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Rank-Based Estimates in the Linear Model 
With High Breakdown Point 

Ola HOSSJER* 

An estimator in the linear model is defined by minimizing an objective function, the derivative of which is a signed rank statistic. 
The scores are generated from a function h+: (0, 1) -- [0, oo), which is not necessarily nondecreasing, as is usually assumed. It is 
shown that this estimator can be chosen with a maximal breakdown point of .5. Moreover, strong consistency and asymptotic 
normality (with convergence rate n-1"2) of the proposed estimator are proved under various regularity conditions. Because the 
objective function generally is not convex in the regression parameters, the usual proofs of asymptotic normality do not carry over. 
Instead the proof is based on an asymptotic linearity result, similar to that obtained by Huber for M estimates, and some moment 
estimates for signed rank statistics. Numerical examples illustrate the behavior of the estimator. 

KEY WORDS: Asymptotic normality; Exact fit property; Robust estimation; Signed rank statistic; Trimmed residuals. 

1. INTRODUCTION 

Consider the linear model 

yi = Oox' + ei, i= 1, .. ., n, (1) 

where xi and 00 are vectors in RP and the scalars e, represent 
the error terms. We are interested in the case when there is 
uncertainty in the carrier variables xi. In particular, we are 
interested in estimates of 00 with high breakdown point. A 
finite sample version of the breakdown point was introduced 
by Donoho and Huber (1983). Let Tn be an estimate of 00 
and let Zn represent any sample z1 = (x1, yi), . *., Zn = (Xn, 
yn). Given m, the maximal bias bn(m, Tn, Zn) is defined as 
the supremum of JTn (Zn* -Tn (Zn) || over all samples Z* 
with at most m vectors z, differing from those of Zn. The 
breakdown point of Tn (with replacement) at Zn is then de- 
fined as 

n (Tn, Zn) = min{-; bn (m, Tn, Zn) is infinite}. (2) n 

Consequently, c * is the smallest fraction of outliers that can 
carry the estimate Tn over all bounds. With T = {Tn 1,p 
representing the whole sequence of estimates, we define 

C*(T) = lim inf c*(Tn, Zn) (3) 
n -cr ZnEZn 

as the asymptotic breakdown point of T. Here Zn denotes 
the set of all samples in general position (see Sec. 2). (Other 
definitions of breakdown point have been given in Hodges 
1967 and Hampel 1971.) Many of the well-known estimators, 
such as least squares (LS), M estimators with a nondecreasing 
t1 function (Huber 1973), and R estimators based on signed 
rank statistics with nondecreasing scores (Hettmansperger 
and McKean 1983), have c* = 0 and thus bad protection 
against outliers in the x direction. The first example of an 
estimator with the maximal c* = .5 was given by Siegel 
(1982): the repeated median (RM). Rousseeuw (1984, 1985) 
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studied the least median of squares (LMS) and least trimmed 
squares (LTS), which are defined by minimizing the median 
or the trimmed mean of the squared residuals. Other ex- 
amples are S estimators (Rousseeuw and Yohai 1984), MM 
estimators (Yohai 1987), and r estimators (Yohai and Zamar 
1989). The latter two estimators can be chosen with maximal 
breakdown point and at the same time an efficiency arbi- 
trarily close to 1 when the errors are independent and in- 
dentically distributed (iid) with a normal distribution. Ju- 
reckova and Portnoy (1987) showed that a one-step M 
estimator based on a preliminary robust estimate inherits 
the breakdown point of the latter estimate at the same time 
as the efficiency can be chosen arbitrarily close to 1. Until 
recently, there has been little research on finding rank-based 
estimators resistant to leverage points (i.e., outliers in the x 
direction). Sievers (1983) considered an estimator based on 
minimizing a weighted Gini's mean difference of the resid- 
uals, and the weights can be chosen so that the estimator 
has a bounded influence function. Tableman (1990) defined 
a one-step rank-based estimator with bounded influence 
function. 

In this article we consider estimates based on signed rank 
statistics, but the scores are not necessarily nondecreasing as 
is usually assumed. More precisely, define the estimate f,t as 
any solution of 

6,, = arg min Dn,(Y,n - OX,n), (4) 

where Y, = (yi, . . . , Y,) and X, = (x'1, . . ., x',) is ap X n 
matrix. The objective function Dn is defined as 

I n 
Dn(yn - OXn) =- an(R+i) I ri l, (5) 

n i= 

where r, = ri (0) = - Ox' and R + = R + (0) is the rank of 
ri I among Ir,... Irn, . The numbers an(i) are scores, 

usually chosen according to an( i) = h+( i/( n + 1)), with h+: 
(0, 1) [0, oo) a given score generating function. We are 
interested in functions h+ such that 

sup{u; h+(u) > 0} = a, (6) 
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with 0 < a < 1. With such a choice of h +, a proportion 1 
- a of the residuals with largest absolute values do not con- 
tribute to D,. In Section 2 we show that c* = min(a, 1 
- a) for { , J,p when (6) is satisfied and h + is sufficiently 
regular (e.g., right continuous). In particular, we obtain the 
maximal breakdown point when a = .5. 

The estimator of Jaeckel (1972), where the dispersion 
measure Dn to be minimized is based on the ranks of the 
residuals (not on their absolute values), is often used to es- 
timate a regression parameter without an intercept. But by 
varying the scores of this estimator, we can not obtain a 
breakdown point higher than .25, because a larger fraction 
of outliers will carry Dn over all bounds if the corresponding 
residuals are all either large and positive or large and negative. 

The asymptotic normality of o, is well known when h + is 
nonnegative and nondecreasing. First, one introduces the 
derivative 

Sn(0) = (Sn l (0), ..., Snp(0)) = Dn(Yn - OXn) 

in 
=- - ~an(Rn+i)sgn(ri)xi, (7) 

ni= 

which is a piecewise constant function of 0, making jumps 
when some residual equals 0 or when a tie occurs (i.e., the 
modulus of two residuals is the same). Next, one proves 
asymptotic normality for Sn(00) (cf. Hajek and Siddak 1967) 
and uniform asymptotic linearity (in probability) of Sn(0) 
as a function of 0 for local neighborhoods of 00 with diameters 
of size O(n"-/2) (van Eeden 1972). This implies that Dn(Yn 
- OXn) may be approximated by a quadratic function of 0 
locally around 00. Asymptotically, the argument of the min- 
imum of this quadratic function is normally distributed and 
equivalent to the argument of a local minimum of Dn(Yn 
- OXn). Finally, the convexity of Dn(Yn - OXn) as a function 
of 0 (McKean and Schrader 1980, thm. 2.1) implies that the 
local minimum of Dn is actually a global one. But for h + to 
satisfy (6), h+ cannot be nondecreasing and Dn(Yn - OXn) 
need not be convex; however, the preceding argument implies 
that we may find a sequence on of estimates that locally min- 
imize Dn and are asymptotically normal. This requires only 
that h + = h + - h+, with both h + and h + nondecreasing and 
square integrable (cf. van Eeden 1972). To establish asymp- 
totic normality (with the same asymptotic covariance matrix) 
for the global minimizer on of Dn, other methods are needed. 
We first prove that on is a consistent estimator of 00 (Sec. 3), 
and we then extend the asymptotic linearity of Sn(0) to 
neighborhoods of 00 of size 0(1) (Lem. 4.2). These results, 
together with the asymptotic normality of Sn(00), imply 
asymptotic normality of on (Thm. 4.1) under stronger reg- 
ularity conditions on h+. 

