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Summary

We describe a haplotype clustering approach for localising a disease mutation within a fixed genomic region, which
supplements tagging SNP (tSNP) information with (external) information on linkage disequilibrium. By applying our
method to simulated data based on the coalescent, and on real haplotype data, we demonstrate that there are situations
where significant gains can be made by incorporating tagged SNPs into the analysis. The issues we explore are important
not only to these types of studies, but also to studies that select tSNPs based on (external) HapMap phase II data, and
those that use genome-wide markers.
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Introduction

For fine scale mapping of disease susceptibility loci it is
widely recognised that association studies, which exploit
linkage disequilibrium (LD; Risch & Merikangas, 1996)
are more appropriate than family-based linkage studies.
Recent years have seen many hypothesis-driven candi-
date gene association studies. Early candidate gene studies
genotyped a handful of single nucleotide polymorphisms
(SNPs) or microsatellites. As the cost of genotyping re-
duced, many studies looked at a larger number of SNPs
and, say, concentrated on a couple of dozen genes. More
recently several candidate gene association studies have
concentrated on subsets of SNPs, referred to as tagging
SNPs (tSNPs), that best predict any other SNP within
(and around) studied genes. Subsets of tagging SNPs can
be identified either by typing a large number of SNPs in
a small, preliminary, sample of individuals (Haiman et al.
2003), or on the basis of haplotype information from pub-
lic databases (Gibbs et al. 2003; The International HapMap
Consortium, 2005). Presently, many genome-wide associ-
ation, as opposed to candidate gene, studies are being car-
ried out. The polymorphisms included in these studies can
also be viewed as tagging SNPs, although the degree to
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which the typed polymorphisms “tag” other polymor-
phisms varies across the genome and across different geno-
typing platforms (”Barrett & Cardon, 2006).

This article is concerned with estimating the position of
a disease mutation within a fixed genomic region. Until re-
cently methods for fine mapping had been developed only
for the analysis of relatively large genomic regions, with rel-
atively sparse markers; see Clayton (2000) for a review, and
Morris et al. (2002) for a fairly recent approach. Molitor
et al. (2003) have proposed a method which is potentially
useful in smaller genomic regions. This uses Bayesian in-
ference to estimate the position of disease mutations, and
works on the rationale that haplotypes which are simi-
lar around a disease mutation will contribute similarly to
disease risk. The method essentially compares similarities
of haplotypes within cases to similarities within controls.
We extend the method of Molitor et al. to incorporate
(external) information on LD, additional to the LD infor-
mation captured by the tSNPs which are typed on cases
and controls. We concentrate on a design where tSNPs are
selected using a small, preliminary, sample of controls, in a
case-control study, and only these tSNPs are subsequently
typed in the full case-control sample. In this case the infor-
mation on LD is collected in the first stage of a two-stage
genotyping procedure, where both stages are carried out
using the same population sample. This design is likely
for researchers working with populations not well repre-
sented by any of the four Hapmap samples. Our method can
also be used by researchers selecting tSNPs using Hapmap.
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Assessing performance of our method in this context is less
straightforward than it is for the design we concentrate on
(see the Discussion).

Whilst the literature on tSNP selection (Chapman et al.
2003; Stram et al. 2003a) has not implied that tagged
SNPs should be dis-regarded in association analyses, little
attention has been given to how/when this information
can/should be used. We show here that under certain cir-
cumstances pertaining to LD structure, estimating the po-
sition of a disease mutation can be considerably enhanced
if information on tagged SNPs is incorporated. Whilst we
focus on estimating the position of a disease mutation, we
also describe how our method can be adapted for testing
for the presence of a disease mutation in a genomic region.
Thomas et al. (2004) have described an approach for con-
structing tests using genotypes of tagging and tagged SNPs.
Our test is instead based on a haplotype analysis. We note
that if interest is restricted to testing, there are other simpler
haplotype methods than the Bayesian mapping one, such
as that described by Schaid et al. (2002), which could be
chosen to be developed to incorporate “tagged” SNPs.

We describe the basic clustering method and extend the
method to handle additional information concerning hap-
lotypes on SNPs outside of the main study. We define mea-
sures which we use to score the mapping performance of
our method. We investigate the mapping performance of
our method. For this purpose we use data simulated from
a coalescent model, and from real LD structure. We inves-
tigate how performance is related to recombination rate.

