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A General Method for Linkage Disequilibrium Correction
for Multipoint Linkage and Association
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Lately, many different methods of linkage, association or joint analysis for family data have been invented and refined.
Common to most of those is that they require a map of markers that are in linkage equilibrium. However, at the present day,
high-density single nucleotide polymorphisms (SNPs) maps are both more inexpensive to create and they have lower
genotyping error. When marker data is incomplete, the crucial and computationally most demanding moment in the analysis
is to calculate the inheritance distribution at a certain position on the chromosome. Recently, different ways of adjusting
traditional methods of linkage analysis to denser maps of SNPs in linkage disequilibrium (LD) have been proposed. We
describe a hidden Markov model which generalizes the Lander-Green algorithm. It combines Markov chain for inheritance
vectors with a Markov chain modelling founder haplotypes and in this way takes account for LD between SNPs. It can be
applied to association, linkage or combined association and linkage analysis, general phenotypes and arbitrary score
functions. We also define a joint likelihood for linkage and association that extends an idea of Kong and Cox ([1997] Am.
J. Hum. Genet. 61: 1179–1188) for pure linkage analysis. Genet. Epidemiol. 32:647–657, 2008. r 2008 Wiley-Liss, Inc.
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INTRODUCTION
Mapping genes due to increased identical by descent

(IBD) sharing has become widespread in the last two
decades and many different methods of linkage, associa-
tion or joint linkage/association analyses have been
invented, all based on IBD sharing within or between
families. Common to most of the linkage or joint
association/linkage methods is that they require use of
markers that are in linkage equilibrium (LE). Lately, it has
become customary to use high-density single nucleotide
polymorphisms (SNP) maps. The advantage of SNPs is
that their greater density will compensate for the smaller
amount of information per SNP by creating local haplo-
types of SNPs that function as ‘‘super’’ alleles. Jointly as a
haplotype these should have greater linkage information
content. Further, they are associated with lower genotyp-
ing error, cf. [Evans and Cardon, 2004]. On the other hand,
SNPs are more likely to be in strong linkage disequili-
brium (LD) and misspecification of the LD structure is
analogous to misspecification of marker allele frequencies
in classical linkage analysis. Many authors have recently
noted that misspecification of population haplotype
frequencies causes inflation of multipoint (parametric or
nonparametric) linkage scores, when some or all founders
are not genotyped, see, for instance Abecasis and
Wigginton [2005], Boyles et al. [2005], Broman and

Feingold [2004], Browning et al. [2004], Huang et al.
[2004] and Schaid et al. [2002, 2004].

There are different suggestions of what to do for dense
marker maps. One possibility is to cluster SNPs, setting
intracluster genetic distances to zero, thus treating each
cluster as a single marker with no internal recombination
[Abecasis and Wiggington, 2005]. Another possibility is to
cluster SNPs, then retaining only afew SNPs from each
cluster with low pairwise LD, and finally proceed with
linkage analysis, assuming all SNPs are in LE and have
nonzero genetic distances, [Matise et al., 2003; Browning
et al., 2004]. In regions of high LD, haplotype blocks exist
and a reduced set of haplotype tag SNPs that identify
common haplotypes may be selected in the analysis, as
proposed by Boyles et al. [2005] and Stram et al. [2003].
Incorporation of flanking markers not in LD, with the
cluster moderates the LD effect, but the false-positive rate
is still higher than expected [Boyles et al., 2005].

Joint association and linkage analysis face similar
problems when marker maps are tight and founders not
genotyped, mainly due to the presence of the linkage
component. Several methods for joint linkage and associa-
tion analysis have recently been proposed by a number of
authors, for instance [Cantor et al., 2005; Fulker et al., 1999;
Göring and Terwilliger, 2000; Hössjer, 2005a; Jung et al.,
2005; Li et al., 2005; Sham et al., 2000; Pérez-Enciso, 2003;
Xiong and Jin, 2000]. The methods in these articles are
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either single point, or, if multipoint, different markers are
either grouped into clusters, with no within-cluster
recombinations allowed for, or assumed to be in LE.
Cantor et al. [2005] mention the possibility of allowing for
more general marker haplotype structures by using the
Elston-Stewart algorithm [Elston and Stewart, 1971].

In this article we describe how to incorporate LD into
multipoint analysis by generalizing the Lander-Green
algorithm. This we do by combining the Markov chain
for inheritance vectors used in multipoint linkage analysis
[Lander and Green, 1987] with another Lth-order Markov
chain that models LD structure of founder marker data.
The latter Markov chain has recently been used for
singletons by Eronen et al. [2004] as a way to estimate
haplotype frequencies. Using hidden Markov models, we
quantify incompleteness of marker data by means of the
conditional distribution of founder haplotypes and the
inheritance vector given marker data.

Our framework incorporates not only joint tests for
linkage and association but also separate tests for linkage
and association [see Hössjer, 2005a]. It allows for para-
metric as well as nonparametric choices of score function
and various kinds of genetic models involving for instance
binary or quantitative phenotypes. In principle, arbitrary
pedigree structures are allowed for, although the present
implementation of the method is only computationally
feasible for small L and small pedigrees.

To handle incomplete marker data, Kruglyak et al. [1996]
used the expected value of the scoring function
given marker data. The resulting test is conservative
though when information on descent is incomplete
since the variance of the test statistic is overestimated.
Kong and Cox [1997] proposed a one parameter
allele sharing likelihood model. The resulting likelihood
ratio (LR) test is very similar to the approach of Kruglyak
et al. [1996] for complete marker data but much less
conservative otherwise. We define a two-parameter exten-
sion of the Kong and Cox model to handle linkage and
association jointly. By restricting the parameter space,
it is also possible to define separate linkage and associa-
tion tests.

Finally, we illustrate our method by means of a small
simulation study, where marker data is generated with LD
structure and then analyzed both under LD and LE
assumptions. Our results indicate that (i) association tests
are much less sensitive to the LD assumption than linkage
tests and joint association/linkage tests and (ii) that our
method is able to reduce inflated linkage scores.