The R estimator on in (4) and the LTS estimator can ac- 
tually be put into a general framework by minimizing an 
objective function 

n 

i=l1 

where I r(O) I (1), . . ., I r(O) I (n) are the order statistics for the 
absolute values of the residuals, p: [0, oo ) - [0, oo ) is a 
nondecreasing function, and the scores a,( i) generated from 
a function h + as before (6). The R estimator then corresponds 
to p(x) = x, and the LTS estimator corresponds to p(x) 
= x2 and h+(u) = I(u < a), given some trimming point a. 
This suggests that consistency and asymptotic normality may 
be proved for the more general model (8), with methods 
similar to those used in this article. Yohai and Maronna 
(1976) proved that local minimizers of the LTS objective 
function are asymptotically normal in the location model. 

In Section 5 the efficiency of the proposed estimators is 
discussed; in Section 6 numerical examples are given. Finally, 
many of the proofs are collected in the Appendixes. 

We close the section with some remarks on notation. The 
lp norm, 1 < p < o? of vectors in R'S is denoted I * I p, with 
p = 2 as a default value (omitting the subscript in this case). 
The Lp norm with respect to the Lebesgue measure of func- 
tions defined on a subset of ll is denoted 11 * lip. C will refer 
to constants that may vary from line to line. Unless otherwise 
stated, these constants do not depend on other quantities 
(such as h+, the underlying distribution of ei and xi). In 
cases when C depends on such quantities we write C 
= C(h+), and so on. The integer part of the real number x 
is denoted [x], and the smallest integer greater or equal than 
x is denoted Fxl. 

2. BREAKDOWN POINTS 

In this section let n be fixed. Also assume that the scores 
an(i) are nonnegative and define 

k = max{i; an(i) > O} (9) 

The following lemma gives the link between Dn in (5) and 
r (k)- 

Lemma 2.1. Assume that k is given by (9). Then there 
exist positive constants a and : such that a I r I(k) < Dn 
< AIrl (k). In particular, if k = [n/2] + 1, then we have 
amedian { I } ' D, ? 23median { ri } . 

Proof Take a = an(k)/n and: = I /n2 z1=1 an(i). 
For the rest of this section we assume that the regression 

data z,, . z ., Znare positioned so that no more than k - 1 
(where k - 1 ? p - 1) of them lie on any vertical proper 
linear subspace of RP+'; that is, a subspace containing 
(0, 1). We then have the following (cf. Rousseeuw 1984, 
lem. 1): 

Lemma 2.2. There always exists a solution to (4). 

Proof Let M = max {yi }, so that Dn(Yn) < fiM ac- 
cording to Lemma 2.1. Because no k data points are con- 
tained in a single vertical subspace of RP+', it follows that 

inflOx'I(k)=m>0, (10) 
181=1 

with { I Ox' (i) } denoting the ordered I Oxt I. Combining (10), 
Lemma 2. 1, and the fact that 1 r1(O)I ? I2x I -X -Myields 

D( - OXn) ? oa(IOIm - M) ? 2flM whenever 101 
2 (2(f3/o) + l1)M/m . Because Dn(Y - OXn) is continuous 
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in 0, there exists a minimum inside a ball of radius (2(f3/a) 
+ l)M/m. 

We say that the observations z, are in general position 
whenever any p of them give a unique determination of 0. 
For such a sample we have the following result extending 
theorem 1 of Rousseeuw (1984): 

Theorem 2.1. Let O, be an R estimator as defined in (4) 
and let k 2 p be given by (9). Then for any sample Z, in 
general position, we have E*(O,, Zn) = min(n - k + 1, 
k - p + 1)/n. In particular, if k = [n/2] + 1, we get c* 
= ([n/2] - p + 2)/n when p > 1 and [(n + 1)12]/n when 
p = 1, the breakdown point of the LMS estimator. 

Proof See Appendix A. 

Remark 2.1. It is clear that Lemma 2.2 and Theorem 
2.1 still hold if Lemma 2.1 is replaced by the more general 
requirement gl (I r I (k)) < D, < g2(jrj (k)), where gl and g2 
are strictly increasing functions with g, (0) = g2(0) = 0 and 
gl(oo) = g2(oo) == oo. The L2 distance Dn = r I/n has k 
=n, g1 (S) = s2/n, g2(s) = S2, and hence c = 1/n. For the 
trimmed L2 distance, Dn = X, I rI (I)/n, k equals the trim- 
ming point n' (p < n' < n), g,(s) = s2/n, and g2(s) = n's2/ 
n. The LI norm, corresponding to an(i)--1 in (5), yields k 
=n, g,(s) = s/n, g2(s) = s, and c* = 1/n. 

Remark 2.2. The breakdown point in Theorem 2.1 is 
maximized for k = [(n + p)/2] or k = r(n + p)/21, and the 
corresponding breakdown point is [(n - p)/2] + 1, which 
is the maximal value among all regression equivariant e- Li- 
mators (see Rousseeuw 1984, rem. 1). 

Remark 2.3. As a corollary of Theorem 2.1 we have the 
following exactfit property: If all observations are in general 
position and at least n + 1- n*c* = max(k, n + p - k) of 
them satisfy y - Ox' exactly for some 0, then On = 0 inde- 
pendently of the other observations. This may be shown di- 
rectly, or it follows from Rousseeuw and Leroy (1987, 
p. 123). 

Remark 2.4. If the scores are generated from a right- 
continuous (say) function h+ satisfying (6), it follows that 
k/n *a as n oo, and hence by Theorem 2.1, c*(O) 
= min(a, 1 - a), where 0 = (Op, Op+1, ... 

3. CONSISTENCY 

The results of Section 2 were data-oriented in nature and 
assumed nothing about the distribution of the vectors zi 
= (xi, yi). Assume now that zi are iid random vectors such 
that xi and ei - yi - O0x, are independent with distributions 
G { dx } and F{ dy }, and denote the distribution of zi by 
K{ dz }. We also assume the following. 

Assumption 1. The score-generating function h + is non- 
negative and bounded with at most a finite number of dis- 
continuities. Furthermore, (6) holds with 0 < a ? 1. 

In Assumptions 2 and 3, let r = 1 if either ae < 1 or a 
= 1 and let h+(u) ? C(1 - u)6 for some constant Cand 6 
> 0. Otherwise, choose r arbitrarily so that r > 1. 

Assumption 2. PG(Ox' = 0) < a for all 0 E RP, 0 #* 0, 
and EGI xl< oo. 

Assumption 3. F has a density f(e) that is even and 
strictly decreasing for positive values of e and EF I e I r < 00. 

To prove consistency for On, we start by proving that On is 
bounded almost surely. 

Lemma 3.1. Suppose that Assumptions 1-3 are satisfied. 
Then there exists a constant M < oo such that the estimate 
On defined in (4) satisfies limn,,I I OnI < M a.s. 

Proof See Appendix A. 
We now come to the main theorem of this section. 

Theorem 3.1. Given that Assumptions 1-3 hold, On is a 
strongly consistent estimate of 00. 