Model and Definitions

The Clustering Method

We begin by considering a scenario where the same set
of tSNPs is available for all individuals and no external in-
formation on LD is incorporated. The method we use to
analyse this data is that of Molitor et al. (2003). We sup-
pose that there are individuals i = 1, . . . , I with measured
genotypes Gi (a vector where each entry corresponds to a
typed SNP) and phenotypes yi(yi = 0 if individual i is a
control, yi = 1 if individual i is a case). In genetic association
studies phase is typically not known and it is not possible
to unambiguously resolve haplotype pairs, Hi = (hi1, hi2),
i ∈ I , at heterozygous sites. In practice one can estimate
the conditional probability of {Hi} from {Gi} and treat
the most probable haplotype pair as “true”. In this section
we simply assume that {Hi} is known. Logistic regression
is used to model the association between Hi and yi:

logit(p (yi = 1)) = γc hi1
+ γc hi2

, (1)

Figure 1 Clustering of haplotypes.

where c hi j ∈ {1, . . . , C} is the cluster to which haplotype
hij belongs and C is the number of clusters. All haplotypes
within the same cluster c are assumed to contribute equally
to the disease risk γ c, and we define γ = [γ 1, . . . , γC].
Note that the “true” number of clusters is unknown.

We cluster haplotypes based on allelic similarity in the
hope that similar haplotypes have approximately the same
probability of carrying a functional mutation at an un-
measured locus, and contribute approximately equally to
disease risk. As a starting point we define x to be the pu-
tative location of the functional mutation. We express the
similarity, w h,h′ , between two haplotypes h, h′ as the num-
ber of alleles that the haplotypes have in common within a
fixed length window of typed SNPs centred at x. Mostly,
we have used a window size of 6 SNPs, i.e. three to the
left and three to the right of x, but have also used other
(fixed) window sizes. For computational convenience we
consider each cluster c to have a “center” tc (defined to
be an observed haplotype), and we define T = [t1, . . . ,
tC]. The haplotypes are assigned to the cluster with the
closest centre, according to the defined similarity metric.
As an illustration we consider the three haplotypes listed
in Figure 1, where h is an ordinary haplotype, and t1 and
t2 are haplotypes which are also chosen as cluster centres.
We assume that the functional mutation is located some-
where between the third and the fourth SNP from the left.
A six SNP window thus excludes the rightmost SNP. In
this case w ht1 = 3 and w ht2 = 4 and h would be assigned
to the cluster which has t2 as its centre. If the functional
mutation is instead somewhere between the fourth and the
fifth SNP a six SNP window excludes the leftmost SNP;
w ht1 = 4, w ht2 = 3 and h would be assigned to the cluster
which has t1 as its centre.

It follows from the definition of w h,h′ that “moving” the
functional mutation in the space between adjacent typed
SNPs does not change the haplotype similarities, and hence
not the cluster configuration. For example, if the functional
mutation is between the fourth and the fifth SNP then
w ht1 = 4 and w ht2 = 3, regardless of its exact location in
this region.

The parameters for the model are thus the vector of
risk parameters, γ , the mutation locus, x, and the vector
of cluster centres, T . Since the true number of clusters
is unknown, the model dimension, C, appears also as a
parameter whose value must be estimated.
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The Bayesian Perspective

We define y = [y1, . . . , yI ]. The prospective likelihood,
p(y|γ , x, T , C), is

p (y|γ, x, T, C) =
∏

i

e yi (γc hi1
+γc hi2

)

1 + e γc hi1
+γc hi2

. (2)

The parameters x, T and C do not explicitly appear in
(2). Implicitly however they are important since together
they determine the cluster configurations, i.e. the number
of clusters and the cluster to which each haplotype be-
longs. If x, T and C were known we could use standard
software for logistic regression to draw inference about
odds ratios, ignoring the retrospective sampling scheme
(Prentice & Pyke, 1979). When x, T and C are unknown
exact inference is more complicated. Strictly speaking we
can no longer ignore the retrospective sampling scheme.
Despite this fact we use the prospective likelihood. The
effect of ignoring the retrospective sampling scheme for
estimating haplotype specific effects has been discussed by
Stram et al. (2003b). If tSNP genotypes predict haplotypes
well then there is little effect. For our model, maximum
likelihood estimation of x, T and C is not computationally
feasible. We adopt the fully Bayesian approach, described
by Molitor et al. assigning a probability model p(γ , x, T ,
C) (a prior) to the unknown quantities (note that we use
“p(·)” for both “probabilities” and “densities” here). In the
Bayesian framework inference is drawn from the posterior
probability function p(γ , x, T , C|y), which in general is
calculated as

p (γ, x, T, C |y) =
p (y|γ, x, T, C)p (γ, x, T, C)

p (y)
. (3)

If we for example want to find the most probable location
of a functional mutation we marginalize p(γ , x, T , C|y)
over γ , T and C, and search for the mode of the resulting
posterior distribution for x. Due to the complexity of the
problem p(γ , x, T , C|y) cannot be calculated explicitly. By
using Markov Chain Monte Carlo (MCMC) techniques
we can, however, simulate from the posterior distribution.
The algorithm is described in detail in Appendix S1.