MULTIPOINT APPROACH TO
LINKAGE AND ASSOCIATION

Assume a map of K markers at loci x1o � � �oxK along
one chromosome, with map distance measured in Mor-
gans. We consider initially one pedigree with n indivi-
duals, of which f are founders and n�f nonfounders.
Assume pedigree members are numbered so that founders
have labels 1; . . . ; f and nonfounders labels f þ 1; . . . ; n. We
let bi;2k�1 be the maternal allele of individual k at xi and bi;2k

the paternal allele (1 � k � n; 1 � i � K). Further, assume
that the marker allele at xi is di-allelic, so that bi;2k�1 and
bi;2k can attain di different values. Let

Mi ¼ fðbi;2k�1bi;2kÞ; k 2 T ig

be observed marker data at xi, with T i � f1; . . . ; ng the set
of genotyped individuals at xi. Here, ðbi;2k�1bi;2kÞ is the
marker genotype of k at xi, which a priori has unknown
phase. (Given the data we might know the phase though if
k is a nonfounder.) Notice that Ti ¼ ; is possible, in which
case we interpret xi as a marker locus with completely
missing data. Let

M ¼ ðM1; . . . ;MkÞ

be marker data at all loci for all individuals and m ¼
2ðn� fÞ the number of meioses in the pedigree. Define vi ¼

ðvi1; . . . ; vimÞ as the inheritance vector at xi, with vil equal to
zero or one depending on whether a grandpaternal or
grandmaternal allele was transmitted during the lth
meioses [Donnelly, 1983], and bi ¼ ðbi1; . . . ; bi;2f Þ as the
founder allele vector at xi. We combine vi and bi into an
allele configuration

wi ¼ ðbi; viÞ

at xi. In the ideal case of complete marker data and known
phase of all founders, we would observe w1; . . . ;wK.
Hence, we interpret wi as complete marker data at locus
xi. Any one-locus association, linkage or combined
association and linkage tests statistic at locus xi is a
function of wi if marker data is complete [Hössjer, 2005a].
For incomplete marker data, we retrieve information about
wi from M using the multipoint distribution

PiðwÞ ¼ Pðwi ¼ wjMÞ: ð1Þ

MARKOV MODEL FOR
MULTIPOINT PROBABILITY

Usually, (1) is evaluated by means of the Lander-Green
algorithm, assuming LE between markers at different loci,
see Lander and Green [1987] and the Appendix of Hössjer
[2005a] for details. This is in fact the forward-backward
algorithm for Hidden Markov Models (HMMs) with fvig

K
i¼1

as hidden Markov regime [see e.g. Baum, 1972; Rabiner,
1989]. For this we need to assume no chiasma interference,
so that fvig becomes a Markov chain with transition
probabilities

Pðviþ1jviÞ ¼ y
jviþ1�vi j

i ð1� yiÞ
m�jviþ1�vi j; ð2Þ

where yi is the recombination fraction between xi

and xiþ1 and jviþ1 � vij ¼
Pm

l¼1 jviþ1;l � vilj the Hamming
distance between vi and viþ1. The size of the state space of
vi is 2m.

Our objective is to generalize the Lander-Green
algorithm by allowing for LD between markers. We
model LD structure by assuming that marker alleles
along each founder haplotype form an Lth order Markov
chain, i.e.

Pðbiþ1;kjbik; . . . ; b1kÞ ¼ Pðbiþ1;kjbik; . . . ; bi�Liþ1;kÞ ð3Þ

for i ¼ 1; . . . ;K � 1, Li ¼ minðL; iÞ and k ¼ 1; . . . ; 2f . The
transition probabilities in (3) depend on i but not on k.
They involve frequencies of haplotypes of length Li þ 1.
Indeed, let hik ¼ ðbi�Liþ1;k; . . . ; bikÞ denote the kth founder
haplotype formed by Li consecutive loci, the rightmost one
being xi and gik ¼ ðbi�Li ;k; . . . ; bikÞ the corresponding haplo-
type of length Li þ 1, also having its rightmost allele at xi.
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Then

Pðbiþ1;kjbik; . . . ; bi�Lþ1;kÞ ¼
Pðgiþ1;kÞ

Pðhi;kÞ
¼

Pðgiþ1;kÞP
Pð~giþ1;kÞ

; ð4Þ

where the sum in the rightmost denominator is taken over
all haplotypes ~giþ1;k of length Li þ 1 whose Li leftmost
alleles equal hik and whose rightmost allele is at xi. For
singletons (n 5 1), the Markov model (3) and (4) has been
used by Eronen et al. [2004] for haplotype reconstruction.

The usual LE assumption in linkage analysis corre-
sponds to L 5 0. We will assume L40, and, for this we
need to enlarge the state space and consider Li adjacent
loci simultaneously. Define Bi ¼ ðbi�Liþ1; . . . ; biÞ and

Wi ¼ ðBi; viÞ; ð5Þ

for i ¼ 1; . . . ;K. We will assume no segregation distortion
(fbig and fvig independent processes) and Hardy-Weinberg
equilibrium (fbikg independent processes for different k).
Because of (2) and (3), it follows that fWig is a Markov
chain, and PðWijMÞ can be computed by means of the
forward-backward algorithm, see the Appendix for de-
tails. This in turn provides the sought multipoint
probabilities (1) through

PiðwÞ ¼
X

Wi;wi¼w

PðWijMÞ:

As shown in the Appendix, the computational complexity
of the forward-backward algorithm without any speedups
for SNPs (d1 ¼ � � � ¼ dK ¼ 2) is

OðK � 22ðLþ1Þfþ2mÞ; ð6Þ

which is intractable for all but very small L, f and m.
For ease of presentation, we have assumed L to be

constant. It is straightforward though to generalize the
HMM algorithm to allow for haplotypes of varying length,
with L smaller in regions of low LD.

COMPUTATIONAL SAVINGS

As a first speedup, we utilize that haplotype phase of all
founders is unknown, since marker data is unchanged if
any founder’s haplotypes are switched at the same time as
the mode of allele transmission to all his offspring is
switched.

Consider a fixed locus xi and, for simplicity, drop index
i, so that Wi ¼W ¼ ðB; vÞ and hik ¼ hk, k ¼ 1; . . . ; 2f . The
idea is to subdivide all W into a number of sets. The allele
configurations W within each set cannot be distinguished
from marker data and hence can be treated as a single
element. Following Kruglyak et al. [1996], we let ck be the
inheritance vector of length m, which has ones in all bits
corresponding to those meioses where founder k transmits
alleles to his or her children, k ¼ 1; . . . ; f . Let pk be a
function of B that switches founder haplotypes 2k� 1 and
2k and leaves all other founder haplotypes fixed. Since
B ¼ ðhkÞ

2f
k¼1 we get

pkðBÞ ¼ ðh1; . . . ; h2k�2; h2k; h2k�1; h2kþ1; . . . ; h2f Þ:

A phase switch of founder k corresponds to changing W to
ðpkðBÞ; vþ ckÞ, and this configuration cannot be distin-
guished from W using marker data. By combining founder
phase switches for all f founders in all 2f possible ways we

get equivalence classes

W ¼ px1
1 � . . . � p

xf

f ðBÞ; vþ
Xf

k¼1

xkck

 !
; xk 2 f0; 1g; k ¼ 1; . . . ; f

( )
ð7Þ

of size 2f . Here, p0
kðBÞ is the identity transformation,

p1
kðBÞ ¼ pkðBÞ and � denotes function composition. Hence,

each element of (7) corresponds to switching founder
phase of those founders k for which xk ¼ 1.

