most nuclear families of practical interest.
However, for larger pedigrees with many founders, the
state space quickly becomes too large without further
restrictions. To alleviate this, the state space U of founder
allele IBD-configurations can be decreased by requiring
jujXr for some 2prp2f . When r ¼ 2f , we are back to
usual linkage analysis with no inbreeding among founder
alleles. The total probability of all states that are removed
is OðKr�1�2f Þ. IfUr and W̄r denote the reduced state spaces
for u and w̄, we have

jU2f�1j ¼ 2f 2
� f þ 1,

jU2f�2j ¼ 2f 4
� 14f 3=3þ 11f 2=2� 11f =6þ 1

and jW̄rj ¼ 2m�f jUrj. This makes the multipoint approach
computationally feasible not only for small but also for
medium sized pedigrees when r equals 2f � 1 or 2f � 2. See
Table 2 for numerical values.
Thirdly, the Markov process model for Ið�Þ could be

generalized, allowing more than one founder allele to
change at a time. This would be more realistic, viewing Ið�Þ

as a function of the f randomly picked founder individuals
and the ancestral recombination process Gð�Þ.
Fourthly, the Markov assumption itself can be ques-

tioned. It leads to exponentially distributed segments of
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IBD sharing between pairs of haplotypes, whereas a
distribution with larger coefficient of variation, such a
mixture of exponential distributions, would be more
realistic. See for instance, Chapman and Thompson
(2003) for results along these lines. However, a more
complicated non-Markov model for uð�Þ and w̄ð�Þ requires
another method of computing family scores than presented
here.

Finally, we want to emphasize that the dense marker
HMM algorithm of Section 5 is of independent interest for
linkage analysis (with or without inbreeding among
founders). It does not require specification of marker allele
frequencies, and in the future, with very dense marker
maps, it will probably be possible to determine the
piecewise constant genotype IBD-configuration process
M ¼ fMðxÞg. When K ¼ 1, Mð�Þ will often be Markov (as
for affected sib pairs), and then family scores based on a
dense marker HMM algorithm coincides with the much
simpler (A.10), which does not require a HMM algorithm.
However, the Markov property is not guaranteed in
general (not even when K ¼ 1) and hence the dense
marker HMM algorithm provides a general way of
computing NPL family scores when marker information
is complete given the set of genotyped individuals.
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Appendix A

In order to prove Propositions 1 and 2, we use the
following lemma, which gives explicit conditions under
which a function of a Markov process is Markov itself.

Lemma 1. Let X ð�Þ ¼ fX ðtÞ; 0ptpLg be a stationary

Markov process in continuous time with finite state space

X and intensity matrix AX . Let Y ðtÞ ¼ gðX ðtÞÞ. Then, a

sufficient condition for Y ð�Þ ¼ fY ðtÞ; 0ptpLg to be Markov

with intensity matrix AY is that

AY ðy; y
0Þ ¼

X
x0;gðx0Þ¼y0

AX ðx;x
0Þ (A.1)

is well defined, i.e. not dependent upon the choice of x 2 X
such that gðxÞ ¼ y. Let fXlg

n
l¼1 be a decomposition of X into

equivalence classes, defined as inverse images g�1ðyÞ of g.

Then, a sufficient condition for (A.1) to hold is the existence

of J one-to-one mappings hj : X! X, j ¼ 1; . . . ; J, such that
(i)
 hjðXlÞ ¼ Xl , l ¼ 1; . . . ; n,

(ii)
 given any l and x;x0 2 Xl , there exists a sequence

j1; . . . ; jq, q ¼ qðx;x0Þ, such that hjq � � � � � hj1
ðxÞ ¼ x0,
(iii)
 AX ðx; x0Þ ¼ AX ðhjðxÞ; hjðx
0ÞÞ for all x;x0.
Proof. The sufficiency of (A.1) for Y ð�Þ to be Markov is

well known, see e.g., Dudoit and Speed (1999) and
Rosenblatt (1974). Hence, we only need to prove that the
RHS of (A.1) is independent of x 2 g�1ðyÞ when (i)–(iii)
hold. Given x1 2 Xl , assume first that x2 ¼ hjðx1Þ for some
l 2 f1; . . . ; ng and j 2 f1; . . . ; Jg. ThenX
x0; gðx0Þ¼y0

AX ðx1;x
0Þ ¼

X
x0; gðx0Þ¼y0

AX ðhjðx1Þ; hjðx
0ÞÞ

¼
X

x0; gðx0Þ¼y0

AX ðx2; x
0Þ, ðA:2Þ

using (iii) in the first identity and (i) in the second. For an
arbitrary x2 2 Xl , we may find a sequence j1; . . . ; jq

satisfying (ii). Repeating the argument in (A.2) q times
we find that

P
x0; gðx0Þ¼y0AX ðx1;x0Þ ¼

P
x0; gðx0Þ¼y0 AX ðx2;x0Þ.