Selection of Priors

We use a prior distribution which reflects our prior (vague)
assumptions about the model parameters. We consider γ ,
x and T to be independent given C, and x independent of
C, i.e. p(γ , x, T , C) = p(γ |C)p(T |C)p(x)p(C). The ele-
ments of γ are considered to be mutually independent and
normally distributed (mean 0, standard deviation 1) given
C. The a-priori expected value of γ c given C is thus 0, i.e.
we expect no haplotype to be either (relatively) protective

or harmful. If the analyzed genetic region does not contain
a functional locus we expect all clusters to contribute with
the same risk, or rather, all haplotypes to belong to the same
(single) cluster. Placing a large prior probability at C = 1
corresponds in some sense to having a large prior belief in
the null hypothesis of no functional locus. We let p(C =
1) = 0.5 and p (C = k) = 0.5

Cma x−1 , k ∈ {2, . . . , Cma x},
where Cmax is set to 15. Given C, we consider all possible
T-vectors to be equally probable, i.e.

p (T|C) =
(

Q
C

)−1

, (4)

where Q is the number of observed haplotypes. We are
completely ignorant about the location of the functional
mutation, hence we place a uniform prior on x over the
region between the leftmost and the rightmost typed SNP.

Incorporating Additional Information on
Haplotypes

We have, until now, assumed that the set of tSNPs is the
same for all individuals and that no additional information
concerning LD is available and to be incorporated into the
analysis. We now extend the mapping method to handle
the situation where the tSNPs are, in fact, a subset of a
larger set of markers which have been typed on a small
subset (a preliminary sample) of individuals. This is the
design considered by Thomas et al. (2004) and used, for
example, by Haiman et al. (2003). In order to make use of
the information captured in the tagged SNPs we modify
the basic model as follows.

We denote an arbitrary haplotype, formed by the alleles
at the full set of markers, by h. Similarly, we denote an
arbitrary haplotype formed by the alleles only at the tSNPs
by h∗ . Given that we observe only the alleles at the tSNPs
in the second stage sample, we can calculate the probability
of h as

p (h |h∗ ) =
p (h∗ |h )p (h )

p (h∗ )
=

I (h∗ ∼ h )p (h )∑
h I (h∗ ∼ h )p (h )

, (5)

where I(h∗ ∼ h) = 1 if h∗ and h are equal at tSNPs, 0
otherwise, and the sum in the denominator is taken over
all existing haplotypes h. We estimate p(h|h∗ ) by taking the
sum over all haplotypes observed in the preliminary sample,
and replacing their true population frequencies, p(h), with
observed proportions. We treat this estimate p̂ (h |h∗ ) as
given. p̂ (h |h∗ ) is consistent if subjects in the preliminary
sample are exchangeable with subjects in the full sample.
When the preliminary sample consists of controls only, as
in the setting we consider, p̂ (h |h∗ ) may be inconsistent.
We expect our method to perform optimally when the
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true value of p(h|h∗ ) is used, and we thus expect the results
we present below, which rely on a preliminary sample of
controls only, to be conservative. Instead of expressing the
similarity between haplotypes h∗A and h∗B, say, as the number
of shared alleles within a window of tSNPs, we use the
expected similarity within a window of consecutive SNPs
(typed in the preliminary sample),

E[w h Ah B |h∗
A, h∗

B] =
∑

h A∼h∗
A,h B∼h∗

B

w h Ah B p (h A|h∗
A)p (h B |h∗

B),

(6)

assuming both cases and controls are in HWE. Below we
compare the performance of analysis based on this model,
i.e. using all SNPs (tagging and tagged), with analysis based
on a model using only tSNPs.

Mapping Performance Measures

The clustering mechanism assigns haplotypes which are
similar around a specific locus, x, to the same cluster. The
locus x is continuously updated in the MCMC-algorithm,
yielding a new cluster configuration for each update. If x is
a “true” mutation locus we expect a much better model fit
(i.e. much larger value of p(y|γ , x, T , C)) than if x is not.
The posterior distribution for x, p(x|y), can hence be used
as a mapping tool. A strong peak at a locus in the posterior
distribution provides evidence of a disease mutation in the
region, whilst a uniform posterior distribution does not.
Because our main focus is on location estimation, we use
as our first measure of performance a score which does not
reflect (association) signal strength. This score, which we
call the Average coverage probability (ACP), allows us to com-
pare how methods would perform if follow-up genotyp-
ing/sequencing were used for different (fixed) region sizes.
For a researcher limited to exploring a region of a fixed
size it is sensible to choose the region as that where p(x|y)
is largest. We calculate the ACP as the probability that the
true location of the causative site is detected under this strat-
egy (i.e. contained in the follow-up region). The ACP is
similar to the cumulative distribution of distances between
an estimated and true disease mutation which Zöllner &
Pritchard (2005) used to assess their LD method. We de-
note the typed SNPs by s1, s2, . . . , sJ , the region between
sj and sj+1 by aj, and the length of aj by |aj| (we will assume
a normalized scale, i.e.