A second speedup of matrix multiplication in the HMM
algorithm is achieved by updating individual meioses and
founder haplotypes individually. This generalizes an idea
of Idury and Elston [1997] for pure linkage analysis.

With both of the abovementioned speedups incorpo-
rated, it is shown in the appendix that the total number of
operations is

OðK � ð2f þmÞ22fLþm�f Þ: ð8Þ

This is still intractable for large L, f and m, but less than (6).

SCORE FUNCTIONS

We consider tests of association and/or linkage of a
given locus xi to a disease locus t. The hypothesis testing
problem is formulated as

H0i : t unlinked to xi;
H1i : t ¼ xi; e 6¼ 0;

ð9Þ

where e consists of genetic model parameters of the disease,
with e ¼ 0 corresponding to no genetic component. In
general, e involves penetrance parameters and allele
frequencies at xi. It may also contain association parameters
between xi and t, although this is not needed when xi

coincides with disease locus, since the two loci are then in
complete association.1 It is mathematically equivalent to
reformulate the null hypothesis as having a ‘‘disease locus’’
t at xi with no genetic effect and rewrite (9) as

H0i : t ¼ xi; e ¼ 0;
H1i : t ¼ xi; e 6¼ 0:

ð10Þ

The latter formulation (10) was originally introduced by
Whittemore [1996] for linkage tests statistics. The advantage
of (10) over (9) is that the parameter e is used for testing H0i

versus H1i. In the sequel, we write H0i ¼ H0, since the null
hypothesis is independent of xi as long as we consider
markers along one chromosome.

Let b ¼ ðb1; . . . ; b2f Þ and v ¼ ðv1; . . . ; vmÞ be arbitrary
founder allele and inheritance vectors and w ¼ ðb; vÞ. Write

Pi;eðwÞ ¼ Pðwi ¼ wjt ¼ xi; e;YÞ

for the allele configuration distribution at a disease locus
xi, conditional on observed phenotypes Y in the pedigree.
In general, it depends on allele frequencies at xi and
penetrance parameters of the disease. Notice in particular
that

Pi;0ðwÞ ¼ P0ðwi ¼ wjYÞ ¼ Pðwi ¼ wÞ ¼ 2�mPðbi ¼ bÞ; ð11Þ

1In Hössjer [2005a], such an association component was included,
and the additional requirement ‘‘alleles at t and xi are not
associated’’ was added to H0i. This is reasonable for coarser
marker maps not including the disease locus itself. For dense
marker maps, covering all or most polymorphic loci, we find (9)
more natural.
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where Pðbi ¼ bÞ ¼
Q2f

k¼1 Pðbik ¼ bkÞ, and subscript 0 refers
to probabilities under H0. We will consider retrospective
log likelihood

lðxi; eÞ ¼ log Pi;eðMjYÞ ¼ log
X

w

PðMjwÞPi;eðwÞ

 !
ð12Þ

and assume that e ¼ ðe1; e2Þ involves two parameters. The
first one, e1, corresponds to association tests and the
second one, e2, to linkage tests.

For complete marker data, when wi is observed, the
likelihood score vector

l0i ¼ l0ðxi; ð0; 0ÞÞ ¼ SðwiÞ � mi ð13Þ

for some score function SðwÞ ¼ Sðw;YÞ and constant
mi ¼ E0ðSðwiÞjYÞ. We regard S as a function of w, which
also depends on phenotypes Y and (possibly) genetic
model parameters that are known or estimated in advance.
l0ðxi; eÞ is the partial derivative of lðxi; eÞ with respect to e.
For pure association tests, the derivative is taken with
respect to one component, e1, so that S ¼ S1 is a scalar. For
pure linkage tests, the derivative is taken with respect to
e2, giving the scalar function S ¼ S2. Finally, for combined
linkage and association tests, the derivative is taken with
respect to both components of e, so that S ¼ ðS1; S2Þ is a
vector. For more details on likelihoods leading to (13), see
Hössjer [2003, 2005b], McPeek [1999] and Whittemore
[1996] for linkage tests Clayton [1999], Shih and Whitte-
more [2002] and Whittemore and Tu [2000] for association
tests and Hössjer [2005a] for combined association and
linkage tests.

We consider association and linkage score functions of
the form

S1ðwÞ ¼
Xn

k¼1

okðb2k�1 þ b2kÞ;

S2ðwÞ ¼
X

1�kol�n

oklIBDkl; ð14Þ

where IBDkl is the number of alleles shared IBD by k and l
and ok and okl are weights assigned to individuals and
pairs of individuals, both of which depend on phenotypes,
and possibly also on fixed genetic model parameters. Both
S1 and S2 appear in the likelihood score vector (13) for
certain low penetrance genetic models.

A nonfounder version of S1 is defined by conditioning
on founder alleles,

SNF
1 ðwÞ ¼ S1ðwÞ � E0ðS1ðwiÞjb;YÞ: ð15Þ

In general, test procedures based on SNF
1 are less powerful

than those using S1, since information is lost by conditioning
on founder alleles. On the other hand, SNF

1 is more robust
against spurious association due to population admixture,
see Clayton [1999] and Shih and Whittemore [2002].

In the sequel, our framework incorporates score
functions for pure association (S ¼ S1 or SNF

1 ), pure linkage
(S ¼ S2) or combined linkage and association (S ¼
ðS1; S2Þ or ðSNF

1 ; S2Þ). The standardized version2 of S at

locus xi is

ZiðwÞ ¼ ðSðwÞ � miÞ�
�1=2
i ; ð16Þ

where �i ¼ Var0ðSðwiÞjYÞ. Both mi and �i are scalars for
pure association and linkage score functions, but a 1� 2
vector and a 2� 2 diagonal matrix for combined linkage
and association, see Hössjer [2005a] for details. If S ¼ S2, Zi

is independent of i, but in all other cases it depends on the
allele frequencies at locus xi.

For incomplete marker data, we do not observe ZiðwiÞ.
Instead, we use the multipoint distribution (1) and define3

the family score

�Zi ¼ EðZiðwijMÞÞ ¼
X

w

ZiðwÞPiðwÞ ð17Þ

at locus xi. For pure linkage tests, this reduces to the family
NPL score of Kruglyak et al. [1996]. The likelihood score
vector (13) then generalizes to

l0i ¼
X

w

ðSðwÞ � miÞPiðwÞ ¼ �Zigi; ð18Þ

where gi ¼ �
1=2
i is either a scalar or a diagonal matrix of

order 2.