Proof See Appendix A. O 

4. ASYMPTOTIC NORMALITY 

To prove asymptotic normality for the estimate On defined 
by (4), we impose some additional regularity conditions that, 
together with the assumptions made in Section 3, will be 
used throughout this section. It will sometimes be convenient 
to work with 

h(u) = h+(2u - 1), 2< u < 1, 

= -h+(i - 2u), 0 < u < 2 (1 2 

instead of h+. 

Assumption 4. The function h defined in (11) is abso- 
lutely continuous on (0, 1) with 11 h'I110 < oo. Moreover, h' 
has at most a finite number of discontinuities, outside which 
h" exists, is continuous, and is bounded. 

Assumption 5. The pdf of the error distribution f is ab- 
solutely continuous with finite Fisher information I(f) 
= 

_1'(x)2/f(x) 
dx, and its denvativef' is bounded. 

Assumption 6. EG I X14 < 00. 

Next we introduce some additional quantities. Put Z: 
= EG(x'x), where I is nonsingular because of Assumption 
2, and let 

A(h) = f h(u)2 du (12) 

and 

B(h, F) = f h(u)hF(u) du 

= j h(F(y))f'(y) dy, (13) 

with hF(u) = -f'(F-'(u))/f(F-'(u)). Note that B(h, F) 
> 0, because of Assumptions 1 and 3. We will assume that 
80 = 0 throughout this section (without loss of generality). 
Define the symmetric distribution function 
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Ho(t) = 
I 
(PK(ri(O) < t) + PK(-ri(O) ? t)) 

2 

- (EGF(t + x*@) + EGF(t- -x * )) (14) 
2 

(where the last identity holds, because f is symmetric) and 
put 

Foj(t)= EG(xjF(t+x*O)), j= 1,.p, (15) 

where x = (xi, . . .,xp). Finally, X(O) = (Xi (O), . . ., Xp(O)) 
is defined by 

ori 
X (O) = 2 f h(Ho(t)) dFo,j(t). (16) 

-OC) 

The vector X(0) is related to the derivative S,(0) of Dn [cf. 
(7)], because it follows from Corollary B. 1 that S,(0) - X(0) 
as n -3 oo. We start with the following preliminary lemma. 

Lemma 4.1. Under Assumptions 1-6, X(0) = 0 and X'(0) 
=-B(h, F)Z. 

Proof. See Appendix B. 
The following lemma proves asymptotic linearity in prob- 

ability of S,(0) as a function of 0 uniformly over small enough 
neighborhoods of 0. The lemma is crucial for proving 
asymptotic normality of 0,6 and the argument is similar to 
that of lemma 3 of Huber (1967). 

Lemma 4.2. Put 

I Sn (r) - Sn(0) - X(r) + X(0)I 
Zn (r n) 1/2 + .() 

- n-1 + X(r)I 
Then for small enough 5 > 0, sup 1,6 Zn(r, 0) 4 0 as 
n -* oo. 

Proof See Appendix B. 
We are now ready to prove asymptotic normality for the 

estimate f9n 

Theorem 4.1. The estimate 0Jn defined by (4) is asymp- 
totically normal in the sense that n 1/20n -- N(O, A-' /B2), 
with A = A(h) and B = B(h, F) given in (12) and (13), and 
Z: as defined after Assumption 6. 

Proof See Appendix B. 

5. EFFICIENCY 

As we see from Theorem 4.1, the R estimate 0Jn has the 
optimal rate of convergence n- /2, and the asymptotic effi- 
ciency relative to the Cramer-Rao lower bound is [cf. ( 12), 
(13) and Assumption 5] 

e _,F 
B(h, F)2 (7 e(h F) A A(h)I(f) (17) 

It is well known that h = hF yields e = 1, and thus an asymp- 
totically optimal estimate. To see how much efficiency is lost 
by imposing (6), we maximize formally the expression (17) 
subject to this constraint. The maximal value of e( h, F) with 

F fixed (and fsymmetric), is attained by the function hF,J( u) 
= hF(u)I((M - a)/2 < u < (1 + a)/2), or equivalently [cf. 
(11)], h+,a(u) = hF((u + 1)/2)I(0 < u < a) (see, for example, 
Hampel, Ronchetti, Rousseeuw, and Stahel 1986, sec. 2.6c). 
Because hF,a has two discontinuities, Assumption 4 is vio- 
lated. But the supremum of e(h, F) over all functions h 
satisfying Assumption 4 and (6), after the transformation 
(11), equals e(hF,a, F), so this number certainly has a sig- 
nificance. Moreover, even when h = hF,a, a sequence of local 
minima of D, (Y, - OX,) is asymptotically normal, with the 
same asymptotic covariance matrix as in Theorem 4.1 (see 
Sec. 1). 

Table 1 shows values of e(hF,a, F) for normal, Laplace, 
and Cauchy distributions. As we can see, the loss in efficiency 
for a given breakdown point is smaller for the Cauchy dis- 
tribution, which has heavier tails. For normally distributed 
errors, the efficiencies in Table 1 are the same as for the LTS 
estimator, and in this case 

h ()= -1u 1 )I(0 < u ' a), (18) 

where '1 is the standard normal distribution function. 
What are the advantages of our estimator compared to 

LMS, LTS, and S? In terms of asymptotic efficiency, LMS 
is inferior because of the n1 /3-rate of convergence, whereas 
the S estimator is preferable in this aspect. Our estimator 
and LTS have intermediate performance for normal errors, 
with a rather low efficiency, as can be seen from Table 1. 
But the efficiency may be improved by computing a one- 
step M estimator based on a high breakdown initial estimator. 

What about finite sample efficiencies? Stefanski (199 1) and 
Morgenthaler (1991) have shown that high breakdown es- 
timators may have arbitrarily low efficiency for certain con- 
figurations of design vectors. The reason is that local linear 
trends with different slope than the global linear trend of the 
data may be detected by high breakdown estimators. For 
higher values of e*, the probability for this to happen is larger. 
This problem with the finite-sample efficiency is an unavoid- 
able price one has to pay for the high breakdown point. It 
thus may be advisable to choose a breakdown point of .20- 
.30 for small sample sizes. Figure 1 exhibits an artificial data 
set similar to the one of Stefanski (1991, fig. 1). The local 
trend consists of five out of nine points, and the R estimator 
is changed dramatically when the trimming point k [cf. (9)1 
is changed from five to six. 