∑ J
j=1 |a j | = 1). Due to the clus-

tering method, p(x|y) is flat between adjacent typed SNPs.
We denote the value of p(x|y) in region aj by pj. Under
the assumption that we are limited to sequence a region A
of length |A| less or equal to L, we define � as the set of
indexes for which

∑
j∈{�} p j is maximized under the con-

straint
∑

j∈{�} |a j | ≤ L. We define A = {aj}, j ∈ �. A
is thus a function of both y and L, and to be explicit about

this we write A(y, L). The functional mutation is detected
if x ∈ A and we thus define the ACP, as a function of L, as

p (x ∈ A(y, L)) =
∫

x,y
I (x ∈ A(y, L))p (x, y)d xd y, (7)

where I(x ∈ A(y, L)) = 1 if x ∈ A(y, L), and 0 otherwise.
If L is a proportion then the ACP takes the value 0 for
L = 0 (if we do not sequence a region we will not find x)
and value 1 for L = 1 (if we sequence the whole region
we will find x). It is instructive to compare any given ACP
curve with the curve that would be obtained if A(y, L)
is picked completely at random (“blind guessing”). In this
case we have that ACP = L, that is, the probability of
finding the true locus is directly proportional to the size
of the followed-up region. Any method yielding an ACP
curve which is consistently above the straight line from 0 to
1 is thus better than blind guessing. The ACP is estimated
for simulated data below.

A researcher with extensive resources might, rather than
fixing the region size in advance, continue to search in sub-
regions until the true locus is found. With this strategy in
mind, an interesting quantity is the average region size one
needs to cover before finding x. We denote this quantity
by Q. From the definition of the ACP,

Q =
∫

L
L

dACP
dL

dL =
∫

L
L dACP (8)

If A(y, L) is picked completely at random, then Q is trivially
equal to 0.5.

The ACP focuses on the estimation of the position of
a disease mutation. In practice, one might be reluctant to
search for a disease mutation in regions for which p(x|y) is
low, no matter whether the resources to do so are available
or not. Consider the following example. Suppose that two
different methods give posterior distributions N (x, σ 2) and
N (x, σ 2/k), k > 1. That is, the posterior distribution p(x|y)
is not flat between adjacent typed SNPs. In this case our
previous definition of A(y, L), together with the assump-
tion that we now sequence a length of exactly L, yields A(y,
L) = [x − L/2, x + L/2], for both methods. However,
if k is large, meaning that the second method yields a very
peaked posterior, an investigator would probably not waste
resources on follow-up genotyping/sequencing in regions
far away from the peak. We supplement the ACP and Q by
reporting the spread of the posterior distributions, which
we measure using the mean variance. The mean variance
alone is not a sufficient measure of mapping performance,
since a posterior distribution could have a very tight peak
(i.e. low variance) at a “wrong” location. We therefore re-
port the mean variance together with the mean distance
between the posterior mode and x, that is, the mean bias
in the mode as a point estimate of x. Because the posterior

818 Annals of Human Genetics (2007) 71,815–827 C© 2007 The Authors
Journal compilation C© 2007 University College London



Fine mapping of disease genes using tagging SNPs

is flat between markers we use midpoints. It can be shown
that, if A(y, L) is picked completely at random, then the
mean bias is 1/3 in expectation.

A Test Statistic

Although the main focus of this paper is on fine mapping,
it is also possible to use the method for association testing.
We have argued that we expect all haplotypes to fall in
the same cluster if there is no functional mutation in the
region. A reasonable choice of test statistic, D, is thus the
posterior probability that C > 1, i.e.

D =

∫
C>1 p (γ, x, T, C|y)dγ d xd T∫
C=1 p (γ, x, T, C|y)dγ d xd T

. (9)

A test of association can be defined as

reject H0 at significance level α if D > Kα, where α ≡
p (D > Kα|H0). (10)

One approach for choosing a value of K α is described
below. We note that an alternative test could be based on
a uniform posterior for x (under the null hypothesis of no
disease mutation in the region).

