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Abstract

For mixed regression models, we define a variance decomposition including three terms, explained individual variance, unex-
plained individual variance and noise variance. In contrast to traditional variance decomposition, it is thus the unexplained, not the
explained, variance that is split. It gives rise to a coefficient of individual determination (CID) defined as the estimated fraction of
explained individual variance. We argue that in many applications CID is a valuable complement to R2, since it excludes noise
variance (which can never be explained) and thus has one as a natural upper bound.

A general theory for coefficients determination is presented, including various choices of regression models, weight functions
and parameter estimates. In particular we focus on models where CID is computable, such as univariate mixed Poisson and logistic
regression models, as well as multivariate mixed linear regression models. Large sample properties and confidence intervals are
derived and finally, the theory is exemplified using Poisson regression on a Swedish motor traffic insurance data set.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Coefficient of determination; Explained variance; Individual variance; Mixed regression models; Noise variance; Variance
decomposition

1. Introduction

The coefficient of determination, R2, is a well known quantity in univariate multiple linear regression, quantifying
the proportion of variation of the response variables Yi explained by the non-intercept covariates. Writing E(Yi |xi) =
mi = �xT

i , where xi is the 1 × p vector of covariates for individual i and � the 1 × p vector of regression coefficients,

R2 =
∑n

i=1 (m̂i − m̂)2∑n
i=1 (Yi − m̂)2

, (1)

where m̂i = �̂xT
i , �̂ is the least square estimate of � and m̂ =∑

i Yi/n =∑
i m̂i/n.

The purpose of this paper is to define coefficients of determination for univariate mixed regression models including
possible nonlinearities and heteroscedasticity. The main idea is to decompose the variance of untransformed data into
three parts: variance explained by the covariates, individual variance not explained by the covariates due to random
effects and remaining noise variance. This differs from the usual approach where the explained variance is divided
into various components, whereas we split the unexplained variance. As a result, we get two different coefficients of
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determination. The first one, R2, is the estimated proportion of variance explained by the covariates, in agreement
with (1). The second one, the coefficient of individual determination (CID), is the estimated proportion of individual
variance explained by the covariates. We argue that in many applications CID is a valuable complement to R2, having
one as a natural upper bound when all individual variation are explained.

Our main focus is a class of univariate regression models for which noise variance is a deterministic function
of the regression parameters and covariates. This class includes Poisson regression and binomial regression with
overdispersion, as well as linear regression with known noise variance. In these cases, both R2 and CID can be
computed. On the other hand, CID is not computable for linear regression with unknown noise variance. The reason is
that unexplained individual variance and noise variance cannot be separated. This is in contrast to multivariate linear
regression, where CID is computable even with unknown noise variance, by using the correlation structure of the
residuals from a (weighted) least squares fit.

There are alternatives to decomposing untransformed variance, such as (i) computing R2 as the proportion of
explained variance for transformed data and (ii) defining R2 generally within a likelihood framework.

The transformation approach (i) has several advantages. For models without random components, one may use a
variance stabilizing transformation and estimate parameters by least squares, see for instance Cochran (1940) and
Carroll and Ruppert (1988). When random effects are included, as in the generalized linear mixed model (Breslow and
Clayton, 1993), one may approximate transformed data by a linear mixed model, see for instance Lee and Chaubey
(1996). The likelihood approach (ii) is appealing because of its general interpretation of 1 − R2 as the proportion of
unexplained variation, see Maddala (1983), Cox and Snell (1989, pp. 208–209), Magee (1990) and Nagelkerke (1991).

On the other hand, in many cases, the untransformed response variable is the quantity of major interest to the
experimenter. It may represent a count of accidents, a proportion of successful experiments or an economic cost. Then
a coefficient of determination based on untransformed data is more useful than (i)–(ii).

The paper is organized as follows: In Sections 2 and 3 we define the class of regression models and coefficients of
determination. Weighting of observations is considered in Section 4 and parameter estimation in Section 5. In Section
6 we give several examples of models and in Section 7 we consider multivariate extensions. Large sample properties of
R2 and CID are derived in Section 8 and a Swedish car accident data set is analyzed in Section 9. Section 10 contains
a discussion and, finally, proofs and technical results are collected in the appendix.

2. Variance decomposition of the response variable

Consider a collection (x1, t1, Y1), . . . , (xn, tn, Yn) of observations, with a scalar response variable, Yi , a 1 × p

vector of explanatory variables, xi , and a known constant for the ith individual or cell, ti . For instance, ti may
represent the time of exposure or area of data collection in Poisson regression or the number of trials in binomial
regression.