The asymptotic behavior of f,i indicates that the ith resid- 
ual ri (0) has variance 

Table 1. Values of the maximal efficiency e(hF,, F) for different 
trimming proportions a, breakdown points e and distributions F 

a e* Normal Laplace Cauchy 

0.5 0.5 0.07 0.50 0.50 
0.6 0.4 0.13 0.60 0.69 
0.7 0.3 0.22 0.70 0.85 
0.8 0.2 0.35 0.80 0.95 
0.9 0.1 0.56 0.90 0.99 
1.0 0.0 1.00 1.00 1.00 
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Figure 1. Data Configuration With Different Local and Global Trends. 
The artificial data set consists of nine points. The two regression lines are 
computed by means of an R estimator with trimmed normal scores and 
truncation points k = 5 (solid line) and k = 6 (dashed line). 

var(ri 0()) v U'2(1 -Khi) (19) 

up to approximations of order n -. Here ar2 = varF(e), h,i is 
the ith diagonal element of the hat matrix Xn(XnXYn)-Xn, 
and 

K 2B(h, F)EF(eh(F(e))) - A(h) 
a2KB(h, F)2 

(See McKean, Sheather, and Hettmansperger 1990 for a der- 
ivation of the corresponding result for linear rank statistics.) 
Observe that (19) holds exactly for least squares, with K 
= 1. For a data set with one extreme leverage point, the 
corresponding hii is large, and the variance of the residual is 
small. For least squares this can be explained by the fact that 
the LS estimator tries to fit the leverage point. In the same 
way, the variance of the R estimator residual ri (On) should 
be small for a leverage point, because of (19). On the other 
hand, we know that the R-estimator fn will not be influenced 
by a bad leverage point when e * is large enough, and the 
corresponding residual thus will be large. This seems con- 
tradictive. However, formula (19) is conditional on xl, ..., 
xn . When the design vectors are given and xi is outlying, the 
probability is small that (xi, yi) is a bad leverage point, 
whereas the probability is large that (xi, yi) is a good leverage 
point. Because a good leverage point (xi, yi) will have large 
influence on 0n, resulting in a small residual ri, the overall 
variance of ri (On ) becomes small. 

6. NUMERICAL EXAMPLES 

In the numerical examples we use a grid search algorithm 
for simple linear regression and the PROGRESS algorithm 
(cf. Rousseeuw and Leroy 1987, chap. 5), for higher dimen- 
sions. The latter algorithm computes an approximation of 
the true R estimate, by modifying (4), so that the minimi- 
zation is performed over a finite set of 0 values. When { zI } 
are in general position, these regression parameters corre- 
spond to all (or a random subsample of) ? (p) possible hy- 

perplanes determined by exact fits from p data points. Be- 
cause the computation of D,(Y, - OX,) requires ordering 
of { I ri (0) I }, the computation time for this estimator is of 
the same order as for (the PROGRESS version of) the LTS 
estimator. An improvement of the PROGRESS algorithm 
has been considered by Ruppert (1992), where at each step 
the objective function is evaluated at a regression parameter 
that is a convex combination of the current best estimate 
and the last exact fit. In this way the search for the regression 
estimate is concentrated at the region around the current 
best estimate. 

We use the trimmed normal scores (18) for all the R es- 
timators in the examples; that is, 

a(i) ') i + nl + 1) i =15 . k5 2I n ++ 1) 

=0, i = k+ 1, ..., n, 

where k is the trimming point. Our simulations indicate that 
these R estimators have very similar performance to that of 
the LTS estimator with the same trimming point. Indeed, 
the asymptotic efficiency is the same for normally distributed 
errors. But there are some data configurations for which the 
R estimator performs better. An example is given in Figure 
2, with n = 13 and k = 7. The six points in the lower right 
corner are recognized as outliers by both estimators. The 
LTS estimator will act as a LS estimator on the remaining 
seven points, whereas the high breakdown point R estimator 
will act as a traditional normal scores R estimator. The LS 
estimator is more sensitive to vertical outliers than is the 
normal scores R estimator. This explains why the LTS line 
is more influenced by the vertical outlier in Figure 2. 

Figure 3 displays the stars data (Rousseeuw and Leroy 
1987, p. 27), with three different R-estimation fits: a = .5, 
.7, and .9. We see clearly that the former two regression lines 
are not influenced by the outliers in the upper left corner. 

Next we give a multiple linear regression example with 
several leverage points, the Hawkins-Bradu-Kass data, 

16 

14 

12 - o 

10 

8 - 

6 - 0 0 

4 - 

2 -/ 

O 
. 

. , o 
0 2 4 6 8 10 12 14 16 

Figure 2. Comparison of the R Estimator and LTS Estimator. The artificial 
data set consists of 13 points. The two regression lines are computed by 
means of an R estimator with trimmed normal scores, k = 7 (solid line), 
and an LTS estimator with k = 7 (dashed line). 
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Figure 3. The Stars Data. The data consist of three different R estimates, 
based on trimmed normal scores. The trimming proportions a are . 5 (solid 
line), .7 (dashed line), and .9 (dashed-dotted line). 

which has three explanatory variables and an intercept. The 
first ten observations are known to be bad leverage points, 
and the next four are good leverage points (cf. Rousseeuw 
and Leroy 1987, p. 93). Figure 4 shows a residual plot for 
the R estimator when a = .5. We have standardized the 
residuals by the median of the absolute residuals, S^ = 1.483(1 
+ 5 /(n - p))median 1 i, j ri () 1, where the multiplicative 
factor 1.483 makes s^ a consistent estimate of the standard 
deviation for normal errors, with 1 + 5 /(n - p) a finite 
sample correction factor. Alternatively, we could have used 
D,(Y, - OX,), the minimal value of the objective function 
(properly standardized) as a residual scale estimate. But then 
each a requires a separate multiplicative constant. We see 
from Figure 4 that the R estimator manages to identify all 
the bad leverage points, but does not flag the good leverage 
points as outliers. 
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Figure 4. Multiple Linear Regression with p = 4. This figure is a residual 
plot for the Hawkins-B radu-Kass data, using an R estimator with trimmed 
normal scores and trimming proportion at = .5. The number of random p 
subsets in the PROGRESS algorithm is 10,000. 
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Figure 5. Multiple Linear Regression with p = 6. This figure is a residual 
plot for the modified wood specific gravity data, using an R estimator with 
trimmed normal scores and trimming proportion a = .5. The number of 
rando,n p subsets in the PROGRESS algorithm is 10,000. 

Finally, we consider the modified wood specific gravity 
data, described by Rousseeuw and Leroy (1987, p. 243). The 
model contains five explanatory variables and an intercept 
and describes the influence of anatomical factors on wood 
specific gravity. The observations with indicies 4, 6, 8, and 
19 have been replaced by outliers. Looking at the residual 
plot in Figure 5, we see that the R estimator with a 50% 
breakdown point manages to identify these four points. 

APPENDIX A: PROOFS FROM SECTIONS 2 AND 3 
Proof of Theorem 2.1. In theorem I of Rousseeuw (1984), en* 

is determined for the LMS estimator. It is clear from the proof of 
this theorem and Lemma 2.1 that en* must have the same value for 
0,, when k = [n/2] + 1. The first part in the proof of Rousseeuw's 
theorem can be extended directly to prove 4(0n, Z,) 2 min(n 
- k + 1, k - p + 1)/n, and the second part can be extended to 
prove en* (0n, Z,) < (k - p + 1)/n. It remains to show 

en* (n, Zn) < (n-k + 1)/n. (A.1) 
For this purpose assume that a subsample Wn C Zn with n - k 
+ 1 data points is replaced by W*. Denote the new sample Zn* 
consisting of the elements z* = (x*, y*), . . .4, Z* = (x*, y*). 
Choose W * so that all its elements belong to He. = { (x y); y 
- 0* x = 0}, where 0* will be chosen later. Let r i(0) denote the 
residuals of the new sample and let 0,n and 0 n* be any two vectors 
minimizing Dn for the old and new samples. We intend to show 
that given any b > 0, it is possible to choose W * and 0* so that 
I0Sn' - 0n I > b. To this end, pick 0* so that 10* - On0I > b (but 
otherwise arbitrarily) and let xi = M(0* - 0,) for all data points 
in W*. We will show that if M > 0 is large enough, then Dn(Y* 
- *X *) < Dn(Y* - 0Xn*) for any 0 CE B(0n, b) - the closed ball 
in RP of radius b (with respect to the L2 norm) around 0,n. This will 
imply that i* lies outside this ball. Here Y"* = (y* . Y*) and 