Results

Simulations Based on a Coalescent Model

In order to examine the performance of the clustering
method we simulated five different haploid populations
from a coalescent model (Balding et al. 2001). From each
population we repeatedly drew case-control samples which
were analyzed with the clustering algorithm.

Simulation of the population, selection of markers and tSNPs,
and simulation of case-control samples
The coalescent is a widely used modelling tool for popu-
lation genetics. We used the publicly available software ms
(Hudson, 2002) to generate several populations under the
coalescent. The coalescent model is driven by two parame-
ters, θ = 4N 0µ and ρ = 4N0r , where N 0is the (effective)
haploid population size, µ is the mutation probability per
haplotype and generation, and r is the recombination prob-
ability per haplotype and generation. Five haploid popu-
lations were simulated (each using a different value of r;
see below). The effective population size for each popula-
tion was assumed to be 5000, and we considered regions
of length 100kb. To begin with we used values µ = r =
2 × 10−3, which can be considered to be realistic (Phillips
et al. 2003). Note that because we use a region length
of 100kb µ and r are equal to 2 × 10−8, measured in

base pairs. Figure 2 displays the LD pattern for this pop-
ulation. The pattern is similar to several 100kb regions
observed in the ENCODE regions studied by the Interna-
tional HapMap Consortium (2005).

We created four additional populations by keeping µ

fixed at 2 × 10−3 and varying r over four different values.
For each population we removed all SNPs with a minor
allele frequency (MAF) of less than 5%. We did this since
it is known to be difficult to detect rare variants using
standard association tests. From the remaining set of SNPs
we selected one out of every 20 markers, as evenly spaced
as possible. This procedure yields an approximate marker
distance of 5kb, which is similar to the marker distance
used in many case-control studies where tSNPs have been
internally identified (e.g. Haiman et al. 2003; Einarsdottir
et al. 2005).

We have used the abbreviation tSNP to denote (gen-
erally) a tagging SNP. Tagging SNPs can be selected to
predict SNPs individually or to predict haplotypes. In this
article we used the former approach. We used the squared
correlation between true and predicted allele dosages, R2

s ,
as described by Stram (2003a). From the set of markers
created with an approximate marker distance of 5kb, we
selected a subset of tSNPs as the minimal set which pro-
vided a minimum R2

s value of 0.8. We used a MAF cutoff
at 5%, meaning that tSNPs were selected only to ensure
good prediction of markers with a MAF above 5% (that
is “all markers in the sample”, since markers with a MAF
less than 5% were already removed). Diploid case-control
samples were randomly drawn from each population. Each
sample consisted of 1500 cases and 1500 controls. We as-
sumed a rare disease, a single functional mutation with a
relative risk ψ (multiplicative penetrance), and a popula-
tion in HWE. This implies that SNPs and haplotypes are in
HWE both among controls and among cases, the controls
having approximately the same haplotype frequencies as in
the population, and the cases having modified haplotype
frequencies

f ∗
i =

f i ψi∑
j f j ψ j

, (11)

where f i is the frequency for haplotype i in the population,
and ψ i are haplotype relative risks; ψi = ψ if haplotype
i carries the mutation, and ψi = 1 otherwise (Clayton,
2001). For our simulation we used a value of 1.4 for ψ

which, given our choice of sample size, was (empirically)
found to yield on average a power of 0.8 at 5% significance
level for detection of a functional mutation. For each pop-
ulation we moved the location of the functional mutation
over all SNPs (not only the subset of SNPs selected as mark-
ers in the preliminary sample) in the region between the
leftmost and the rightmost tSNP. The reason for not letting
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Figure 2 LD pattern (D′ ) for the population with µ = r = 2 × 10−3.

the functional mutation be located outside the region
spanned by the tSNPs is explained below. This procedure
yielded approximately 100 samples from each population.

Estimation of statistical power
Above we discussed how our approach, in principle, could
be adapted for use in testing for association. We empir-
ically evaluated the power of a test using simulated data
based on the coalescent model. We used the population
which we consider to be the most realistic in terms of
mutation and recombination rates (µ = r = 2 × 10−3).
To ensure precise estimates of power, even for low sig-
nificance levels, we tenfolded the number of samples for
this specific population. In addition we randomly drew
equally many (approximately 1000) case control samples
from this population assuming a relative risk of 1. The latter
samples can be viewed as being drawn under H 0 (with a rel-
ative risk of 1 a mutation is, by definition, non-functional).
The former samples can be viewed as being drawn under
the alternative hypothesis, HA. The clustering method was
applied to each case-control sample using (i) only tSNPs,
and (ii) all of the markers observed in the preliminary sam-
ple of 100 controls and the tSNPs observed in the remain-
ing 1400 controls and 1500 cases (i.e. tSNPs and tagged
SNPs).