Since l and x1;x2 2 Xl were arbitrarily chosen, this proves
the lemma. &

Proof of Proposition 1. In order to prove that uð�Þ is a
Markov process, we will use Lemma 1 and verify (A.1) with
X ð�Þ ¼ Ið�Þ and Y ð�Þ ¼ uð�Þ. This is equivalent to verifying
that the RHS of (10) is independent of I 2 g�1ðuÞ. In order
to do so, we will establish (i)–(iii) with J ¼ K! and fhjg

J
j¼1

the set of permutations on f1; . . . ;Kg. By definition
of uðxÞ ¼ gðIðxÞÞ, (i) holds as well as (ii) with q ¼ 1.
Since AI ðI ; I

0Þ only depends on jI 0 � I j and jhjðI
0Þ�

hjðIÞj ¼ jI
0 � I j, (iii) follows. Finally, the fact that wð�Þ is

a Markov process with intensity matrix (11) follows easily
from the fact that wð�Þ ¼ ðuð�Þ; vð�ÞÞ, with uð�Þ and vð�Þ two
independent Markov processes. &

Proof of Proposition 2. We apply Lemma 1 with X ð�Þ ¼

wð�Þ and Y ð�Þ ¼ w̄ð�Þ. We need to prove that the RHS of
(A.1) is independent of x 2 g�1ðyÞ, or equivalently that the
RHS of (18) is independent of w 2 w̄. To do so, we
establish (i)–(iii) with J ¼ f and hkðwÞ ¼ hkðu; vÞ ¼
ð ~pkðuÞ; vþ ckÞ, k ¼ 1; . . . ; J. Conditions (i)–(ii) follow
directly from the definition of w̄. In order to establish
(iii), it suffices, in view of (11), to show that (a) Auðu; u0Þ ¼
Auð ~pkðuÞ; ~pkðu

0ÞÞ and (b) Avðv; v0Þ ¼ Avðvþ ck; v0 þ ckÞ for
k ¼ 1; . . . ; f . But

Auðu; u
0Þ ¼

X
I 0
1
;gðI 0

1
Þ¼u0

AI ðI1; I
0
1Þ,

Auð ~pkðuÞ; ~pkðu
0ÞÞ ¼

X
I 0
2
;gðI 0

2
Þ¼ ~pkðu

0Þ

AI ðI2; I
0
2Þ,

for any I1 and I2 such that gðI1Þ ¼ u and gðI2Þ ¼ ~pkðuÞ. By
definition of ~pk, we may choose I2 ¼ I1 � pk. ButX
I 0
1
;gðI 0

1
Þ¼u0

AI ðI1; I
0
1Þ ¼

X
I 0
1
;gðI 0

1
Þ¼u0

AI ðI1 � pk; I
0
1 � pkÞ

¼
X

I 0
2
;gðI 0

2
Þ¼ ~pkðu

0Þ

AI ðI2; I
0
2Þ,

proving (a). To prove (b), notice that Avðv; v0Þ only depends
on jv0 � vj. Since jðv0 þ ckÞ � ðvþ ckÞj ¼ jv

0 � vj, (b) fol-
lows. &
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A.1. Recursion formulas for forward and backward

probabilities

Consider first a finite marker map fxhg
H
h¼1. Let Qh be a

diagonal matrix of order jW̄j with entries Qhðw̄; w̄Þ ¼
PðMhjw̄ðxhÞ ¼ w̄Þ on the diagonal. Introduce artificial
‘boundary grid points’ x0 ¼ 0 and xSþ1 ¼ L. The forward
probabilities are initialized as a0ðw̄Þ ¼ Pðw̄Þ and then
updated recursively as

asðw̄Þ ¼
X

w̄0

as�1ðw̄
0ÞPsðw̄

0;wÞ; s ¼ 1; . . . ;S, (A.3)

where Ps ¼ fPsðw̄; w̄0Þg is a jW̄j � jW̄j-matrix, defined as

Ps ¼

expððxs�1 � xsÞAw̄Þ if hs�1 ¼ hs;

expððxs�1 � xhs�1þ1
ÞAw̄ÞQhs�1þ1

�
Qhs

h¼hs�1þ2
expððxh�1 � xhÞAw̄ÞQh

� expððxhs � xsÞAw̄Þ if hs�1ohs;

