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It is shown that the delta method is applicable in case of long-range dependent observations i.e. the 
asymptoticdistribution of centered and normalized value of compactly differentiable statistical functional at  
empirical distribution function coincides with the asymptotic distribution of the linear term in its formal 
Taylor expansion. As a simple corollary of the result, the asymptotic laws for L-estimates are derived. Also 
the form of asymptotic laws for M-estimates established by Beran (1991) follows from the main result. The 
asymptotic law of L-estimates for long-range dependent normal observations does not depend on a specific 
form of L-estimate. The same conclusion is valid for every compactly differentiable Fisher consistent estimate 
in the normal location model. Finally a simple sufficient condition for long-range dependence in the 
subordinated Gaussian model is provided. 
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1. INTRODUCTION 

Let Z , ,  Z,, . . . be a stationary Gaussian process with mean E(Z,) = 0, variance 
E(Z:) = 1 and covariance function 

where 0 < a < 1 and L(*) is a function on [I, oo) that is slowly varying at infinity and is 
positive in some neighborhood of infinity. Such a sequency (Zj)7=, is said to exhibit 
long-range dependent behaviour. Let G(.) be an arbitrary Bore1 measurable function on 
the real line R and consider the process Xi = G(Zi), i = 1 ,2 . .  . with marginal distribu- 
tion function F(x) = P(X, 5 x). Then the derived process Xi, j = 1,2,. . . will also exhibit 
a long-range dependent behaviour at least as a is small enough as determined by the 
Hermite rank m* of the function G(.) defined below (cf. Taqqu (1975), Lemma 3.1). We 
refer to Beran (1992) for the general discussion of long-range dependence and motivat- 
ing examples. Let F,(x) = n- 'x;=, I{Xi I x) be the sample distribution function, 
where I{A) denotes the indicator function of an event A. Observe that 

where G,..) = I{G(.) I x) - F(x). Let Hq(s) = (- l)qe"'2(dq/dsq)e-"'2, SER be the qth 
Hermite polynomial, q = 1,2.. . and El,(.) = 1. Hermite polynomials form an orthonormal, 
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complete system in the space LY2(IW, 4) with the weight function r$ being the standard 
normal density. Consider the Fourier-Hermite expansion of GJ.) by {H,(.)),"=, 

for fixed X E  R. The coefficients Jq(x) in (1.2) are equal to E(H,(Z,)G,(Z,)), q = 0 , l .  . . and 
m(x) is the smallest index q € N  for which J,(x) #O. Observe that m(x) > 0 since 
EGJZ,)  = 0 for XER. The Hermite rank of the class of functions {Gx(.): XER) is defined 
as m = inf{m(x) : XER). It is assumed throughout the note that 

It follows from Lemma 3.1 in Taqqu (1975) that the variance d im = Var(xy, , Hm(Zi)) is 
such that 

as n+co. Let D[- co, co] denote the non-separable metric space of all real functions 
defined on [- co, 031, which are right-continuous and have left-hand limits with the 
metric pertaining to the supremum norm I/. 11,. Dehling and Taqqu (1989) proved that 

n J 
-{F,(.) - F(.)) + Tm(.) = Ym in D[- co, + co], 
dm, m ! 

is distribution with respect to the o-algebra generated by the family of open balls. 
Ym is some non-degenerate random variable which is normal for m = 1 but is not 
normally distributed for m = 2,3,. . . Observe that in view of (1.3) and (1.4) the 
normalizing factor for the weak convergence is o(nl/') in constrast with the case of i.i.d. 
observations. 

Let now X be a normed vector space and T:X -, R a statistical functional. Consider 
the problem of estimating T(F) by means of T(Fn). The following definition is relevant. 

DEFINITION T is boundedly (compactly) differentiable at X E X  if there exists a linear 
continuous mapping dT(x) : X + R such that 

where B denotes arbitrary bounded (compact) subset of X. 