(n-x' X .... Xn, . 
First, notice that 

<maxy I Ik + mx *lmaxlxi 1 (A.2) 
z,eZ0 zEEZ,, 
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Because I W* I = n - k + 1, it follows that 

Ir*(0)I(k)? min jyL -6x*l 

= min I( O*) *x* I 
Z, EWn 

= MI(O -*) (0* - On)I 

> M(IO*_on12-b I0* -nl) (A.3) 

for any 7 E B(bn, b). Notice that the upper bound in (A.2) is 
independent of M, whereas the lower bound in (A.3) can be made 
arbitrarily large by increasing M. Together with Lemma 2.1, this 
implies that infieB(6,,b)Dn(Y* -X* ) > Dn(Y* - *X * ) for large 
enough M. Hence a* must lie outside B(0n, b). Because b was 
arbitrary, (A. 1) is proved. 

Remark A.]. The proof of (A. 1) was based on positioning n 
- k + 1 data points (W*) in a way that has probability 0. But 
because Dn is a continuous function of the residuals, we may easily 
construct a neighborhood of W * with positive probability such 
that I an* - n I > b still holds. 

Proof of Lemma 3.1. Put 00 = 0 without loss of generality (be- 
cause 0n is regression equivariant). We introduce a random variable 
M(Zn) such that 

IOn I < M(Zn) (A.4) 
and show that limn -, M(Zn) ' Ma.s. Let en = en(XM) = min1eI=I 
D,(Xn)). Because Dn is continuous as a function of 0, en is a well- 
defined random variable. It follows from Lemma A. 1 that 

1 e XD(0 -)D(Y0OXn)I 1 n I'"lyl <21h+lK 2 Dn( n(yn <2 

Because Dn is scale equivariant, we thus have 

Dn(Yn -Xn) = IO1 Dn( Yn- ? X > 1I1? I/2 > Dn(Yn) ,101 101 / 
whenever 

(2Dn(Yn) 211h+l IIlYn \) 
101 > max , )AM(Zn).- (A.5) en n en 

In particular, with this choice of M(Z,), (A.4) holds. By the strong 
law of large numbers, I Yn I I /n EF( I eI ) < oo. Because Dn( * ) is 
a L statistic, we may apply results of Wellner (1977) to obtain the 
limiting behavior of Dn( * ) . It is easy to see from Wellner's theorem 
3-4 and from example 1, which covers most of our regularity con- 
ditions, that Assumptions 1-3 are sufficient to guarantee that 

Dn(yn - OX,,) as() = Eu(FPl(u)h+(u)) < oo (A.6) 

for all 0, with Fe the distribution of I y, - Ox' I and U denoting a 
uniform distribution on (0, 1). In view of (A.5), it thus remains to 
show that 

lim en> m a.s. (A.7) 

for some m > 0. As in (A.6) we have Dn(OXn,,) m- ti(0) 
= Eu(Gd'(u)h+(u)) < co, with Ge the distribution of 10x 1. It 
follows from Assumptions 1 and 2 that m(O) > 0 for all 0 # 0. It 
is clear that mh(8) is continuous in 0, and hence m = inf,0e=i rm(8) 
> O. Let 7 = m/(211h+ IEGIxl 1) and pick 0 *. ., ON, N = N(,n) 
from the unit sphere so that suplei=, min1,s1,f(,,)lO - O,L, x7* 
Hence for any 0, 101 = 1 we may choose 0j, j = j(0) from these 
vectors so that 10 8-A l~ I, ' ?. It then follows from Lemma A. 1 that 

Dn(0Xn) 2 Dn(0jXn) - ljh+ 11 (0 - 0j)Xnl 
n 

min Dn(0,Xn) - 2 lxil mi n h (0,) I l<z: n 1l15E 

- llhJ+LjjEGlxll 

2 m-||jh+ Jj.n?EGjx I l= m/2. (A.8) 

Because the lower bound of Dn(0Xn) in (A.8) is independent of 0, 
it follows that (A.7) holds with m = m/2. 

Proof of Theorem 3.1. Put 0o = 0 without loss of generality. In 
view of Lemma 3.1, it suffices to show 

P(m < Ibn I < Mi.o.) = 0 (A.9) 
as. 

for any 0 < m < M. Recall that D,(Yn - OXn) - yi4(0), with ,u(0) 
defined in (A.6). We claim that ,u(O) > tt(O) for any 0 * 0. This is 
so because for any t > 0 and 0 ? 0, 

Fe(t) = PK(Ie-0 Ox < t) = EGPF(Ie-Ox'I < tlx) 

< EGPF(I el < t) =Fo(t) 
according to Assumptions 2 and 3, and hence Fe (u) > Fo l(u) 
for all 0 < u < 1. It is also obvious that M(O) is continuous in 0 and 
hence Iu = minm?Ieo,M ,u(O) > ,(O). A construction similar to the 
one in Lemma 3.1 for proving (A.7) gives 

lim min D(Yn - OXn) 2 ?() - a.s., 
n n:m?G11M 2 

which implies (A.9). 
The following lemma is needed in the proofs of Lemma 3.1 and 

Theorem 3. 1. 

Lemma A.]. Let u and v be vectors in Rn. Then IDn(u) 
- Dn(V) I c1 |h+ 11,,o I u - vI l/n. 

Proof Putu=(ul,...,un),v=(vl,...,vn)andlet {ul(i)} 
and { I v I I denote the order statistics corresponding to the absolute 
values of the components of each vector. Then 

I Dn(u) - D(v)I = |-E an(i)u() - - I (1) n i1= n 

< (0h II Elui(,- IV(0 
n 1=1 

j jh+ 11x nUV n 

n 

where the inequality marked "*" follows from Cambanis, Simons, 
and Stout (1976, thm. 2). 

APPENDIX B: PROOFS FROM SECTION 4 

Proof of Lemma 4.]. First, the symmetry of f and the skew- 
symmetry of h around u = I gives X(O) = 0. Next, the regularity 
conditions admit us to differentiate under the integral sign with 
respect to Ok in (16). This yields (withfa,,(t) = dFe,j(t)/dt) 

[ 30k J, _ h'(F(t)) [ 30k J f0,1(t) dt 

+ 2 f h(F(t))[a(t)jto dtd 
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Differentiating under the integral sign again in (14) and (15) gives 
[aHe(t)/aok]e=o = 0 and [9feJ(t)/0c9k]e=o = 2f'(t)EG(xjxk). In- 
serting this into the preceding expression gives 

[axj(o) l = f h(F(t))f'(t) dtEG(xjxk) = -B(h, F)EG(xjxk), 

which proves the lemma. 