We assume that {Yi} are conditionally independent given {xi} and {ti} with a mean function

m(�xT, t) = E(Y |x, t) (2)

depending on a 1 × p vector of unknown regression parameters �.
We will focus on mixed regression models, containing a hidden liability L such that, E(Y |L, x, t) = M(�, t), with

� = �xT. We regard L as quantity that is only partially explained by the covariates. It summarizes the individual
characteristic of each observation, whereas the distribution of Y |L, x, t is due noise that bears no information about
the individual. By integrating out L in the definition of M we get E(M(�, t)) = m(�, t) and

v(�, �, t) = Var(Y |x, t)

= E(Var(Y |L, x, t)) + Var(M(�, t))

=: v1(�, t) + v2(�, �, t). (3)

In (3), � is an unknown scalar variance parameter such that � = 0 implies a deterministic liability, i.e. v2(�, 0, t) = 0.
In this case, Var(Y |x, t) = v1(�xT, t), which is assumed to be a known function of the regression parameters. This
crucial property makes v1 identifiable, since � can be estimated from data.
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Let w(�, �, t) be a given weight function. Consider an individual I ∈ {1, . . . , n} drawn at random from the sample
with probabilities

P(I = i) = wi

/∑
j

wj ,

where wi = w(�i , �, ti) and �i = �xT
i . The drawn individual has mean response

m = E(YI |{xi, ti}ni=1) =
∑

i

wimi

/∑
i

wi , (4)

where mi = m(�i , ti ), and variance �2 = Var(YI |{xi, ti}ni=1). The variance can be decomposed into three terms

�2 =
∑

i

wiE((Yi − m)2|xi, ti)

/∑
i

wi

=
(∑

i

wi(mi − m)2 +
∑

i

wi(vi − v1i ) +
∑

i

wiv1i

)/∑
i

wi

=: �2
1 + �2

2 + �2
3, (5)

where vi = v(�i , �, ti) and v1i = v1(�i , ti ). The first term, �2
1, is the variance component explained by the covariates

x, the second term, �2
2, the variance of the liability, and the third term, �2

3, the remaining variance. We interpret �2
2 as

variance due to unobserved individual characteristics, whereas �2
3 represents noise variance. Their sum, �2

unexp=�2
2+�2

3,
is the variance not explained by the covariates.

To quantify how large a proportion of the variance is explained by the covariates, we use either

� = �2
1/�

2 (6)

or

�ind = �2
1/�

2
ind, (7)

where �2
ind = �2

1 + �2
2 is the total variance due to individual variation. Hence, � gives the fraction of the total variance,

whereas �ind gives the fraction of the individual variance explained by the covariates. For this reason, �ind is often more
interesting, with 1 as a natural upper bound corresponding to all individual variation being explained by {xi} and {ti}.
On the other hand, 0���1 − �2

3/�
2, since the noise variance component �2

3 cannot be explained by the covariates.

3. Coefficients of determination

With parameter estimates �̂ = (�̂, �̂), we let ŵi = w(�̂i , �̂, ti), �̂i = xi �̂
T, m̂i = m(�̂i , ti ), v̂i = v(�̂i , �̂, ti) and

v̂1i = vi(�̂i , ti ). Then the mean response of a randomly picked individual is estimated by

m̂ =
∑

i

ŵim̂i

/∑
i

ŵi

and the estimated variance decomposition is

�̂2 = �̂2
1 + �̂2

2 + �̂2
3, (8)

where �̂2
1 =∑

i ŵi(m̂i − m̂)2 /∑
i ŵi and �̂2

3 =∑
i ŵi v̂1i

/∑
i ŵi . There are at least two ways of defining �̂2

2, either

�̂2
2 = �̂2

unexp − �̂2
3 =

∑
i

ŵi(Yi − m̂i)
2

/∑
i

ŵi − �̂2
3 (9)
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or

�̂2
2 =

∑
i

ŵi(v̂i − v̂1i )

/∑
i

ŵi . (10)

Whereas (10) requires specification of a correct variance functionv2, (9) only uses estimates of�, not� (as long as ŵi does
not involve �̂). For this reason, we will use (9) in the sequel. In either case, �̂2 need not equal

∑
i ŵi(Yi − m̂)2 /∑

i ŵi .
Replacing the theoretical variance components by their estimates in (6) and (7), we get two versions of the coefficient

of determination

R2 = �̂ = �̂2
1

�̂2
=

∑
i ŵi(m̂i − m̂)2∑

i ŵi((m̂i − m̂)2 + (Yi − m̂i)
2)

(11)

and

CID = �̂ind = �̂2
1

�̂2
ind

=
∑

i ŵi(m̂i − m̂)2∑
i ŵi((m̂i − m̂)2 + (Yi − m̂i)

2 − v̂1i )
. (12)

In order to compute CID, we utilize that all v1i are functions of no other unknown quantities than �, which is estimable,
so that all v̂1i can be computed. This is not always guaranteed, as in the case for univariate linear regression (see
Example 3 of Section 6).

4. Choice of weight functions

The weight function w may be chosen in several ways. Some important special cases are:

(i) Uniform weights: Let w(�, �, t) ≡ 1, so that wi = ŵi =1. In this case each individual contributes an equal amount
to the variance decomposition.

(ii) Inverse variance: If w(�, �, t) = v(�, �, t)−1, each individual contributes an amount inversely proportional to its
variance. Then the estimated unexplained variation

�̂2
unexp = �̂2

2 + �̂2
3 =

∑
i

(Yi − m̂i)
2

nv̂i

equals Pearson’s unscaled �2 statistic (McCullagh and Nelder, 1989) apart from the term n of the denominator.
For linear regression (see Example 3), R2 based on inverse variance weighting is equivalent to the coefficient of
determination for generalized least squares (Buse, 1973, 1979).

(iii) Inverse non-dispersed variance: A simplified form of inverse variance weighting, w(�, �, t)=v1(�, t)−1, employs
the variance function of the non-dispersed model � = 0. Then ŵi does not involve �̂, and no explicit model of
overdispersion is needed to define R2 and CID.