Aik =




0 if individual i is homozygous carrier of reference allele at tSNP k
1 if individual i is carrier of one reference allele at tSNP k
2 if individual i is non-carrier of reference allele at tSNP k

(15)

We empirically estimated the power of the test described
above as a function of α. First we estimated K α, for α ∈
K̂α[0.01, 0.05], as the minimal value for which

n K̂α

H0

n H0

> α, (12)

where n K̂α

H0
is the number of samples, simulated under H 0,

for which D > K̂α, and n H0 is the total number of samples
simulated under H 0. For fixed values of α we consistently
estimated the power using (i) and (ii), as

n K̂α

HA

n HA

, (13)

where n K̂α

HA
is the number of samples, simulated under HA,

for which D > K̂α, and n HA is the total number of samples
simulated under HA. As a comparison to our proposed
test we also included the (estimated) power function of a
standard likelihood ratio (LR) test based on the following
logistic regression model:

logitp (yi = 1|Ai ) = β0 + βT
A Ai (14)

where Ai = (Ai1, . . . , AiK ), K is the number of tSNPs,
βA is a 1 × K vector, and
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Figure 3 Empirical estimates of power by MAF. The dashed line is for tSNPs only, the
solid line for tSNPs + tagged SNPs. The line of circles represents the LR test based on
logistic regression.

We have plotted empirical estimates of power in
Figure 3. We divided results by MAF at the disease locus (3
groups: MAF≤0.2, 0.2<MAF≤0.35, 0.35<MAF≤0.5).
We first note that the power for all three methods increases
with MAF. We excluded the plot for MAF>0.35, since
in this region the power was observed to be very close to
one for all three methods and all significance levels. The
test based on haplotypes was consistently more powerful
when tSNPs and tagged SNPs were used, in comparison
to using tSNPs only. The power of our haplotype-based
test using tSNPs only was observed as being consistently
larger than the power for the test based on logistic regres-
sion using tSNP genotypes. The test which we have de-
scribed assumes (complete) knowledge of haplotypes/LD,
and hence requires development before it can be used for
real data analysis. The simulation result does however sug-
gest that, for this particular choice of recombination rate
and mutation rate, there is potentially an advantage to deal-
ing with both haplotype phase and tagged SNPs in testing
for association.

Assessing mapping performance
We note that the prior distribution for x is only defined
within the region between the leftmost typed SNP and
the rightmost typed SNP. With the mapping method we
propose, when using tSNPs only, we do not explicitly allow

for a disease mutation to be located outside the region
spanned by the tSNPs. To enable a fair comparison between
using tSNPs only and using both tSNPs and tagged SNPs,
in generating data we allow only for x to be between the
leftmost and the rightmost tSNP.

In a practical setting one would probably test for asso-
ciation first, and then if the test falls out positive try to
locate the functional mutation. For each simulated sample
we tested for association using the LR test based on the
additive logistic regression model in (14). The samples for
which the test rejected the null hypothesis at 5% signifi-
cance level (we refer to those samples as “verified”) were
used to estimate ACP, Q, mean bias and mean variance.

For each of the five populations we consistently esti-
mated the ACP for using tSNPs only, and for using tSNPs
and tagged SNPs separately, L ∈ [0, 1], as

nL

n
, (16)

where nL is the number of samples in which x is covered
by |A| ≤ L, and n is the total number of samples. Figure 4
summarizes the results.

For a “very low” recombination rate (r = 10−4) we
have that ACP = L for both using tSNPs only and using
tSNPs and tagged SNPs. This means that the clustering al-
gorithm performs no better than “blindly guessing”. This is
to be expected; in a region with a very low recombination
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rate the magnitude of LD tends towards being indepen-
dent of distance between loci. As the recombination rate
increases we would expect LD to decrease as a function
of distance, and as a result it will become possible to use
markers for locating functional mutations more accurately.
In our simulations we observed this pattern – the line for
tSNPs and tagged SNPs moved away from the ACP = L
line as r increased from 10−4 to 10−3. We saw that the line
for tSNPs only joined the line for tSNPs and tagged SNPs
from the right-hand side of each graph as r increased. If
one searched for disease mutations in relatively small re-
gions (e.g. L = 0.2), as might in practice be the case, it is
clear that, for low to moderate recombination rates (r =
0.5 × 10−3 to r = 2 × 10−3) there is a significant gain
in using tagged SNPs in addition to tSNPs. For large re-
combination rates the gain is minimal, because the propor-
tions of SNPs in the preliminary sample, selected as tSNPs,
approaches 1.