AN ALLELE CONFIGURATION
MODEL

We will now reverse the procedure of the previous
section, starting with a score vector S(w) with both
association and linkage components, computing Zi accord-
ing to (16) and then defining a two-parameter allele
configuration model

Pi;eðwÞ ¼ Pi;0ðwÞð1þ ZiðwÞgie
TÞ; e ¼ ðe1; e2Þ 2 Y; ð19Þ

where gi ¼ diagðgi1; gi2Þ is a given diagonal 2� 2 weight
matrix at locus xi. A possible choice is gi ¼ �

1=2
i , although

we will allow for other weighting schemes. In (19), e1 and
e2 quantify strength of association and linkage, respec-
tively, without having direct interpretation in terms of
genetic model parameters. The parameter space Y is
defined by the requirements e2 � 0 and Pi;eðwÞ � 0 for all w.
Notice that we only allow for positive values of e2,
corresponding to increased allele sharing among
affected for binary phenotypes. On the other hand, both
positive and negative values of e1 are allowed for, since
either of the two alleles at xi may be associated with the
disease. It is possible to restrict Y further as in pure
association models (e2 ¼ 0) and pure linkage models
(e1 ¼ 0). In the latter case, (19) is equivalent to the linear
model of Kong and Cox [1997].

It is shown in the Appendix that the retrospective log
likelihood based on (19) is

lðxi; eÞ ¼ constantþ logð1þ �Zigie
TÞ; ð20Þ

with a constant depending on marker data M, but not on e.
Hence, the score vector l0i obtained from (20) is (18). The

2An alternative standardization ZðwÞ ¼ SNF
1 ðwÞ=

ffiffiffiffiffiffiffiffiffi
�ðbÞ

p
of the

nonfounder score function is possible, with �ðbÞ ¼
Var0ðS1ðwÞjb;YÞ. However, it is not well defined when �ðbÞ ¼ 0.
For a nuclear family, this happens when both parents are
homozygote.

3In fact, for a reduced state space we let �w denote equivalence
class (7) with L 5 1. Under the mild requirement that S(w) and
hence also Z(w) is the same for all w 2 �w we notice that (17) is
equivalent to �Zi ¼

P
�w Zið �wÞPið �wÞ, where Pið �wÞ ¼ Pð �wi ¼ �wjMÞ ¼P

�Wi ; �wi¼ �w
Pð �WijMÞ.
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diagonal entries of gi ¼ diagðgi1; gi2Þ are weights given to
the association and linkage components of the family.

TEST STATISTICS

Consider a collection of N families (of possibly different
structure) with marker and phenotype data
ðM1;Y1Þ; . . . ; ðMN ;YNÞ. The total retrospective log like-
lihood for all families is

lðxi; eÞ ¼
XN

j¼1

log Pi;eðMjjYjÞ

¼ constantþ
XN

j¼1

logð1þ �Zjigjie
TÞ; e 2 Y;

ð21Þ

where �Zji and gji ¼ diagðgji1; gji2Þ are the likelihood score

vectors and weight matrices of the jth family at locus xi.
The parameter space Y ¼ \N

j¼1Yj is the intersection of the

parameter spaces of all individual families. This definition
of Y guarantees that (19) is nonnegative for all N families,
which makes all terms of (21) well defined.

Let

êi ¼ arg max
e2Y

lðxi; eÞ

be the maximum likelihood estimator of e at xi and define
the log LR statistic

Ti ¼ 2ðlðxi; êiÞ � lðxi; ð0; 0ÞÞÞ; ð22Þ

as test statistic for (10). The asymptotic distribution of Ti is
0:5w2ð1Þ þ 0:5w2ð2Þ for combined association and linkage
tests, w2ð1Þ for pure association tests and 0:5w2ð0Þ þ 0:5w2ð1Þ
for pure linkage tests, see e.g. Self and Liang [1987] and
Table I.

A more easily computable approximation of Ti, which
also motivates above-mentioned asymptotic distributions,
is obtained by replacing lðxi; �Þ in (22) by its second-order
Taylor expansion around the origin. This quadratic
approximation of lðxi; �Þ is a function of ðe1; 0Þ for pure
association tests (Ti ¼ T1i), ð0; e2Þ for pure linkage tests
(Ti ¼ T2i) and (e1; e2) for combined association and linkage
tests (Ti ¼ Tcombined;i). Keeping in mind the restriction
e2 � 0, this yields

T1i � �ðl
0
iÞ

2=l00i ;

T2i � �1fl0
i
�0gðl

0
iÞ

2=l00i ;

Tcombined;i � wXTXwT þ vXTXvT1fXvT�0g; ð23Þ

where

l0i ¼
XN

j¼1

�Zjigji;

l00i ¼ �
XN

j¼1

�Zjig2
ji
�Z

T

ji ;

X ¼ l0ið�l00i Þ
�1=2, XT is the transpose of X, and v ¼ ðv1; v2Þ

and w ¼ ð�v2; v1Þ are two orthogonal unit vectors such that
v is proportional to the vector ð0; 1Þð�l00i Þ

�1=2.

A simplified combined association and linkage test is
obtained by summing (or taking some other weighted
average) of separate association and linkage test statistics.
One possibility is to use

T1i þ T2i ð24Þ

as test statistics. In general, (24) differs from a combined
linkage and association test Tcombined;i, unless (i) the
parameter space can be written as Y ¼ ½c1; c2	 � ½c3; c4	 for
some constants c1; . . . ; c4 and (ii) the likelihood in (21)
factorizes as Pi;eðMjjYjÞ ¼ Pi;ðei ;0ÞðMjjYjÞ 
 Pi;ð0;e2Þ

ðMjjYjÞ for
each family j ¼ 1; . . . ;N. However, in general both (i) and
(ii) fail. Despite of this, (24) is often a good approximation
of Tcombined;i. Indeed, if l00i is diagonal (as for complete
marker data), it follows from (23) that the quadratic
approximation of Tcombined;i equals the sum of the quad-
ratic approximations of T1i and T2i.

ESTIMATION OF HAPLOTYPE
FREQUENCIES AND SIMULATION

Looking at the transition probability (3) for founder
alleles one realizes that we need to specify K�L distribu-
tions of haplotypes gi;k of length L11, one distribution for
each i ¼ Lþ 1; . . . ;K.

Various methods for estimating haplotype frequencies
exists, see e.g. Douglas et al. [2001], Hodge et al. [1999] and
Niu et al. [2002]. We use the software Haplotyper [Niu
et al., 2002].