Proof of Lemma 4.2. We may replace the Euclidean norm I* 
by the max norm I * IC for vectors in RP. It obviously suffices to 
prove 

sup Z,j(T, ) ?, j = 1. p (B.1) 

as n - oo, where 

Z Snj(T) -Sn,() 
- Xj(T) + Xi(O)I 

Znj(r, )- 1n/2+ IX(T)Io 

First, we need some preliminary estimates on X(O). It follows from 
Lemma 4.1 and the facts that X: is nonsingular and B(h, F) > 0 
that 

aITK?I < I X(Tr) '? a'lTK ,,, whenever rTloo < 6, (B.2) 

for some constants 0 < a < a', if 6 is small enough. In the rest of 
the proof we assume, without loss of generality, that c5 = 1. Next, 
observe that 

X,(r) - XJ(O) I I X(T) - Snj( T) 

+ IX1(0)-Sny(0)I + Qny(0, IT-OK), (B.3) 
where QnJO(, d) is a quantity defined in the proof of Lemma B.1 
satisfying 

QnJ(O, d) 2 sup SnJ(T) - Snj(O), j = 1. p. (B.4) 

Taking expectations on both sides of (B.3) and letting n -* oo, it 
follows from Lemma B. 1 and Corollary B. 1 that 

I Xj(T)-Xj(O) I C b I T-O K , ' (B.5) 

with b > 0 the same constant as in Lemma B. 1. Following the 
construction of Huber (1967, lem. 3), we now subdivide the unit 
cube around the origin into a number of smaller cubes. Let Ck 

= { ; I0I? 0 (I 1q)k} , k = 0, 1.., where q = 1 /M and M is 
a positive integer to be chosen. Subdivide CO as a disjoint (except 
boundaries) union of Ck. and C(,), . . ., C(N), where each C(i) is a 
cube lying in Ck-l\Ck for some k ? ko with edges of length q(l 
- q)k-l There are at most (2M)P cubes C(i) in each Ck-1\Ck. 
Given e > 0, we have 

P(SUp Znj(T, 0) 2 2e) ? P( sup Znj(T, 0) > 2e) 
TrE- Co Tr E- Cko 

N 

+ z P( sup Znj(T, 0) ? 2e). (B.6) 
i= 1 EC(1) 

The integer M is chosen sufficiently large that 

1-q bea (B.7) 

and ko = ko(n) is selected so that 

(1 - q)kO _ n-e <(1 - q)kO-1 (B.8) 
where I < -y < 1 is an arbitrary fixed number. Hence ko(n) = O(log 
n) and N = O(log n). 

We first estimate each term of the sum in (B.6). Suppose that 
C(i) E Ckl \ Ck has center t and side length 2 d. Then estimate 
Z"J(T, 0) according to 

ZJ(,0) ? Sn,(Tr) - oM- X,(Tr) + XMO) 
n-'1/2 + IX(T) I 

I Snj( - S 
-j(O) 

XiM I 
n"12 +iXTK(B.9) 

Because for each T E C(,) we have IXj(T)-r Xj(t)I ? bd ? bq(l 
- q)k-l and I X(T)1ljoo > a(1 q)k according to (B.2) and (B.5), it 
follows from (B.9) that 

sEup ZflJ(T, 0) ? ~Qn d) + bq(l - 
q)kl 

1E=C(,) a(1 - q) 

+ Snj(t) Snj(?) Xj(0 -I n Zj 
n 1/2 + a(1 q q)k Znj I + Znj 2. (B.1O ) 

It then follows from Lemma B. 1, (B.7), and (B.8) that 

P(Znj,l 2 e) ? P(Qnj(, d) - EQnj(, d) 

2 ca(l 1-q)k -bq( l - q )k-1 - EQnj(t, d)) 

? P(QnjQ, d) - EQnj(, d) 

2 bq(1 - q )k )-(bq(1 - q)k-l 
'n 

(bq(1 - q)-) 

cn -I 

b 2q(l-q)kl 0(n-1), (B.1) 
with c the same constant as in Lemma B. 1. To estimate ZnfJ2, we 
see from Lemma B.2 that E(Snj(t) - Snj(O) - Xj))2 C C(n?-51 
+ I Ion-) where C = C(h, F, G). Formula (B. 1O) thus gives 

EZ"X2 ' C n-4 + a2(_q)2k) 

Cn - C /4 + 
C -'_ = 0(n- 14 

a2(1 q) 

It follows then from Chebyshev's inequality that 

P(Znj,2 2 e) = 0(n-W/4). (B. 12) 
Putting things together, we get from (B. 1O)-(B. 12) that 

P( sup Znj(T, 0) 2 2e) = 0(nmax(-I/4y-1)) (B.13) 
1EC(,) 

uniformly in i. It remains to estimate the first term in (B.6). Let 
now 2d = 2(1 - q)ko be the side length of Cko. We then have 
SUP,ECkO ZnJ(T, 0) ? n1/2(Qn(O, d) + a'd), with a' given in (B.2). 
Hence 

P( sup Znj(T, 0) 2 2e) ? P(Qnj(O, d) - EQnj(O, d) 2 2en-'/2 
1ECko 

- EQnj(O, d) -a'd). 

Because EQnJ(O, d) + a'd ? (b + a')d = (b + a')(l - q)ko 

= O(n -) according to Lemma B. 1, it follows that 2en ̀r2 - EQnJ(O, 
d) - a'd 2 en-'12 for all n exceeding some integer no. Thus n 2 nO 
yields 

P( SUp Znj(T, 0) 2 2e) ? P(Qnj(O, d) -EQnJ(0, d) 2 en-'/2? 
1ECko 

cdn' c(1 q)ko_ cd ' (l X = 0(n-7). (B.14) 

Summarizing, (B.6), (B. 13), (B. 14), and the fact that N = O(log 
n) proves (B. 1) and thus concludes the proof of the lemma. 

Proof of Theorem 4.1. The following proof is reminiscent to 
that of theorem 3 of Huber ( 1967) .d,By Lemma 4. 1 and Theorem 
3.1, it suffices to show n"/2X(O") -*N(O, AX:) as n -*OO. But 
because 
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12 d 
n Sn (0) ---N(0, A 2) (B. 1 5) 

(cf. Hajek and Sidak 1967, p. 166), we have only to show 

n"2(Sn(0) + X( 0)) ? 0 (B.16) 

as n oo . The fact that an is consistent implies that with probability 
tending to 1 as n -oo, 

S-(O)2 + SX(O)I ? 
SUP Zn(O, 0) + n'12 lim ISn(On), (B.17) n'1 + (On) I iei6 .6 

where Zn(O, 0) is defined in Lemma 4.2. The "limsup" in (B.17) 
takes into account the fact that Sn(bn) may not be well defined 
when a tie occurs or when some residual equals 0. For a fixed 0, 
Sn(0) is well defined with probability 1, because the error distribution 
is continuous, but at a", Sn is typically not well defined. As an min- 
imizes Dn(Yn- OXn), either Sn(On) = 0 if it is well defined, or 
otherwise 

n 1/2 lim 1n(n) --l+IO m x ,ii2, j ,.p @@n~~~~~~~~ I Iin S"l nIS (On) I < N -2II1h +II,, max 1/2' = 1,..p 

(B.18) 

Here the second factor on the right side of (B. 18) is an upper bound 
for the size of jumps that Snj(O) makes at each tie or change of 
signs. Assumption 6 implies that this factor tends to 0 in probability 
as n oo (actually, a finite second moment of I x I is enough). The 
first factor N denotes the maximal number of such occurrances at 
any point. Hence 

Nc No + N, = supl{i; r,(O) = 0}| 

+ sup l{i; 3 j * i such that 1ri(O)I = Ir,(O)I}I. 