(iv) Deterministic weights: If the weight function w(�, �, t) = a(t) is a known function, we need not estimate the
weights, i.e. ŵi = wi . A typical case is when the non-dispersed variance factorizes as v1(�, t) = b(�)/a(t). The
deterministic weight function is then a simplified form of (iii), obtained by dropping the term b(�). Typical choices
are models for Poisson rates and binomial proportions (see Section 6), with a(t) = t .

5. Examples of parameter estimates

Regarding choice of parameter estimates, we mention three possibilities:

(i) Weighted nonlinear least squares: In case the weights wi do not depend on unknown parameters, we may first
estimate � by

�̂ = arg min
�

∑
i

wi(Yi − m(�xT
i , ti ))

2 (13)
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and then � from the residuals Yi − m̂i by solving∑
i

wiv(�̂i , �̂, ti) =
∑

i

wi(Yi − m̂i)
2. (14)

(ii) Maximum likelihood: Let f (y|�, �, t) denote the density of Y given �, � and t, and let us estimate all parameters
simultaneously from

(�̂, �̂) = arg max
�,�

l(�, �),

where l(�, �) = ∑
i log f (Yi |�xT

i , �, ti) is the log likelihood function. A simplified version is to estimate the
regression parameters by ML from the deterministic liability model

�̂ = arg max
�

l(�, 0) (15)

and then estimate � separately from the residuals, using e.g. (14). Even though (15) uses a misspecified model
when � �= 0, �̂ is still consistent as long as the estimating equation is unbiased at the true parameter value, see
e.g. White (1982) and Cox (1983).

(iii) Extended quasi-likelihood: Estimate � by solving the p + 1 estimating equations U�(�̂) = 0 and U�(�̂) = 0
simultaneously, where

U�(�) =
∑

i

xim
′
i

Yi − mi

vi

, (16)

m′
i = �m(�i , ti )/��i and

U�(�) =
∑

i

(
(Yi − mi)

2

vi

− 1

)
.

This is an extension of the quasi-likelihood estimate U�(�̂, �)=0 of �, defined for fixed �, see Wedderburn (1974),
McCullagh (1983) and Moore (1986). A simplified version of extended QL is to estimate � separately from the
deterministic liability model, replacing vi by v1i in (16) and then estimating �.

Of (i)–(iii), the maximum likelihood estimates are the most efficient but in general also most sensitive to model
misspecification. The quasi-likelihood estimate of � often coincides with the ML-estimate when � = 0.

6. Examples of models

Example 1 (Overdispersed Poisson regression). Assume that a certain characteristic (car accidents, disease incidences,
etc.) occurs according to a Poisson process with individual specific rate L=	. If this process is observed during t time
units, the observed rate of incidences is

Y |	, t ∈ Po(	t)/t . (17)

The log link corresponds to a mean rate parameter E(	|x)=
(x)=exp(�), where �=�xT. We assume Var(	|x)=�
(x)a

for some (known) constant a > 0, so that

m(�, t) = exp(�),

v(�, �, t) = exp(�)t−1 + � exp(a�). (18)

Parameter estimates and data analysis for this model have been carried out by several authors, e.g. Pocock et al. (1981),
Hinde (1982), Breslow (1984), Lawless (1987) and references therein. An important special case of (17) is when 	 has
a gamma distribution. Then, the mixed Poisson distribution of tY |x, t is negative binomial. The choice a = 2 in (18)
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is appealing since � is the squared coefficient of variation of 	|x for all x. Alternatively, a = 1 is frequently used in
connection with generalized linear models.

Example 2 (Overdispersed logistic regression). Let Y represent the relative number of successes in t trials with an
individual specific success probability L = �, i.e.

Y |�, t ∈ Bin(t, �)/t .

Using a logistic link function, E(�|x) = �(x) = 1/(1 + exp(−�)). If the variance function of � satisfies Var(�|x) =
��(x)(1 − �(x)) we get

m(�, t) = 1/(1 + exp(−�)),

v(�, �, t) = t−1(1 + �(t − 1)) exp(−�)/(1 + exp(−�))2.

Parameter estimation for this model has been considered, for instance, by Williams (1982). An important special
case, the beta-binomial model, occurs when � has a beta distribution, see e.g. Williams (1975) and Crowder (1978).
A review of analysis methods for data with extra-binomial variation is provided by Haseman and Kupper (1978).

Example 3 (Univariate linear regression). Consider a homoscedastic linear model

Y = �xT + 
 + � (19)

with L=
, an individual specific zero mean random variable, and �, an independent zero mean noise term. Put �=Var(
)

and � = Var(�). If � is a known constant, (19) is a special case of (2)–(3) with t ≡ 1 and

m(�xT) = �xT,

v1 = �,

v2(�) = �.

In the more realistic case of unknown �, the parameter vector is

� = (�, �, �). (20)

Since the random terms 
 and � in (19) cannot be separated, we cannot estimate �2
2 = � and �2

3 = � from data, but only
�2

unexp = � + �. Hence, the last two variance components of (5) are not estimable and only R2, not CID, is computable.
When weighted least squares (13) with known weights (ŵi = wi) are used

m̂ =
∑

i

wiYi

/∑
i

wi ,

�̂2 = �̂2
1 + �̂2

unexp =
∑

i

wi(Yi − m̂)2

/∑
i

wi

by well known orthogonality properties of WLS. In particular, for uniform weights, R2 agrees with (1).