We will simulate marker data conditionally on pheno-
types, see, for instance Boehnke [1986], Ott [1989], Plough-
man and Boehnke [1989] and Terwilliger et al. [1993]. For
one single family, simulation from Pi;eðMjYÞ can be
achieved in two steps as follows:

1. Generate b ¼ ðb1;ybKÞ and ðv ¼ v1;yvKÞ from
Pi;eðb;vjYÞ.

2. Compute M ¼ ðM1;yMKÞ by spreading foun-
der alleles from b according to v at each locus
and hiding genotypes for untyped individuals.

In Step 1 of the above algorithm, we proceed differently
under H0 and H1i, see the Appendix for details.

RESULTS

For simplicity, we restrict ourselves to binary pheno-
types and put ok ¼ 1 if k is affected and ok ¼ 0 otherwise
(unaffected or unknown phenotype). For pairs of indivi-
duals we put okl ¼ 1 if both k and l are affected and zero
otherwise. With these weights, S2 ¼ Spairs, the linkage
score function is introduced by Whittemore and Halpern
[1994].

We only consider sibpair families, all with the same
phenotype vector and genotyped family members. Since

TABLE I. Quantiles la ¼ F�1ð1� aÞ of different
distributions F

F l0:05 l0:01 l0:001 l0:0001

w2ð1Þ 3.84 6.63 10.83 15.14
0:5w2ð0Þ þ 0:5w2ð1Þ 2.71 5.41 9.55 13.83
0:5w2ð1Þ þ 0:5w2ð2Þ 5.14 8.28 12.81 17.50
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the families are exchangeable, we use a constant weight
matrix

gji ¼
1ffiffiffiffi
N
p

1 0
0 1

� �

in (21) for combined association and linkage test. In case of
pure association and linkage gji ¼ 1=

ffiffiffiffi
N
p

. The parents of
each family are numbered 1,2, the children 3,4, the
phenotype vector is denoted Y ¼ ðY1; . . . ;Y4Þ, where Yk ¼

1 if k is affected and Yk ¼ 0, if k is unaffected or has
unknown phenotype.

In the simulations, we consider a short part of Chromo-
some 9. To get a realistic picture of LD, we use CEPH (Utah
residents with ancestry from northern and western Europe)
population data from the HapMap database [Thorisson
et al., 2005] to estimate haplotype frequencies. Information
about markers and LD between the markers in the cluster
are given in Tables II–IV. In the region studied we did not
see much LD for markers more than 0.1 cM apart.

Under the null hypothesis, we simulate marker data for
500 families with Y ¼ ð1; 0; 1; 1Þ. We generate founder
haplotypes using estimated population frequencies from
Table III. Simulation results from one data set are depicted
in Figure 4. As test statistics we use Tmax ¼ max1�i�KTi for
the given choice of association and/or linkage method. In
order to compute significance levels, we generated marker
data for J 5 1,000 replicate data sets of the same type.

Based on the replicate test statistics T
j
i and T

j
max,

i ¼ 1; . . . ;K, j ¼ 1; . . . ; J, pointwise and regionwide signifi-
cance levels for threshold t are estimated as

aptðtÞ ¼
1

JK

XJ

j¼1

XK

i¼1

1
fT

j
i
�tg

and

aðtÞ ¼
1

J

XJ

j¼1

1
fT

j
max�tg

;

respectively. Figures 1 and 2 depict pointwise and Figure 3
regionwide significance curves when L 5 0 and L 5 1.

Among the association LR tests (T1 and TNF
1 ) and linkage

LR test (T2), T2 is by far most sensitive to incorrect LD

TABLE III. Estimated population frequencies of
haplotypes of length two [Niu et al., 2002].

Markers

Haplotype 12 23 34 45 56 67 78 89 910

00 0.87 0.86 0.41 0.11 0.51 0.49 0.20 0.48 0.80
01 0.03 0.01 0.48 0.41 0 0.42 0.38 0.05 0.12
10 0 0.03 0.11 0.40 0.4 0.09 0.32 0.44 0
11 0.10 0.10 0 0.08 0.09 0 0.10 0.03 0.08

TABLE II. Information about the SNPs used in the
study, located along Chromosome 9 and spanning
approximatively 0.45 cM

Marker nr i Marker id Position (cM) Pðbik ¼ 0Þ Pðbik ¼ 1Þ

1 rs79997310 36.5106 0.90 0.10
2 rs1937760 36.5645 0.87 0.13
3 rs12428936 36.6189 0.89 0.11
4 rs9532010 36.6664 0.52 0.48
5 rs95477761 36.7186 0.51 0.49
6 rs7490113 36.7865 0.91 0.09
7 rs1359217 36.8123 0.58 0.42
8 rs9566217 36.8612 0.52 0.48
9 rs7989580 36.9107 0.92 0.08

10 rs7983125 36.9588 0.80 0.20

TABLE IV. Table displaying the correlation coefficient r2 of
LD between markers

Marker 2 3 4 5 6 7 8 9 10

1 0.778 0.915 0.104 0.020 0.008 0.002 0.000 0.013 0.007
2 0.708 0.046 0.002 0.100 0.012 0.004 0.007 0.006
3 0.114 0.027 0.006 0.000 0.000 0.011 0.005
4 0.440 0.018 0.008 0.010 0.002 0.007
5 0.108 0.070 0.013 0.045 0.036
6 0.077 0.091 0.008 0.007
7 0.034 0.015 0.048
8 0.045 0.015
9 0.279

T1 T1
NF

 

 

t

lo
g 10

α pt
 (

t)

T2
Tcombined

Fig. 1. Pointwise significance curve using four statistics when

Y ¼ ð1; 0; 1; 1Þ, T i ¼ f1; 2; 3; 4g and J 5 1,000. Tcombined is the LR

statistic when S ¼ ðSNF
1 ; S2Þ. Nominal significance levels from

Table I are included as � in all subplots. Curves when L 5 0 and
L 5 1 cannot be discerned.
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Genet. Epidemiol.



assumptions in the analysis, followed by TNF
1 and T1. The

reason why TNF
1 is somewhat more sensitive to LD than T1

when parental marker data is missing, is the conditioning
on founder alleles in the definition of SNF

1 , see (15) and
Figure 4. For T1 there is no difference between analyses
under LD and LE assumption when parents are unaffected
or have unknown phenotypes. This holds regardless of
which parents are typed for markers. It is not surprising,
since o1 ¼ o2 ¼ 0 and hence the parental marker alleles
are not included in the definition of S1.

As mentioned in the Introduction, the sensitivity of
linkage scores to LD assumptions depends on which
individuals have been genotyped for markers. There is
inflation of T2 when one parent is untyped for markers
(data not shown), but even more so when both parents are
untyped. Since a very short chromosomal region is
analyzed, it is not surprising that T2 is almost constant.
Joint association and linkage analysis (Tcombined) is mainly
sensitive to LD due to the linkage component.