8>>>>><
>>>>>:

(A.4)

for s ¼ 1; . . . ;S þ 1, where hs satisfies h0 ¼ 0, hSþ1 ¼ H

and xhspxsoxhsþ1 for s ¼ 1; . . . ;S. To make the last
definition well defined for all s, we introduce artificial
‘boundary markers’ x0 ¼ 0 and xHþ14L. Similarly, the
backward probabilities are initialized as bSþ1ðw̄Þ ¼ 1, and
then updated recursively through

bsðw̄Þ ¼
X

w̄0

Psþ1ðw; w̄
0Þbsþ1ðw̄

0Þ; s ¼ S; . . . ; 1. (A.5)

For dense marker maps we proceed as follows: assume
there are n possible marker IBD-configurations
M ¼M1; . . . ;Mn, and decompose W̄ into n components
W̄

i
¼ fw̄; f ðw̄Þ ¼Mig, i ¼ 1; . . . ; n, with f as in (24). Define

iðxÞ 2 f1; . . . ; ng through MðxÞ ¼MiðxÞ. Initialize the for-
ward probabilities as a0ðw̄Þ / Pðw̄Þ1

fw̄2W̄
iðx0Þ
g
. Since asðw̄Þ ¼

0 when w̄eW̄
iðxsÞ

, we only need to update the forward

probabilities using (A.3) when w̄0 2 W̄
iðxs�1Þ

and w̄ 2 W̄
iðxsÞ

.

Hence Ps is an jW̄
iðxs�1Þ

j � jW̄
iðxsÞ
j-matrix which we define

as follows: introduce submatrices Aij ¼ fAw̄ðw̄; w̄0Þ; w̄ 2

W̄
i
and w̄0 2 W̄

j
g of Aw̄ for i; j ¼ 1; . . . ; n. Since w̄ð�Þ is a

piecewise constant Markov process, Mð�Þ will be piecewise
constant as well, with jumps at 0oz1o � � �ozRoL.
Introduce artificial boundary ‘jump points’ z0 ¼ 0 and
zRþ14L, and let ih be the constant value of iðxÞ on
ðzh; zhþ1Þ for h ¼ 0; . . . ;R� 1 and iR the constant value of
iðxÞ on ðzR;LÞ. Define hs through h0 ¼ 0, hSþ1 ¼ H and
zhspxsozhsþ1 for s ¼ 1; . . . ;S. Then
Ps ¼

expððxs�1 � xsÞAihs
;ihs
Þ if hs�1

expððxs�1 � zhs�1þ1
ÞAihs

;ihs
ÞAihs

;ihsþ1

�
Qhs

h¼hs�1þ2
expððzh�1 � zhÞAih�1;ih�1

ÞAih�1;ih

� expððzhs � xsÞAihs
;ihs
Þ if hs�1

8>>>>><
>>>>>:
The backward probabilities are computed as before in
(A.5), using (A.6) instead of (A.4).
A.2. Analytical approximations of significance level and

power for dense marker maps

Let m0 ¼ EH0
ðZðxÞÞ, m1ðxÞ ¼ EH1

ðZðxÞÞ, m1 ¼ m1ðtÞ,
m01 ¼ m01ðtÞ, s20 ¼ VarH0

ðZðxÞÞ and s21ðxÞ ¼ VarH1
ðZðxÞÞ.

We assume that Zð�Þ is stationary, with covariance function
satisfying

rZðtÞ ¼ CovH0
ðZðxÞ;Zðxþ tÞÞ ¼ s20ð1� 2rjtjÞ þ oðjtjÞ

(A.7)

for small lags t, where r is the crossover rate. This crucial
assumption requires a dense set of markers. In the above
formulas, expectation and covariance is with respect to
K true and ltrue, whereas the NPL score Z depends on K and
(sometimes also) l.
For large N, we approximate Zð�Þ by a Gaussian process.