7. Multivariate response variables

Consider the multivariate extension of (19) where Y is a 1 × q vector for some q > 1. Then L = 
 is a 1 × q vector
of individual effects, � a 1 × q vector of error terms, � a 1 × p vector, and x a q × p matrix. This yields

E(Y |x) = �xT,

Cov(Y |x, t) = �C(t) + �Iq = V (t, �, �), (21)

where � is the variance of the random effects components, � the variance of the error components, C(t)= Corr(
|t) the
correlation matrix of the random effects, and Iq the identity matrix of order q. See Lynch and Walsh (1998) for some
examples.
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Consider a sample of n cells, let mi =�xT
i Ci =C(ti) and Wi =W(�xT

i , �, �, ti) be a symmetric and positive definite
weight matrix. Then we may generalize (4)–(5) to

m =
∑

i

miWi1
T
q

/∑
i

1qWi1
T
q ,

�2
1 =

∑
i

(mi − m)Wi(mi − m)T

/∑
i

tr(Wi),

�2
2 = �

∑
i

tr(CiWi)

/∑
i

tr(Wi),

�2
3 = �

∑
i

tr(IqWi)

/∑
i

tr(Wi) = �

and then define � and �ind through (6) and (7). Typical choices of Wi are uniform weighting (Wi = Iq ) and inverse
variance weighting (Wi = V −1

i ), where Vi = V (ti, �, �). For simplicity of exposition, we assume that Wi is known.
When Wi is diagonal, we notice that �2

2 = �, since Ci has ones along the diagonal.
We estimate the regression parameters by weighted least squares

�̂ = arg min
�

∑
i

(Yi − �xT
i )Wi(Yi − �xT

i )T

and put m̂i = �̂xT
i . The most important difference between the multivariate and univariate cases is that both � and � can

be estimated, using the covariance structure of data, see Searle et al. (1992) for details. This makes not only R2 = �̂2
1/�̂

2

well defined, but also CID = �̂2
1/�̂

2
unexp, with

m̂ =
∑

i

m̂iWi1
T
q

/∑
i

1qWi1
T
q ,

�̂2
1 =

∑
i

(m̂i − m̂)Wi(m̂i − m̂)T

/∑
i

tr(Wi),

�̂2
2 = �̂

∑
i

tr(CiWi)

/∑
i

tr(Wi),

�̂2
3 = �̂.

With inverse variance weighting, R2 agrees with Buse’s (1973, 1979) generalized least squares extension of (1). In
the psychology literature, R2 has been considered for general weight matrices by Jöreskog and Sörbom (1981) and
Tanaka and Huba (1989).

8. Large sample properties

In this section, we consider large sample properties of R2 and CID when q = 1. We assume that the estimate of �
admits an asymptotically linear expansion

�̂ = � + 1

n

∑
i

IF(Zi) + op(n
−1/2) (22)

with Zi = (xi, ti , Yi) and IF(z) = IF(z; �) the vector valued (1 × p) influence function of �̂, satisfying E(IF(s, Y )) = 0
and E|IF(s, Y )|2 < ∞ for all s = (x, t). See Hampel (1974) and Hampel et al. (1986) for more details.
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Let si = (xi, ti) be the ith design point. We assume that the empirical distribution of {si} converges weakly

Pn = 1

n

∑
i


si

L−→ P (23)

to some limiting measure P as n → ∞, where 
s is a point mass at s.
We will assume that w(�, t) is not a function of �. Given s = (x, t), let m(s) = m(�xT, t), v(s) = v(�xT, �, t),

v1(s) = v1(�xT, t) and w(s) = w(�xT, t). We further assume that

w :=
∑

i

wi/n → w̄ :=
∫

w(s) dP(s),

m → m̄ :=
∫

m(s) dP(s)/w̄,

�2
1 → �̄2

1 :=
∫

w(s)(m(s) − m̄)2 dP(s)/w̄,

�2
2 → �̄2

2 :=
∫

w(s)(v(s) − v1(s)) dP(s)/w̄,

�2
3 → �̄2

3 :=
∫

w(s)v1(s) dP(s)/w̄ (24)

as n → ∞. This gives the population coefficients of determination

�̄ = �̄2
1/�̄

2,

�̄ind = �̄2
1/�̄

2
ind,

where �̄2 = �̄2
1 + �̄2

2 + �̄2
3 and �̄2

ind = �̄2
1 + �̄2

2. One option is to analyze the asymptotic distribution of R2 and CID,
viewed as estimators of �̄2 and �̄2

ind. However, we think it is more relevant, given the sample at hand, to view R2 and
CID as estimators of � and �ind. Therefore, asymptotic normality of R2 and CID are stated as follows:

Theorem 1. Assume that m(�, t), v1(�, t) and w(�, t) are continuously differentiable functions of �, that �̂ admits an
asymptotic expansion (22), that the sequence of design points {si} is such that (23), (24) and (A.10) in the appendix
hold, that the Lindeberg Condition is satisfied in (A.12), as well as (A.14) and (A.15). Then

√
n(R2 − �)

L−→ N(0, �2
R) (25)

and
√

n(CID − �ind)
L−→ N(0, �2

CID) (26)

as n → ∞, where the asymptotic variances �2
R and �2

CID are defined in the proof of Theorem 1 in the appendix.