As seen from Figures 1 and 2, the nominal P-value
approximation from Table I is very good when T i ¼

f1; 2; 3; 4g and for pure association tests when T i ¼ f3; 4g
but poor for pure linkage and combined linkage and
association tests. These discrepancies between the nominal
and empirical P-values deserve further study.

When simulating under the alternative hypothesis we
have 1,000 sib pair families and choose one marker as
disease locus, see Figure 5. The genetic model corresponds
to a low penetrant disease with a rather small (7.8%) disease
allele frequency. There is the same kind of sensitivity to LD
as when simulating under the null hypothesis.

DISCUSSION

We have suggested and described a method, based on
HMM, for handling LD between markers in multipoint
association and/or linkage analysis. The novel feature, in
this context of gene mapping, is to model founder

T1 T1
NF

 

 

t

lo
g 10

α pt
 (

t)

T2
Tcombined

L=1
L=0

Fig. 2. Pointwise significance curve assuming either L 5 0 or

L 5 1, using four statistics with T combined, Y and J as in Figure 1

and T i ¼ f3; 4g. Nominal significance levels from Table I are

included as � in all subplots.
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 α
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T2 Tcombined

t

L=1
L=0

Fig. 4. LR statistic T for one data set simulated under H0 and

with Y, T i and Tcombined as in Figure 2.
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Fig. 5. LR statistic T for combined association and linkage

analysis for data simulated under H1 with marker 9 as disease

locus and penetrance values ðf0; f1; f2Þ ¼ ð0:10; 0:11; 0:12Þ.
S ¼ ðS1;S2Þ, Y ¼ ð1; 0; 1; 1Þ and T i ¼ f3; 4g.
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haplotypes by means of a Markov chain. We have also
extended the likelihood approach of Kong and Cox [1997]
for handling incomplete marker data to association and
combined association and linkage tests.

Simulations for sib pair families show that proper
handling of LD is most important for incomplete marker
data, in particular when both parents are untyped. Further,
LD affects linkage analysis much more than association
analysis. Combined association and linkage analysis is
principally affected by LD through the linkage compo-
nent. For association tests, conditioning on founder alleles
slightly increases sensitivity to LD.

Our work can be extended in several ways. First of all,
more extensive simulations are needed for various combi-
nations of pedigrees, genotyping scenarios and phenotypes.
The LD structure, in particular L, could be varied both in
simulation and analysis.

Another possibility is to consider score functions
depending on marker data at several loci. This amounts to
using a pedigreewise log likelihood (20), with

�Zi ¼
X

W

ZiðWÞPðWi ¼WjMÞ;

where ZiðWÞ ¼ ðSðWÞ � miÞ�
�1=2
i , mi ¼ E0ðSðWiÞÞ,

�i ¼ Var0ðSðWiÞÞ, and

S ¼ SðWÞ ð25Þ

is a score function depending on marker data from all Li

loci included in W ¼ ðB; vÞ. We conjecture that (25) is
preferable over (14) in particular for coarser marker maps
such that the disease locus is located between two
neighboring markers. It this case, the founder marker
haplotypes are usually more closely associated to pheno-
types than individual founder alleles, indicating that the
association component of S(W) should depend on B, not
just on b.

In contrast, for dense marker maps including the causal
variant, the disease alleles are more associated to
phenotypes than any other (combination of) marker
alleles, indicating that a single locus association compo-
nent of S will work well. When S1 is single locus,
information from other markers serves the purpose of
filling in missing data for S1 due to untyped family
members. (In contrast, data might be missing at a given
locus for S2 even when all family members are genotyped,
if the locus is not fully polymorphic.)

Our approach, including the computational savings, can
be extended to handle different recombination rates
between men and women. The crucial point is that the
transition probabilities (2) of the inheritance vector Markov
chain is generalized so that the product structure (A8) in
the Appendix is retained.

The present implementation of the algorithm is compu-
tationally intensive, in spite of the speedups. Indeed, in
order to analyze N pedigrees of the same kind along a
chromosome segment with K SNPs, the number of
operations to compute Ti at all markers is proportional
to NK � CC, where CC, the proportionality constant in (8) is
given in Table V for a number of different pedigrees. It is
evident that the computational complexity is affected
primarly by the number of founders. For a small pedigree
with two founders, a short chromosomal region (say
K 5 10) and a data set with N 5 1,000 individuals, values of
L up to 3–4 seem to be within reach. However, if J Monte

Carlo replicate data sets (with the same K and N) are
generated in order to compute significant levels, the
number of operations is proportional to JNK � CC. Then if
J 5 1,000 values of L up to 2 seem more reasonable.

Additional speedups of the forward-backward algo-
rithm are possible: (1) For certain pedigree structures and
marker data configurations, state space can be reduced
more effectively than using founder phase symmetry
alone, see Abecasis et al. [2002] and Gudbjartsson et al.
[2000]. (2) In recursive updating of forward and backward
probabilities, one could utilize that most elements of the
diagonal matrices Di and Diþ1 at consecutive loci are zero.
This is likely to decrease computational complexity in
particular when L is large. (3) Each founder individual has
2L possible haplotypes over L loci. The common haplo-
types are those with frequency exceeding a given thresh-
old. When L is large, each hik could be restricted to
common haplotypes, whose number is substantially
smaller than 2L. (4) Defining a variable order Markov
chain [Eronen et al., 2004], letting Li be smaller in regions
of low LD. (5) Letting each xi correspond to a haplotype
block, within which no recombinations are allowed. The
number of alleles di can be reduced by considering only
common haplotypes, and L can be chosen much smaller
than for single base pair polymorphisms. When L 5 0, this
is essentially the approach of Abecasis and Wigginton
[2005]. With L 5 1 we get a first-order Markov chain for
haplotype blocks, see e.g. Daly et al. [2001].

The perhaps most natural extension for real data is to
combine (4) and (5). At regions where neighboring SNPs
are tightly linked they may be grouped into clusters and
treated as a single marker, with L small. In other regions
where neighboring SNPs have looser linkage but still show
some degree of LD, it seems more reasonable to retain
individuals SNPs as markers and use a larger L. In this
way, it is possible to augment the grouping approach of
Abecasis and Wigginton (2005).

A great challenge is to develop faster versions or
approximations of our methodology such that genome-
wide scans based on all polymorphic SNPs become
feasible. For instance, if K ¼ 6� 106, SNPs are used along
the human genome, at an average distance of 0.5 kb, and if
LD extends over 10 kb [Reich et al., 2001; The international
HapMap Consortium, 2005], a value about L 5 20 is
required to fully capture LD-structure, although a sub-
stantially smaller L is likely to approximate it quite well.
The extent to which such a reduction of L affects
significance level is an interesting topic for future research.