Clearly N depends on Zn, but because the error distribution is con- 
tinuous, it follows that P(No > p) = 0 and P(NI > 2p) = 0 inde- 
pendently of n. This may be seen by considering all possible subsets 
Of Zn of size p + 1 and 2p + 1 and then conditioning on the cor- 
responding subsets of Xn. Altogether this entails 

n"2iimISn(On)I 42O, as n-oo. (B.19) 

Next, it follows from Hajek and Sidak (1967, p. 166) that besides 
(B.15), 

nEJSn(0) 1 - A trace(s) (B.20) 

also holds as n -*0oo. Let now e > 0 be given and choose L > 0 so 
that L2 = 3A trace(M)/e. It then follows from Lemma 4.2, (B. 17), 
(B.19), and (B.20) that for n 2 no(e), both of the inequalities 

n 1/2 |Sn(O) c L (B.2 1) 
and 

I Sn(O) + O@n)| IC e(n -1/2 + 1001)) (B.22) 
are satisfied with probability at least 1 - e/2. But (B.21) and (B.22) 
imply that 

n+ n I Sn(+0)l L + e n 1/2 
11n- I1- 

Inserting this inequality into (B.22) yields that 

n"2ISn(O) + X(in)I L < l (B.23) 

holds with probability at least 1 -e. Because the right side of (B.23) 
can be made arbitrarily small, (B. 16) is proved and hence the 
theorem. 

The remaining results of the Appendix are needed for proving 
uniform asymptotic linearity of S,(0) in Lemma 4.2. Lemma B. 1 
gives an upper bound for the first two moments of the quantity 
Q,j(0, d) used in (B.4), by writing it as a U statistic. A result related 
to Lemma B. 1 for a certain weighted version of simple linear rank 
statistics with Wilcoxon scores (h+( u) = u) was proved by Sievers 
(1983, thm 5.1). Lemma B.2 on the other hand corresponds to 
pointwise asymptotic (i.e., 0 is fixed) linearity of S,(0). The proof 
is based on approximating S,(0) by a (Chernoff-Savage-type) in- 
tegral involving empirical distributions of the data. (See Denker 
and Rosler 1985 for a similar approach.) 

Lemma B.]. There exists an upper bound Qni(0, d) of 
SUP{ ;Ie- I ?d} I Snj(r) - Sn,(O) I satisfying EQ,j(0, d) c bd and 
var Qn,(0, d) c cdn-I j = 1, . . . p, under Assumptions 1-6, where 
b = C(h+ F, G) and c = C(h+, F, G) are constants not depending 
on d, n, and 0. 

Proof See lemma A.2 of Hossjer (1991). 

Lemma B.2. Suppose that Assumptions 1-6 are satisfied and 
that 00 = 0. Then E(Sni(0) -Sn-(O) Xj(0))2 < C(n-5/4 + 101 2n'), 
j = 1. p, where X (O) is defined in (16) and C = C(h, F, G) is 
a constant independent of 0 and n. 

Proof See lemmas A.2 and A.3 of H6ssjer (1991). 

Corollary B. 1. Suppose that Assumptions 1-6 hold and that 00 
0. Then E(Snj(0)-X j(0))2 -o as n -oo , =j =. p. 

Proof Because 

ESn_(?)2 < Cn-, (B.24) 

with C = C(h, F, G) [cf. (B.20)], the corollary holds for 0 = 0. For 
0 # 0, observe that E(Sj(0) - XJ(O))2 < 2ESnj(0)2 + 2E(Snj(0) 
- S"y(O) - XJ(0))2. Hence the result follows from (B.24) and 
Lemma B.2. 

[Received March 1991. Revised November 1992.] 

REFERENCES 

Cambanis, S., Simons, G., and Stout, W. (1976), "Inequalities for Ek(X, 
Y) When the Marginals are Fixed," Zeitschrift fr Wahrscheinlichkeits- 
theorie und verwandte Gebiete, 36, 285-294. 

David, H. A. (1970), Order Statistics, New York: John Wiley. 
Denker, M., and R6sler, U. (1985), "A Moment Estimate for Rank Statis- 

tics," Journal of Statistical Planning and Inference, 12, 269-284. 
Donoho, D. L., and Huber, P. J. (1983), "The Notion of Breakdown Point," 

in A Festschrift for Erich Lehmann, eds. P. Bickel, K. Doksum, and J. L. 
Hodges, Jr., Belmont, CA: Wadsworth. 

Hajek, J., and Sidak, Z. (1967), Theory ofRank Tests, New York: Academic 
Press. 

Hampel, F. R. (1971), "A General Qualitative Definition of Robustness," 
The Annals of Mathematical Statistics, 42, 1887-1896. 

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986), 
Robust Statistics, The Approach Based on Influence Functions, New York: 
John Wiley. 

Hettmansperger, T. P., and Mckean, J. W. (1983), "A Geometric Interpre- 
tation of Inferences Based on Ranks in the Linear Model," Journal of 
the American Statistical Association, 78, 885-893. 

Hodges, J. L., Jr. (1967), "Efficiency in Normal Samples and Tolerance of 
Extreme Values for Some Estimates of Location," in Proceedings of the 
Fifth Berkeley Symposium on Mathematical Statistics and Probability, 
pp. 163-168. 

Hossjer, 0. (1991), "Robust Linear Regression by Means of M and R Sta- 
tistics," Ph.D. dissertation, Uppsala University, Dept. of Mathematics. 

Huber, P. J. (1967), "The Behavior of Maximum Likelihood Estimates 
Under Non-Standard Conditions," in Proceedings of the Fifth Berkeley 
Symposium on Mathematical Statistics and Probability, pp. 221-233. 

(1973), "Robust Regression: Asymptotics, Conjectures, and Monte 
Carlo," The Annals of Statistics, 1, 799-821. 

This content downloaded from 130.237.165.40 on Wed, 03 Feb 2016 22:26:14 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


158 Journal of the American Statistical Association, March 1994 

Jaeckel, L. A. (1972), "Estimating Regression Coefficients by Minimizing 
the Dispersion of the Residual," The Annals of Mathematical Statistics, 
43, 1449-1458. 

Jureckova, J., and Portnoy, S. (1987), "Asymptotics for One-Step M Esti- 
mators in Regression with Application to Combining Efficiency and High 
Breakdown Point," Communications in Statistics, Part A-Theory and 
Methods, 16, 2187-2199. 

Mckean, J. W., and Schrader, R. M. (1980), "The Geometry of Robust 
Procedures in Linear Models," Journal of the Royal Statistical Society, 
Ser. B, 42, 366-37 1. 

Mckean, J. W., Sheather, S. J., and Hettmansperger, T. (1990), "Regression 
Diagnostics for Rank-Based Methods," Journal of the American Statistical 
Association, 85, 1018-1028. 

Morgenthaler, S. (1991), "A Note on Efficient Regression Estimators With 
Positive Breakdown Point," Statistics and Probability Letters, 11, 469- 
472. 