Table 1 displays the estimates of Q, the mean bias, and
the mean variance as a function of recombination rate. As
indicated by the ACP curve, for the lowest recombination
rate, estimates of both Q and the mean bias were close
to what we would expect from “blind guessing” . When
comparing tSNPs only with tSNPs + tagged SNPs, we
saw that estimates of Q, the mean bias, and the mean vari-
ance, are lower for tSNPs + tagged SNPs for almost all
recombination rates. Exceptions arose for the bias, for the

Figure 4 Estimating ACP. Dashed lines are for tSNPs only, solid lines for tSNPs +
tagged SNPs. In each sub figure the line corresponding to ACP = L is drawn.

Table 1. Estimates of mean bias, mean variance and Q in coalescent
simulations, for (i) tSNPs only and (ii) tSNPs + tagged SNPs

variance variance
r Q (i) Q (ii) bias (i) bias (ii) ×10−3 (i) ×10−3 (ii)

10−4 0.61 0.53 0.36 0.37 2.2 0.2
0.5 × 10−3 0.48 0.32 0.26 0.2 2.6 0.22
10−3 0.36 0.21 0.15 0.1 1.6 0.21
2 × 10−3 0.34 0.27 0.13 0.09 1.1 0.21
4 × 10−3 0.31 0.29 0.08 0.09 0.5 0.23

highest and lowest recombination rates. In those cases the
estimates of the bias were very similar for the two methods,
and the difference is likely to be due to sampling variability.

The importance of taking proper care of the two stage
design can be emphasised even more if we consider sit-
uations where tSNPs are selected in a way that does not
ensure good prediction of all stage 1 SNPs. We illustrated
this by repeating the analysis for r = 10−3 (low rate), r =
2× 10−3 (moderate rate) and r = 4× 10−3 (high rate), but
with the tSNPs selected as the minimal set which provided
a minimum R2

h of 0.8 (Stram et al. 2003a) instead of R2
s . A

rare haplotype cutoff at 5% was used, meaning that tSNPs
were selected only to ensure good prediction of haplo-
types with a population frequency above 5%. In these three
populations the common haplotypes (frequency > 5%)
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Figure 5 Estimating ACP when tSNPs are selected using R2
h. Dashed lines are for

tSNPs only, solid lines for tSNPs + tagged SNPs. In each graph the line corresponding
to ACP = L is drawn.

accounted for 24%, 46% and 58% of the total haplotype
pool. In practice tSNPs would not be selected according to
such a criterion. One reason we chose to use this criterion
was that we found that, unlike in the initial simulations
(Figure 4), the proportion of stage 1 SNPs selected as
tSNPs did not increase as the recombination rate increased.
Figure 5 displays the results from the second set of
simulations.

Figure 5 shows that, although the tSNPs alone perform
almost as badly as blind guessing, there is a huge gain to
be made by incorporating the tagged SNPs from stage 1 in
the algorithm.

Our algorithm is based on a fixed window length, which
is clearly not optimal (see Discussion). Although we have
not introduced a window length parameter in our Bayesian
algorithm, we did try out different choices of fixed window
length. We repeated the analysis for r = 10−3 and tSNPs
selected according to the R2

s criterion, with 4 and 8 flank-
ing SNPs, respectively. The result is displayed in Figure 6.
Although the result seemed to be somewhat sensitive to
window size, we note that for all three choices of window
size the performance of the method was greatly improved
when tagged SNPs were included, and that the ‘best’ ACP
for tSNPs was only inferior to all ACPs for tSNPs + tagged
SNPs.

Simulations Based on Real Haplotype Data

The simulations described above are based on a coalescent
model under the assumption of constant recombination
rates. We also studied the performance of our method us-
ing simulations based on real haplotype data collected in
an ongoing candidate gene study of postmenopausal breast
cancer risk (Einarsdottir et al. 2005). In each gene SNPs
were selected from databases, aiming for a marker density
of at least one SNP per 5kb, and typed on a preliminary
sample of 92 controls. The tSNPs were typed on 1500
cases and 1500 controls. We used haplotype data from the
preliminary sample for one particular gene, ESR1. More
specifically we constructed a haploid population with hap-
lotype frequencies equal to those which were observed
(predicted) in the preliminary sample. We considered a
sub-region of 131.5kb at the start of this gene (chr 6;
152300000..152168500). Fifty SNPs (MAF>0.05) were
typed for the controls in the preliminary sample (i.e. the
marker density was roughly 1 SNP per 2.6kb). Seventeen
tSNPs were selected in this region, predicting common
SNP genotypes with a minimum R2≥0.8. We noted that
marker density in this preliminary sample was not much
less than that of HapMap phase II in this region. HapMap
phase II typed 78 SNPs (MAF>0.05) in this region and
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Figure 6 Estimating ACP with different fixed window sizes, r = 10−3. Dashed lines are
for tSNPs only, solid lines for tSNPs + tagged SNPs. In each graph the line
corresponding to ACP = L is drawn.