Based on Theorem 1, we also compute standard errors (that is, estimates of �R/
√

n and �CID/
√

n). See the appendix
for details.

9. An overdispersed poisson example

We illustrate the theory with a car accident data set from If P&C Insurance Company, using the overdispersed Poisson
model of Example 1. We give a brief description of the data set here. More details can be found in Hössjer et al. (2006)
and Järnmalm (2006). Car accidents are reported for a total of n = 439 283 individuals having a uninterrupted three
year period between January 1, 2002 and December 31, 2005. We measure time in units of three year intervals. Hence,
ti ≡ 1, although we allow for general time durations in the theoretical computations below. As rating factors we use
previous number of years of insurance at the company (4), geographic zone (19), age of car (6), premium class, defined
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Fig. 1. Histogram of all m̂i , i = 1, . . . , n for the car accident data set.

by the type of car (10), annual driving distance (5) and sex/age (26). The number of classes within each rating factor
is given in brackets. Each rating factor contains a reference class with a regression coefficient of zero (not included in
�). All other classes have a separate regression coefficient �r , with xir = 1 if individual i belongs to the given class and
xir = 0 otherwise. Including intercept (�1, xi1 ≡ 1), the total number of regression coefficients is

p = 1 +
6∑

j=1

(kj − 1) = 65,

where kj is the number of classes within the j th rating factor.
The regression parameters are estimated using ML from a generalized linear model without dispersion variance,

(15). A histogram of all estimated claim frequencies m̂i is displayed in Fig. 1. They range from 0.01 to 0.20 although
0.045�m̂i �0.075 for more than 50% of all individuals. The estimated coefficients of determination are computed
using a deterministic weight function wi = ti of the kind described in part (iv) of Section 4. This yields

R2 = 0.0053,

CID = 0.1120.

Hence, only 0.5% of the total variance is explained by the covariates, and R2 is much smaller than CID, since the
individual unexplained variance �̂2

2 is only 4% of the noise variance �̂2
3. The reason for this is that time durations in

motor traffic insurance are very short in relation to claim frequencies mi . The relative amount of overdispersion is thus
small, but yet highly significant (see Hössjer et al., 2006).

Even without noise variance, only 11% of the total individual variation is explained by the covariates. Three possible
reasons for the low CID are (1) model error in capturing the true relation x → m(x) between the given covariates
and the claim frequency, (2) missing covariates from the given rating factors (the rating factors have too few classes,
missing interactions) or (3) missing rating factors, such as individual driving characteristics or road conditions. Of
these, the latter is probably the most significant one.

In order to compute standard errors we need to specify the constant a of the variance function in (18). An initial data
analysis in Hössjer et al. (2006) gives a = 1.3, although the assumed a affects standard errors very marginally (due to
the small amount of overdispersion). Given a, � is estimated using (14), which for our variance function becomes

�̂ =
∑

i

ti ((Yi − m̂i)
2 − m̂i/ti)

/∑
i

ti m̂
a
i = 0.0979. (27)
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The standard error of R2 and CID is computed from (A.16) to (A.17), with ĥ(Zi) as in (A.26) and the standard error
of �̂ from (A.31). This yields the 95% Wald confidence intervals

I� = (0.0049, 0.0058),

I�ind
= (0.0967, 0.1274),

I� = (0.0849, 0.1108).

We notice that �ind has a much wider confidence interval than �. This is due to the fact that unexplained individual
variance is much more difficult to estimate than total unexplained variance in this data set, which has a small amount
of overdispersion.

10. Discussion

In this paper we have defined a new coefficient of determination, CID, which quantifies the proportion of individual
variation in data explained by the covariates within a general univariate mixed effects regression model. We have
primarily focused on univariate regression models for which the noise variance v1i of Yi is a function of the regression
parameters and the individual unexplained variance v2i of Yi contains an extra liability parameter �. This makes �ind
well defined and identifiable, so that CID is computable.

Several extensions of the work are possible. For instance, when p/n is non-negligible, R2 typically has an upward
bias and should be adjusted for reduced degrees of freedom. For uniform weights, one possibility, which generalizes
the adjusted R2 in linear regression (Fisher, 1924), is

R2 = 1 − (n/(n − p))�̂2
unexp

(n/(n − 1))�̂2
.

The analogous adjustment of CID would be

CID = 1 − (n/(n − p))�̂2
2

(n/(n − 1))�̂2
ind

.

We have defined R2 and CID using (9) rather than (10). In this way, both coefficients of determination depend on
�̂, but not �̂. This is appropriate, since only �̂ is robust towards misspecification of the variance function for a wide
range of regression models. The standard errors of R2 and CID, on the other hand, depend on both �̂ and �̂. When the
amount of overdispersion is large, it is of interest to use robust estimates of the variance functions in order to obtain
robust standard errors. See for instance Liang and Zeger (1986), Breslow (1990) and Moore and Tsiatis (1991) for
more discussion on this subject.

For confidence intervals, we have used asymptotic normality of R2 and CID. An alternative is to apply the normal
approximation to a nearly variance stabilizing transformation of R2, such as R2/(1 − R2), see e.g. Muirhead (1985).
The same approach could also be used for CID. Another possibility would be to use bootstrap.