Rousseeuw, P. J. (1984), "Least Median of Squares Regression," Journal 
of the American Statistical Association, 79, 871-880. 

(1985), "Multivariate Estimation With High Breakdown Point," in 
Mathematical Statistics and Applications (Vol. B), eds. W. Grossmann, 
G. Pflug, I. Vincze, and W. Wertz, Dordrecht, The Netherlands: Reidel, 
pp. 283-297. 

Rousseeuw, P. J., and Leroy, A. (1987), Robust Regression and Outlier 
Detection, New York: John Wiley. 

Rousseeuw, P. J., and Yohai, V. Y. (1984), "Robust Regression by Means 
of S Estimators," in Robust and Nonlinear Time Series Analysis (Lecture 
Notes in Statistics No. 26), eds. J. Franke, W. Hairdle, and R. D. Martin, 
New York: Springer Verlag, pp. 256-272. 

Ruppert, D. (1992), "Computing S Estimators for Regression and Multi- 
variate Location/Dispersion," Journal of Computational and Graphical 
Statistics, 1, 253-270. 

Siegel, A. F. (1982), "Robust Regression Using Repeated Medians," Bio- 
metrika, 69, 242-244. 

Sievers, G. L. (1983), "A Weighted Dispersion Function for Estimation in 
Linear Models," Communications in Statistics, Part A-Theory and 
Methods, 12, 1161-1179. 

Stefanski, L. A. (1991), "A Note on High-Breakdown Estimators," Statistics 
and Probability Letters, 11, 353-358. 

Tableman, M. (1990), "Bounded-Influence Rank Regression: A One-Step 
Estimator Based on Wilcoxon Scores," Journal of the American Statistical 
Association, 85, 508-513. 

Van Eeden, C. (1972), "An Analogue, for Signed Rank Statistics, of Jurec- 
kova's Asymptotic Linearity Theorem for Rank Statistics," The Annals 
of Mathematical Statistics, 43, 791-802. 

Wellner, J. A. (1977), "A Glivenko-Cantelli Theorem and Strong Laws of 
Large Numbers for Functions of Order Statistics," The Annals of Statistics, 
5, 473-480, corr, 6, 1394. 

Yohai, V. (1987), "High Breakdown-Point and High Efficiency Robust Es- 
timates for Regression," The Annals of Statistics, 15, 642-656. 

Yohai, V., and Maronna, R. (1976), "Location Estimators Based on Linear 
Combinations of Modified Order Statistics," Communications in Statistics, 
Part A- Theory and Methods, 5, 481-486. 

Yohai, V., and Zamar, R. (1988), "High Breakdown-Point Estimates of 
Regression by Means of the Minimization of an Efficient Scale," Journal 
of the American Statistical Association, 83, 406-413. 

This content downloaded from 130.237.165.40 on Wed, 03 Feb 2016 22:26:14 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 149
	p. 150
	p. 151
	p. 152
	p. 153
	p. 154
	p. 155
	p. 156
	p. 157
	p. 158

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 89, No. 425 (Mar., 1994) pp. 1-364
	Front Matter [pp. ]
	Statistics as a Profession [pp. 1-6]
	Applications and Case Studies
	Nonparametric Estimation for a Form of Doubly Censored Data, With Application to Two Problems in AIDS [pp. 7-18]
	Variance Components Models for Dependent Cell Populations [pp. 19-29]
	Comparison of Variance Estimators of the Horvitz-Thompson Estimator for Randomized Variable Probability Systematic Sampling [pp. 30-43]
	Models for Categorical Data with Nonignorable Nonresponse [pp. 44-52]

	Theory and Methods
	Adaptive Principal Surfaces [pp. 53-64]
	The L<sub>1</sub> Method for Robust Nonparametric Regression [pp. 65-76]
	Feasible Nonparametric Estimation of Multiargument Monotone Functions [pp. 77-80]
	Nonparametric Estimation of Mean Functionals with Data Missing at Random [pp. 81-87]
	Regression Models with Spatially Correlated Errors [pp. 88-99]
	Fitting Heteroscedastic Regression Models [pp. 100-116]
	A Neural Net Model for Prediction [pp. 117-121]
	An Interpretation of Partial Least Squares [pp. 122-127]
	On the Relationship Between Stepwise Decision Procedures and Confidence Sets [pp. 128-136]
	A Note on Variance Estimation for the Regression Estimator in Double Sampling [pp. 137-140]
	Determining the Dimensionality in Sliced Inverse Regression [pp. 141-148]
	Rank-Based Estimates in the Linear Model with High Breakdown Point [pp. 149-158]
	Distribution-Free Two-Sample Tests Based on Rank Spacings [pp. 159-167]
	The Effect of Imperfect Judgment Rankings on Properties of Procedures Based on the Ranked-Set Samples Analog of the Mann-Whitney-Wilcoxon Statistic [pp. 168-176]
	On the Interpretation of Regression Plots [pp. 177-189]
	Mosaic Displays for Multi-Way Contingency Tables [pp. 190-200]
	A Simple Dynamic Graphical Diagnostic Method for Almost Any Model [pp. 201-207]
	Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models [pp. 208-218]
	Estimation of Lag in Misregistered, Averaged Images [pp. 219-229]
	A Model for Segmentation and Analysis of Noisy Images [pp. 230-241]
	Approximately Bayesian Inference [pp. 242-249]
	Laplace Approximations for Posterior Expectations When the Mode Occurs at the Boundary of the Parameter Space [pp. 250-258]
	An Application of the Laplace Method to Finite Mixture Distributions [pp. 259-267]
	Estimating Normal Means with a Dirichlet Process Prior [pp. 268-277]
	Sequential Imputations and Bayesian Missing Data Problems [pp. 278-288]
	Testing the Minimal Repair Assumption in an Imperfect Repair Model [pp. 289-297]
	Choosing the Resampling Scheme when Bootstrapping: A Case Study in Reliability [pp. 298-308]
	A Predictive Approach to the Analysis of Designed Experiments [pp. 309-319]
	Testing and Selecting for Equivalence With Respect to a Control [pp. 320-329]
	Maximum Likelihood Variance Components Estimation for Binary Data [pp. 330-335]
	Fully Nonparametric Hypotheses for Factorial Designs I: Multivariate Repeated Measures Designs [pp. 336-343]
	On the Erratic Behavior of Estimators of N in the Binomial N, p Distribution [pp. 344-352]

	Book Reviews
	[List of Book Reviews] [pp. 353]
	Review: untitled [pp. 354]
	Review: untitled [pp. 354-355]
	Review: untitled [pp. 355-356]
	Review: untitled [pp. 356]
	Review: untitled [pp. 356-357]
	Review: untitled [pp. 357]
	Review: untitled [pp. 357-358]
	Review: untitled [pp. 358-359]
	Review: untitled [pp. 359]
	Review: untitled [pp. 359-360]
	Review: untitled [pp. 360]
	Review: untitled [pp. 360-361]
	Review: untitled [pp. 361]
	Review: untitled [pp. 361-362]
	Review: untitled [pp. 362-363]
	Review: untitled [pp. 363]

	Publications Received [pp. 363-364]
	Letters to the Editor [pp. 364]
	Back Matter [pp. ]