Figure 7 LD (D’) in a subregion of ESR1

selected 24 SNPs based on its multimarker tSNP selec-
tion procedures. An LD plot for this region, based on the
breast cancer study data, is shown Figure 7. Based on this
haplotype data we performed a simulation study, drawing
100 samples of 1500 controls and 1500 cases, using a rel-
ative risk of ψ = 1.4, and moving the location of the
functional mutation over all SNPs. The procedure used for

drawing these samples was similar to that described for our
simulation study based on the coalescent. We note that a
drawback of this simulation, based on real haplotype data,
is that haplotype diversity is underestimated since haplo-
type population frequencies are estimated using only 184
chromosomes. We plotted the ACP curve in Figure 8. For
one particular sample we plotted the posterior distributions
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Figure 8 Estimating ACP within a subregion of ESR1. Dashed
line is for tSNPs only, solid line is for tSNPs + tagged SNPs

for disease mutation position, x, and number of haplo-
type clusters (Figure 9). This is included only to provide a
concrete example of how tagged SNPs can aid mapping.
Of course incorporating tagged SNPs does not always im-
prove localisation. It is the ACP curve that provides us
with the aggregated measure of performance. It is clear

Figure 9 Example of posterior distributions for location of disease mutation (left) and
for number of clusters (right), for a simulated dataset based on a subregion of ESR1. The
vertical line shows position of the disease mutation. Upper plots are for tSNPs only, lower
plots for tSNPs + tagged SNPs.

that fine mapping in this region can benefit from incorpo-
rating haplotype information on tagged SNPs. Across the
100 datasets, the estimates of mean bias were 0.14 when
using tSNPs only, and 0.08 when using tSNPs and tagged
SNPs. The estimates of the mean variance were 1.2 ×
10−3 and 1.2 × 10−4, respectively, and the estimates of Q
were 0.23 and 0.10, respectively. Including tagged SNPs
improved accuracy of point estimation and yielded a more
peaked posterior distribution for x.

Discussion

We have described a statistical method for estimating the
position of a disease mutation within a fixed genomic
region, which supplements tSNP information with (ex-
ternal) information on linkage disequilibrium. We have
demonstrated that there is significant gain to be made
by incorporating haplotype information on non-tagging
SNPs. The performance of our method, which incorpo-
rates tagged SNPs, relative to the method based only on
tSNPs is heavily dependent on pattern of LD. The absolute
performance of our proposed method is heavily dependent
on a number of factors (LD pattern, allele frequencies,
penetrance etc). For this reason it is difficult to quantify
exactly how well our method performs in specific situa-
tions. For mapping our simulation studies show that, given
the region size and averaging over different positions for
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functional mutations, the method suggests regions which
have good ACPs. But how to set the region size in a spe-
cific setting, in order to achieve a specific ACP, is an open
question. Whilst our haplotype clustering method is us-
able in its current form, there are several ways in which
the method could be further developed. In our simula-
tion studies haplotype phase was known. One obvious and
important extension to our method would be for deal-
ing with uncertain haplotype phase. Although tSNPs often
predict haplotypes (across tSNPs) well, there will be some
loss in power and ability to localise disease variants (Moli-
tor et al. 2005). Our algorithm would also benefit from
allowing the number of flanking SNPs to vary locally, ac-
cording to LD/haplotype diveristy; see Browning (2006)
for a related LD mapping approach. This can be accom-
plished by incorporating a window size parameter in the
algorithm. Throughout this article we have assumed a sin-
gle disease predisposing allele within a fixed/studied region.
Our method, of course, performs best in this situation. The
extent of allelic heterogeneity at complex disease loci is
still unknown, although some predictions have been made
(Pritchard & Cox, 2002). Molitor et al. investigated the ef-
fect of allelic heterogeneity on mapping performance. They
simulated samples assuming two functional mutations, and
found that their algorithm successfully managed to track
both loci. We don’t expect our slightly modified algorithm
to behave differently in this matter. We have demonstrated
the performance of our method in a setting where iden-
tification of tSNPs and LD information on tagged SNPs
are based on a small, preliminary sample. It is, of course,
common to select tSNPs using Hapmap. In such a setting
it is natural to obtain the external LD information from
Hapmap as well. Hapmap, however, contains a mixture of
several populations, and it is not obvious how well this mix-
ture can help us to predict the LD structure in the study
population at hand. The impact of using Hapmap is an aim
of future work.

Software implemented in MATLAB can be obtained
from the first author.
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