TABLE V. Proportionality constant (8) of computational
complexity (CC), for one pedigree when K 5 1

Pedigree n f m CC

Trio 3 2 2 6 � 16L

Sib pair 4 2 4 32 � 16L

Sib trio 5 2 6 160 � 16L

Sib quartet 6 2 8 768 � 16L

Uncle-nephew 6 3 6 96 � 64L

First cousins 8 4 8 256 � 256L

Second cousins 12 6 12 1536 � 4096L

For a data set consisting of N identical pedigrees, analyzed at K
markers, the computational complexity is thus proportional to NK
CC.
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However, for pure linkage tests, a much coarser SNP
density is sufficient to yield high information content at all
loci and thus a faster algorithm.
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Hössjer O. 2006. Modelling the effect of inbreeding among founders in

linkage analysis. Theor Pop Biol 70:146–163.

Huang Q, Shete S, Amos CI. 2004. Ignoring linkage disequilibrium

among tightly linked markers induces false-positive evidence of

linkage for affected sib pair analysis. Am J Hum Genet 75:1106–1112.

Idury RM, Elston RC. 1997. A faster and more general hidden Markov

model algorithm for multipoint likelihood calculations. Hum

Hered 47:197–202.

Jung J, Fan R, Jin L. 2005. Combined linkage and association mapping

of quantitative trait loci by multiple markers. Genetics 170:881–898.
Kong A, Cox N. 1997. Allele-sharing models: LOD scores and accurate

linkage tests. Am J Hum Genet 61:1179–1188.

Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. 1996. Parametric and

nonparametric linkage analysis: a unified multipoint approach.

Am J Hum Genet 58:1347–1363.

Lander ES, Green P. 1987. Construction of multilocus genetic maps in

humans. Proc Natl Acad Sci USA 84:2363–2367.

Li M, Boehnke M, Abecasis GR. 2005. Joint modelling of linkage and

association: identifying SNPs responsible for a linkage signal. Am J

Hum Genet 76:934–949.

Matise TC, Sachidanandam R, Clark AG, Kruglyak L, Wijssman E,

Kakol J, Buyske S, Chui B, Cohen P, de Toma C, Ehm M, Glanowski

S, He Chunsheng, Heil J, Markianos K, McMullen I, Pericak-Vance

MA, Silbergleit A, Stein L, Wagner M, Wilson AF, Winick JD, Winn-

Deen ES, Yamashiro CT, Cann HM, Lai E, Holden AL. 2003.

A 39-centimorgan-resolution human single-nucleotide polymorh-

ism linkage map and screening set. Am J Hum Genet 73:271–284.

McPeek S. 1999. Optimal allele-sharing statistics for genetic mapping

using affected relatives. Genet Epidemiol 16:225–249.

Niu T, Qin ZS, Xu X, Liu JS. 2002. Bayesian haplotype inference for

multiple linked single-nucleotide polymorphisms. Am J Hum

Genet 70:157–169.

Ott J. 1989. Computer-simulation methods in human linkage analysis.

Proc Natl Acad Sci USA 86:4175–4178.
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APPENDIX

FORWARD-BACKWARD ALGORITHM

It follows from (2), (3) and (4) that fWig is a Markov
chain with transition probabilities

PðWiþ1jWiÞ ¼ Pðviþ1jviÞPðBiþ1jBiÞ ¼ Pðviþ1jviÞ
Y2f

k¼1

Pðbiþ1;kjhikÞ;

ðA1Þ

for i ¼ 1; . . . ;K � 1. The absolute probabilities are

PðWiÞ ¼ 2�m
Y2f

k¼1

PðhikÞ; ðA2Þ

where 2�m is the prior probability of vi.
Introduce

M�i ¼ ðM1; . . . ;MiÞ;

Mþi ¼ ðMiþ1; . . . ;MKÞ;

aiðWÞ ¼ PðM�i ;Wi ¼WÞ;

biðWÞ ¼ PðMþi jWi ¼WÞ;

for i ¼ 1; . . . ;K. The forward probabilities aiðWÞ are
computed recursively from left to right and the backward
probabilities biðWÞ recursively from right to left. By
applying Bayes’ rule, it follows that

PðWi ¼WjMÞ / aiðWÞbiðWÞ; ðA3Þ

where the proportionality constant is chosen so that the
right-hand side probabilities sum to one.

Let W i denote the set of all possible Wi. For SNPs we
have jWij ¼ 22fLiþm, since Bi and vi can be chosen in 22fLi

and 2m different ways. Introduce

ai ¼ ðaiðWÞÞ; 1� jW ij forw: prob: vector;

bi ¼ ðbiðWÞÞ; 1� jWij backw: prob: vector;

Pi ¼ ðPiðWÞÞ; 1� jWij abs: prob: vector;

Qi ¼ ðQiðW ;W 0ÞÞ; jWij � jW iþ1j transition matrix;

Di ¼ diagðDiðWÞÞ; jW ij � jWij diagonal matrix; ðA4Þ

where QiðW ;W 0Þ ¼ PðWiþ1 ¼W 0jWi ¼WÞ, PiðWÞ ¼
PðWi ¼WÞ and DiðW ;WÞ ¼ PðMijWi ¼WÞ. Recursive al-
gorithms for computing forward and backward probabil-
ities are

aiþ1 ¼ aiQiDiþ1; i ¼ 1; . . . ;K � 1;

bT
i ¼ QiDiþ1b

T
iþ1; i ¼ K � 1; . . . ; 1; ðA5Þ

where bT
i is the transpose of bi, with initial conditions

bK ¼ ð1; . . . ; 1Þ;

a1 ¼ P1D1:

Qi and Pi are deduced from (A1) and (A2) and

DiðWÞ ¼ 1fðb;vÞ!Mig
:

Here, ðb; vÞ is the part of W ¼ ðB; vÞ containing founder
alleles at the rightmost locus of B only and ðb; vÞ !Mi

means that marker data at xi is compatible with spreading
of founder alleles b to nonfounders according to inheri-
tance vector v. Hence, Di has only ones and zeros along the
diagonal, where the ones correspond to Wi compatible
with Mi. The set of nonzero diagonal entries of Di are
found using genetic descent and founder-allele graphs, see
Appendix A of Kruglyak et al. [1996] or Sobel and Lange
[1996].