Moreover, assuming a sequence of contiguous alternatives
the distribution of Zð�Þ under H1 is asymptotically the same
as that of fm1ðxÞ � m0 þ ZðxÞ; 0pxpLg under H0 (Fein-
gold et al., 1993; Hössjer, 2005b). Hence, we obtain the H1-
distribution of Zð�Þ from the H0-distribution simply by
adding the drift function m1ð�Þ � m0. In particular, this
approximation entails s21ð�Þ � s20. Using results of Lander
and Bolstein (1989), Feingold et al. (1993) and Lander
and Kruglyak (1995), we can approximate the significance
level by

aðzÞ � 1� expð�ð1� Fðz0ÞÞðC þ 2rLtotalðz
0Þ
2
ÞÞ, (A.8)

where z0 ¼ ðz� m0Þ=s0, C is the number of chromosomes
and Ltotal the total length of O. The power is approximated
by

bðzÞ � 1� Fðz0 � ZÞ þ jðz0 � ZÞ
2

Zd
�

1

Zð2d � 1Þ þ z0

� �
,

(A.9)

where F and f are the standard normal distribution and
density functions, Z ¼ ðm1 � m0Þ=s0 is the noncentrality
parameter and d ¼ �m01=ð2Zs0rÞ a normalized mean slope
at the disease locus.
The quantities involved in (A.8)–(A.9) are computed as

mj ¼
XN

i¼1

gimji; j ¼ 0; 1,

m01 ¼
XN

i¼1

gim
0
1i,
¼ hs;

ohs:

(A.6)
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s20 ¼
XN

i¼1

g2i s
2
0i,

r ¼
XN

i¼1

g2i s
2
0iri

XN

i¼1

,
g2i s

2
0i,

where m0i, m1i, m
0
1i, s

2
0i and ri are quantities defined for the

ith family score in the same way as the corresponding
quantities of Z. In particular, for pedigrees of the same
form with identical phenotype vectors Y and equal
weighting gi ¼ 1=

ffiffiffiffiffi
N
p

, it follows that mj ¼
ffiffiffiffiffi
N
p

mji,
m0j ¼

ffiffiffiffiffi
N
p

m0ji, s
2
0 ¼ s20i and r ¼ ri.

We assume familywise NPL scores of the form

Zfam;iðxÞ ¼ Riðw̄iðxÞÞ, (A.10)

where w̄ið�Þ is the IBD-configuration process and Ri the
standardized score function of family i. It is evident from
(25) that (A.10) requires a dense set of markers
M ¼ fMðxÞg. However, this is not a sufficient condition.
This follows from (4) and the fact that Mð�Þ, in general, is
not a Markov process and then Pðw̄ðxÞ ¼ �jMÞaPðw̄ðxÞ ¼

�jMðxÞÞ is not a function of x alone. However, (A.10) holds
if the unstandardized score function Si of family i is IBD
based, i.e. Siðw̄Þ ¼ Sðw̄;Y iÞ ¼ SiðMÞ, where Y i the pheno-
type vector of family i and M ¼ f ðw̄Þ the marker genotype
IBD-configuration corresponding to w̄. Then

Riðw̄Þ ¼ ðSiðw̄Þ � nSi
Þ=kSi

in (A.10). Since nSi
¼ nSi

ðKÞ and kSi
¼ kSi

ðKÞ, it follows
that Ri as well as the family scores (A.10) depend on K but
not on l.

Put P0iðw̄Þ ¼ PH0
ðw̄iðxÞ ¼ w̄Þ, P1iðw̄Þ ¼ PH1

ðw̄iðtÞ ¼
w̄jY iÞ and let Aw̄i

be the intensity matrix of w̄ið�Þ. These
three quantities all depend on K true and ltrue. Then,
generalizing results from Hössjer (2003a) and Ängquist
and Hössjer (2005), we find that

m0i ¼
X

w̄

Riðw̄ÞP0iðw̄Þ,

m1i ¼
X

w̄

Riðw̄ÞP1iðw̄Þ,

s20i ¼
X

w̄

ðRiðw̄Þ � m0iÞ
2P0iðw̄Þ,

m01i ¼
XX

w̄aw̄0

P1iðw̄ÞAw̄i
ðw̄; w̄0ÞðRiðw̄

0Þ � Riðw̄ÞÞ,

ri ¼ 0:25 �
XX

w̄aw̄0

P0iðw̄ÞAw̄i
ðw̄; w̄0ÞðRiðw̄

0Þ � Riðw̄ÞÞ
2.

ðA:11Þ

We emphasize that m0i ¼ m ¼ 0 and s0i ¼ s0 ¼ 1 when
K ¼ K true, but not necessarily when K true is misspecified.
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