Unconditional versions of the variance decomposition (5) and its estimated counterpart (8) are obtained if m and m̂

are replaced by

muncond = E(YI |t1, . . . , tn) =
∑

i

wiE(Yi |ti )
/∑

i

wi ,

m̂uncond =
∑

i

ŵiYi

/∑
i

ŵi .

A conceptual advantage of this approach is that the resulting variance �2
uncond as well as its estimate �̂2

uncond are both
independent of the chosen model, i.e. the set of included covariates. On the other hand, a random model for the covariates
xi is implicitly required.
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The two unexplained variance components, �2
2 and �2

3, are unaffected by removing conditioning on {xi}, whereas
the explained variance component �2

1 is changed to

�2
1,uncond = �2

1 + (muncond − m)2.

Similarly, for the estimated variance decomposition, only the explained variance component is changed from �̂2
1 to

�̂2
1,uncond = �̂2

1 + (m̂uncond − m̂)2.

In practice, there is a very small difference between the two estimated variance decompositions. In fact, they often agree,
i.e. m̂= m̂uncond. This happens, for instance, for univariate linear regression and weighted least squares estimation of �
(although �2

2 and �2
3 cannot be separated) and Poisson regression when wi = ti = 1 and � is estimated by non-dispersed

ML (15).
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Appendix A.

Proof of Theorem 1. We start by defining the asymptotic variances in (25)–(26) as

�2
R = G�GT

and

�2
CID = Gind�GT

ind,

where

G = �̄−2(1 − �̄, −�̄, 0),

Gind = �̄−2
ind(1 − �̄ind, −�̄ind, �̄ind), (A.1)

� =
∫

E(h(s, Y )Th(s, Y )) dP(s), (A.2)

h(z) = IF(z)D + �(z), (A.3)

z = (s, y) = (x, t, y), �(z) = (0, w(s)((y − m(s))2 − v(s))/w̄, 0) and D is the p × 3 matrix defined in (A.11).
It is convenient to start the proof by introducing S(�) = (S1(�), S2(�), S3(�)), where

S1(�) =
∑

i

wi(mi − m)2,

S2(�) =
∑

i

wi(Yi − mi)
2,

S3(�) =
∑

i

wiv1i . (A.4)

Moreover, let Ŝ = (S1(�̂), S2(�̂), S3(�̂)) and S = (S1(�),
∑

i wivi, S3(�)). Then

� = g(S),

�ind = gind(S) (A.5)
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and

R2 = g(Ŝ),

CID = gind(Ŝ), (A.6)

where g(S1, S2, S3)=S1/(S1 +S2) and gind(S1, S2, S3)=S1/(S1 +S2 −S3). To find the asymptotic distributions of R2

and CID, we will use Taylor expansion of g and gind around S. To this end, we first derive asymptotic approximations
of g′(S) and g′

ind(S). It follows from (24) that

S/(nw̄)
p−→ S̄ = (�̄2

1, �̄
2
2 + �̄2

3, �̄
2
3) (A.7)

as n → ∞. This implies, by differentiating g and gind,

ng′(S)
p−→ G/w̄,

ng′
ind(S)

p−→ Gind/w̄ (A.8)

with G and Gind as in (A.1). Combining (A.5), (A.6) and (A.8), a Taylor expansion of g and gind around S yields

R2 = � + (Ŝ − S)GT/(w̄n) + op(n
−1/2),

CID = �ind + (Ŝ − S)GT
ind/(w̄n) + op(n

−1/2). (A.9)

To finalize the proof, we will derive the asymptotic distribution of (Ŝ − S)/w̄. To this end, define the p × 3 matrix
S′ = S′(�) = �S(�)/�� with transposed columns S′

i given by

S′
1 = 2

∑
i

xim
′
iwi(mi − m) +

∑
i

xiw
′
i (mi − m)2,

S′
2 = −2

∑
i

xim
′
iwi(Yi − mi) +

∑
i

xiw
′
i (Yi − mi)

2,

S′
3 =

∑
i

xi(wiv
′
1i + w′

iv1i ),

where w′
i = �w(�i , ti )/��i and v′

1i = �v1(�i , ti )/��i . It follows from Lemma 1 that

S′/(w̄n)
p−→ D (A.10)

as n → ∞, where D = (DT
1 , DT

2 , DT
3 ) is a p × 3 matrix, with

w̄D1 = 2
∫

xm′(s)w(s)(m(s) − m̄) dP(s) +
∫

xw′(s)(m(s) − m̄)2 dP(s),

w̄D2 =
∫

xw′(s)v(s) dP(s),

w̄D3 =
∫

x(w(s)v′
1(s) + w′(s)v1(s)) dP(s), (A.11)

s = (x, t), m′(s) = �m(�, t)/��|�=�xT , v′
1(s) = �v1(�, t)/��|�=�xT and w′(s) = �w(�, t)/��|�=�xT .