UNREDUCED COMPUTATIONAL COMPLEXITY

For SNPs, each row of Qi has at most 22fþm nonzero
elements. This is so, since given Wi, only viþ1 and biþ1 of
Wiþ1 vary freely, and can be chosen in 2m and 22f ways.
Similarly, each column of Qi contains at most 22fþm

nonzero elements. For this reason the total number of
operations to update the forward and backward prob-
ability vectors in (30) is

Oð22fþm � jWjÞ ¼ Oð22ðLþ1Þfþ2mÞ;

where W is the set of all W ¼ ðB; vÞ when B spans L
adjacent loci. This is the most time-consuming part of the
forward-backward algorithm and must be repeated K�1
times, once for each transition between neighboring pairs
of markers, giving a total complexity (6).

REDUCED COMPUTATIONAL COMPLEXITY

Let Wi denote the collection of all possible Wi. The
forward-backward calculations after founder phase reduc-
tion are similar, provided we replace Pi, Di and Qi by their
analogues Pi, Di and Qi, which are matrices of dimension
1� jW ij, jW ij � jW ij and jW ij � jWiþ1j.

656 Kurbasic and Hössjer
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The crucial step is to notice that fWig is a Markov chain
with transition probabilities

QiðW ;W 0Þ ¼ PðWiþ1 ¼W 0jWi ¼WÞ ¼
X

W 02W

QiðW ;W 0Þ;

ðA6Þ

provided the RHS of (A6) is independent of W 2W. It is
possible to prove that this is the case, see the Appendix of
Hössjer [2006].

The components of Pi and Di are

PiðWÞ ¼ PðWi ¼WÞ ¼ 2f PiðWÞ;

DiðW ;WÞ ¼ PðMijWi ¼WÞ ¼ 1fðb;vÞ!Mig
; ðA7Þ

where, in the last equation, W ¼ ðB; vÞ is any element of W ,
and ðb; vÞ contains only founder alleles from the rightmost
locus of B. Hence, Pi and Di are computed essentially as for
the nonreduced state space.

It turns out that the recursive computation (30) of
forward and backward probabilities can be speeded up by
updating only one component of Wi at a time [see also
Idury and Elston, 1997]. In more detail, write

Qi ¼ Qi1Qi2 . . .Qi;2fþm: ðA8Þ

For k ¼ 1; . . . ; 2f, Qik updates the kth founder haplotype by
dropping the allele at xi�Liþ1 and adding a new allele at
xiþ1. All other founder haplotypes as well as the
inheritance vector are kept fixed. For k ¼ 2f þ j, Qik

updates the jth meiosis of the inheritance vector, while
the remaining meioses, as well as the founder haplotypes,
are kept fixed. Hence, each row and column of Qik has at
most two nonzero elements.

Define

QikðW ;W
0
Þ ¼

X
W 02W

0

QikðW ;W 0Þ: ðA9Þ

After some computations, one finds that

Qi ¼ Qi1Qi2 . . .Qi;2fþm:

Since the total number of nonzero terms on the RHS of
(A9) along a column or row of Qik is at most 2, it follows
that the recursive updating

�aiþ1 ¼ �aiQiDiþ1;

�b
T

i ¼ QiDiþ1
�b

T

iþ1;

of forward and backward probabilities has computational
complexity (using jW ij � jWj ¼ 22fLþm�f )

Oð2ð2f þmÞjWjÞ ¼ Oðð2f þmÞ22fLþm�f Þ:

Repeating this at all marker loci yields a total computa-
tional complexity (8).

DERIVATION OF (20)

Let LiðwÞ ¼ PðMjwi ¼ wÞ. Using (1), (11) and Bayes’
Theorem, it follows that

PiðwÞ ¼ C�1LiðwÞPi;0ðwÞ; ðA10Þ

where C ¼ P0ðMÞ ¼
P

w Pi;0ðwÞLiðwÞ. Let Lðxi; eÞ ¼ Pi;eðMjYÞ

denote the retrospective likelihood. Combining (A10), (19)
and (17) we get

Lðxi; eÞ ¼
X

w

LiðwÞPi;eðwÞ

¼
X

w

LiðwÞPi;0ðwÞð1þ ZiðwÞgie
TÞ

¼ C 1þ C�1
X

w

ZiðwÞLiðwÞPi;0ðwÞgie
T

 !

¼ C 1þ
X

w

ZiðwÞPiðwÞgie
T

 !

¼ Cð1þ �Zigie
TÞ:

Taking logarithms we arrive at (20), with constant ¼ log C.

SIMULATING FROM Pi,e(b,v|Y)

Here, we provide a detailed description on how to
simulate b and v in Step 1 of the algorithm in the
simulation section. Under H0 (e ¼ 0), we simply use

P0ðb; vjYÞ ¼ Pðb; vÞ ¼ PðvÞ
Y2f

k¼1

PðhkÞ;

where hk ¼ ðb1k; . . . ; bKkÞ is the kth founder haplotype of
length K, containing alleles at all marker loci. Hence, v and
each hk are generated as independent Markov chains from
the left to the right (say) with transition probabilities (2)
and (4).

Under H1, Step 1 is slightly more complicated:
1. (a) Generate the allele configuration wi ¼ ðbi; viÞ at the

disease locus xi from Pi;eðwjYÞ.
(b) Given vi, generate v� ¼ ðv1; . . . ; vi�1Þ and vþ ¼
ðviþ1; . . . ; vKÞ from Pðv�jviÞPðvþjviÞ. That is, inheritance
vectors are generated as two independent Markov chains
to the left and right of xi. The transition probabilities are
given by the right-hand side of (2) in both directions.

(c) Given bi, generate Bi from PðBijbiÞ ¼
Q2f

k¼1 PðhikjbikÞ.
That is, 2f founder haplotypes of length Li with rightmost
locus xi are generated independently according to

PðhikjbikÞ ¼
PðhikÞP

Pð~hikÞ
;

where the sum in the denominator is taken over all
haplotypes ~hik of length Li with rightmost allele bik at xi.

(d) Given Bi, generate B� ¼ ðB1; . . . ;Bi�1Þ and Bþ ¼
ðBiþ1; . . . ;BKÞ from PðB�jBiÞPðB

þjBiÞ. That is, founder
haplotypes are generated independently to the left of
xi�Liþ1 and to the right of xi as 2 � 2f Markov chains with
transition probabilities (4) in direction from left to right
and

Pðbi�Li ;kjbi�Liþ1;k; . . . ; bi;kÞ ¼
gikP
~gik

ðA11Þ

in direction from right to left. In the denominator of (A11),
the sum is taken over all haplotypes ~gik of length Li þ 1
whose Li rightmost alleles equal hik.

In Step 1(a), we may use a biological model, with e
containing penetrances and disease allele frequencies. An
alternative is to start with a score function S and disease
allele frequencies and then use (19).
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