A Taylor expansion of S(·) around � gives

Ŝ = S + (�̂ − �)S′ + (S(�) − S) + op(n
1/2)

= S + nw̄(�̂ − �)D + w̄
∑

i

�(Zi) + op(n
1/2)

= S + w̄
∑

i

h(Zi) + op(n
1/2), (A.12)
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where �(Zi) = (0, wi((Yi − mi)
2 − vi)/w̄, 0). In the last step of (A.12) we used (22) and (A.3). By assumption, the

sequence of design measures, Pn, is such that the Lindeberg Condition is satisfied in the last line of (A.12). Hence, the
Central Limit Theorem implies

(Ŝ − S)/(w̄
√

n)
L−→ N(0, �) (A.13)

as n → ∞. The theorem follows by combining (A.13) with (A.9). �

Lemma 1. Assume that

lim
a→∞ sup

n

∫
s;|kj (s)|�a

|kj (s)| dPn(s) = 0 (A.14)

holds for each of the functions k1(s) = 2xm′(s)w(s)(m(s) − m̄) + xw′(s)(m(s) − m̄)2, k2(s) = xw′(s)v(s) and
k3(s) = x(w(s)v′

1(s) + w′(s)v1(s)). Assume further that∫
kj (s) dPn(s) = o(n) (A.15)

holds for k4(s)=(xxTm′(s)w(s))2v(s) and k5(s)=(xxTw′(s))2�(s), where �(s)=E((Y −m(�xT, t))2−v(�xT, �, t))2.
Then (A.10) follows.

Proof. By definition of the functions kj , we have

S′
1/n =

∫
k1(s) dPn(s),

S′
2/n = W +

∫
k2(s) dPn(s),

S′
3/n =

∫
k3(s) dPn(s),

w̄Dj =
∫

kj (s) dP(s), j = 1, 2, 3,

where W is a random variable with first two moments satisfying E(W) = 0 and E(WWT)�n−1(8
∫

k4(s) dPn(s) +
2
∫

k5(s) dPn(s)). Chebyshev’s Inequality and (A.15) then imply W
p−→ 0 as n → ∞.

It thus remains to show that
∫

kj (s) dPn(s) → ∫
k(s) dP(s) as n → ∞ for j =1, 2, 3. This is equivalent to showing

that E(Wjn) → E(Wj ), where the random variables Wjn and Wj are defined as follows: Wjn = kj (xI , tI ), with I
having a uniform distribution on {1, . . . , n} and Wj =kj (x, t), with (x, t) ∼ P . The regularity conditions of Theorem 1

imply that each kj is a continuous function. Hence, (23) and the Continuous Mapping Theorem imply that Wjn
L−→ Wj

for j = 1, 2, 3 and (A.14) is a uniform integrability condition for {Wjn}n assuring that E(Wjn) → E(Wj ). �

Standard errors of R2 and CID: We use Theorem 1 to define the squared standard errors

d2 := n−1Ĝ�̂ĜT,

d2
ind := n−1Ĝind�̂ĜT

ind (A.16)

of R2 and CID, with

Ĝ = �̂−2
(1 − R2, −R2, 0),

Ĝind = �̂−2
ind(1 − CID, −CID, CID),

�̂ =
∑

i

ĥ(Zi)
Tĥ(Zi)/n. (A.17)
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Here ĥ(Zi) = ÎF(Zi)D̂ + �̂(Zi) is an estimate of h(Zi), ŵ =∑
i ŵi/n, �̂(Zi) = (0, ŵi((Yi − m̂i)

2 − v̂i )/ŵ, 0), and

D̂ = (D̂T
1 , D̂T

2 , D̂T
3 ) = S′(�̂)/

∑
i ŵi , i.e.

D̂1 =
(

2
∑

i

xim̂
′
i ŵi(m̂i − m̂) +

∑
i

xiŵ
′
i (m̂i − m̂)2

)/∑
i

ŵi ,

D̂2 =
(

−2
∑

i

xim̂
′
i ŵi(Yi − m̂i) +

∑
i

xiŵ
′
i (Yi − m̂i)

2

)/∑
i

ŵi ,

D̂3 =
∑

i

xi(ŵi v̂
′
1i + ŵ′

i v̂1i )

/∑
i

ŵi , (A.18)

where m̂′
i = �m(�̂i , ti )/��̂i , v̂′

1i = �v1(�̂i , ti )/��̂i and ŵ′
i = �w(�̂i , ti )/��̂i .

It remains to compute the estimated influence function ÎF, usually referred to as the sensitivity function. Assume
first that � is estimated separately from �, using p estimating equations∑

i

�(Zi; �̂) = 0 (A.19)

given some 1 × p-valued function �. This includes nonlinear least squares, with �(z; �) = xm′(�, t)(Y − m(�, t))

and m′(�, t) = �m(�, t)/��. Other examples are ML-estimators (15), with �(z; �) = x� log f (y|�, 0, t)/�� and QL-
estimators U�(�̂, 0) = 0, with �(z; �) = xm′(�, t)(y − m(�, t))/v(�, 0, t).

The influence function for estimators (A.19) is given by

IF(z) = −�(z; �)B−1,

where the p×p matrix B=∫ E(�′(s, Y ; �)) dP(s) and �′(z; �)=��(z; �)/��, see Hampel et al. (1986). The sensitivity
function is

ÎF(z) = −�(z; �̂)B̂−1, (A.20)

where B̂ =∑
i �′(Zi; �̂)/n.

When � and � are estimated simultaneously from p + 1 estimating equations∑
i

�(Zi, �̂) = 0,

the influence function for �̂ is

IF(z) = −(�(z; �)B−1)1:p,

where B = ∫
E(�′(s, Y ; �)) dP(s) is a (p + 1) × (p + 1) matrix, �′(z; �) = ��(z; �)/�� and a1:p contains the first p

components of the row vector a. To compute the sensitivity function ÎF, we proceed analogously as in (A.20).
Standard errors of R2 and CID for Poisson model with non-dispersed ML-estimates: In order to compute d2 and

d2
ind in (A.16), we need an explicit expression for ĥ(Zi) in (A.17). The probability distribution for the non-dispersed

Poisson model is

f (y|�, 0, t) = e−te�
(te�)ty/(ty)!. (A.21)

Taking the logarithm of (A.21), putting � = �xT and differentiating twice with respect to �, we obtain

�(z; �) = tx(y − m(�)),

�′(x; �) = −txTxm(�). (A.22)

Since m(�) = e� and v(�, 0) = e�/t , we find that m̂i = m̂′
i = exp(xi �̂

T) and v̂′
1i = exp(xi �̂

T)/ti , and from (A.22) we

obtain B̂ = −∑i tix
T
i xim̂i/n.
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With weights wi = ŵi = ti , the transposed columns of D̂ are

D̂1 = 2
∑

i

tixim̂i(m̂i − m̂)

/∑
i

ti ,

D̂2 = −2
∑

i

tixim̂i(Yi − m̂i)

/∑
i

ti ,

D̂3 =
∑

i

xim̂i

/∑
i

ti (A.23)

and �̂(Zi) = (0, ti((Yi − m̂i)
2 − v̂i )/t, 0), where v̂i = m̂i/ti + �̂m̂a

i and t = ∑
i ti/n. Putting things together we

find that

ĥ(Zi) =
(

ai(Yi − m̂i), bi(Yi − m̂i) + ti

t
((Yi − m̂i)

2 − v̂i ), ci(Yi − m̂i)

)
, (A.24)

where

ai = −tixiB̂
−1D̂T

1
ti=1= −xiB̂

−1D̂T
1 ,

bi = −tixiB̂
−1D̂T

2
ti=1= −xiB̂

−1D̂T
2 ,

ci = −tixiB̂
−1D̂T

3
ti=1= −xiB̂

−1D̂T
3 = 1, (A.25)

where the last identity follows since the model includes intercept (xi1 ≡ 1). We can simplify further by letting bi = 0
(using the fact that D̂2 ≈ 0). Consequently, when ti ≡ 1, we put

ĥ(Zi) = (ai(Yi − m̂i), (Yi − m̂i)
2 − v̂i , Yi − m̂i), (A.26)

which is inserted into (A.16)–(A.17) to yield the standard errors of R2 and CID.
Asymptotic normality and standard error for �̂ in (27): We use a procedure analogous to the proof of Theorem 1.

Basically we need to redefine the functions S(·) and g(·). We redefine the first component of S(�)=(S1(�), S2(�), S3(�))

in (A.4), choose weights wi = ti and variance function v1i = mi/ti . This yields

S1(�) =
∑

i

tim
a
i ,

S2(�) =
∑

i

ti (Yi − mi)
2,

S3(�) =
∑

i

mi .

With Ŝ = S(�̂) and S = (S1(�),
∑

i tivi , S3(�)), we find that

� = g(S),

�̂ = g(Ŝ),

if g(S1, S2, S3) = (S2 − S3)/S1. The Taylor expansion analogous to (A.9) is

�̂ = � + (Ŝ − S)GT/(t̄n) + op(n
−1/2)

with t̄ = ∫
t dP(s) and

G = t̄ (−�, 1, −1)

/∫
tma(x) dP(s). (A.27)
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Expansion (A.12) still holds for the redefined Ŝ and S, with w̄ = t̄ , D = (DT
1 , DT

2 , DT
3 ),

t̄D1 = a

∫
txm′(x)m(x)a−1 dP(s) = a

∫
txma(x) dP(s),

D2 = (0, . . . , 0),

t̄D3 =
∫

txm′(x) dP(s) =
∫

txm(x) dP(s) (A.28)

and

h(z) = IF(z)D + (0, t ((y − m(x))2 − v(x))/t̄, 0). (A.29)

Altogether, we obtain

√
n(�̂ − �)

L−→ N(0, G�GT)

as n → ∞, with G and � as in (A.27) and (A.2), using (A.29) and (A.28) in the definition of �.
The squared standard error of �̂ is then

d2
�̂

= n−1Ĝ�̂ĜT (A.30)

with Ĝ = (−�̂, 1, −1)
∑

i ti/
∑

i ti m̂
a
i , �̂ as defined in (A.17), ĥ(Zi) as in (A.24) and ai , bi and ci as in (A.25). In

(A.25), D̂2 and D̂3 are given by (A.23), whereas

D̂1 = a
∑

i

tixim̂
a
i

/∑
i

ti .

Substantial simplification is possible when a = 1 and ti = 1. Then the first and third components of S, Ŝ, D and D̂ are
equal, and ai = ci = 1 (since intercept is included in the model). Moreover, we put bi = 0 (since D̂2 ≈ 0) and use∑

i ti (Yi − m̂i) = 0 (which follows from the likelihood equations). Altogether, this implies

d2
�̂

=
(∑

i

Yi

)−2 (
(�̂ + 1)2

∑
i

(Yi − m̂i)
2 − 2(�̂ + 1)

∑
i

((Yi − m̂i)
3 − v̂i (Yi − m̂i))

+
∑

i

((Yi − m̂i)
2 − v̂i )

2

)
. (A.31)
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