The usefulness of the concept of compact derivative is apparent in view of the 
following lemma (see e.g. Rieder (1994), Theorem 1.3.3). The lemma carefully avoids 
possible nonmeasurability of the set (~,Z,EK:) occuring e.g. when a,Z, is an empirical 
process considered as the mapping into (D[- co, co], I / .  11 ,) with the o-field generated 
by the family of open ballls. Other approaches providing justification for the delta 
method exist (see e.g. Gill, 1989; Esty et al., 1985) but this seems to be the most direct 
one. P ,  denotes the inner probability pertaining to P and A ~ s  the set of points x such 
that distance from x to A does not exceed 6. 
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DELTA METHODS FOR LONG RANGE DEPENDENCE 77 

LEMMA Suppose that T is compactly differentiable at some X E X .  Consider a sequence 
of functions Z n  from probability spaces (R, A,, P,) to X .  Assume that for every 8 > 0 
there exist a compact subset K of X and sequences 6 ,  -, 0 and a,  + oo such that 

lim inf P,,(U,Z,EK;) 2 1 - 6 .  
n-m 

Then 

In the case when Xi are independent and identially distributed random variables the 
above lemma provides a theoritical justification of the delta method which states that 
the asymptotic distribution of n112(T(Fn) - T ( F ) )  is the same as that of dT(F)(B(F(.)) ,  
where B() denotes Brownian bridge. In the note we prove that in analogy to this result 
in case of long-range dependent sequence Xi, i = 1,2,.  . . , n d ; i (T (Fn )  - T ( F ) )  has the 
same limiting law as Ym/m! dT(F)Jm( . ) .  The asymptotic laws for M- and L-estimates in 
case of long-range dependence are simple consequences of this result. In particular, it 
turns out that it case of G(x )  = x i.e. normal long-range dependent sequence Z ,  the 
asymptotic distribution of L-estimates does not dependend on a weight function. The 
same conclusion is valid for every compactly differentiable Fisher consistent statistical 
functional in the normal location model. This generalizes the result established by 
Beran (1991) for M-estimates in this model but is in complete contrast with the i.i.d. 
case. Finally we prove that the condition (1.3) assumed throughout this note is implied 
by the more easily verifiable condition m*a < 1 where m* is the Hermite rank of the 
function G(.). The proofs are postponed until Section 3. 

2 RESULTS 

Let 3 denotes the convergence in distribution of a sequence of real random variables. 
Then main result is the following 

THEOREM Assume that ma < 1 and T: (D[- c ~ ,  m], /I. I/,) --+ R is a statistical func- 
tional compactly differentiable at F. Then 

and 

Consider L-functional defined by 

where the weight function J(.) and c.d.f F(.)  satisfy the following conditions: 
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7 8  0. H ~ S S J E R  AND J. MIELNICZUK 

(i) J c Y 2  [O,1] and j ~ ( s ) d s  = 1; 
(ii) J(.) is a bounded measurable function supported on [a, PI, where 0 < a < /3 < 1; 
(iii) the Lebesgue measure of the set { ~ E R :  J ( . )  is discontinuous at F(y)) is 0. 

COROLLARY 1 Assume that conditions (i)-(iii) hold. Then for Tdefined in (2.2) we 
have 

EXAMPLE 1 The trimmed mean corresponds to J(t) = I (t E [a, 1 - a])/(l- 2a), 
0 < a < 112. This weight function clearly satisfies (i)-(iii). 

Remark 1 Observe that in the case when G(x) = x, we have m = 1 and 
J,(x) = Fms4(s)ds  = - $(s). Thus j~(F(y))  ~ ~ ( y ) d y  = - jJ(s)ds = - 1 so that in case 
of long-range dependent normal errors the asymptotic law of L-estimate does not 
depend on its specific form. 

Consider now the fixed function I): R -, R and the family {I)(.- d)), where 6' belongs 
to a compact set O c R such that for some 8, in the interior of O ~ (8 , )  = 0, where 
~ ( 6 )  = j$(x-%)dF(x). Provided that g(.) is locally homeomorphic at O,, there exists 
a neighborhood V of q(.) in C(O, R) and a functional T :  V-,O such that for every 
f~ K f(T( f )) = 0 (cf. Rieder (1994), Theorem 1.4.2). Let BVbe the space of functions of 
bounded variation on R. For GEDC- co, co] n BV put T,(G) = JI)(x - .)dG(x) and 
assume that To(G) is continuous for every G. We define M-functional on Til(V) as 
T*(G) = To T,(G). Consider now the model Yi = G(Zi) + 80, i = 1,2,. . . , n, where - F.  From now on F ,  denotes the e.d.f. based on (Y,):, ,. Observe that the Hermite 
ranks pertaining to the function G(.) and G(.) + do are the same. 

COROLLARY 2 Assume that q(.) is locally homeomorphic at do, y l ( )  exists at 8, 
and q1(8,) # 0, T,(G)(.) is continuous for every G E B V ~  D[ - co, co] and 
To : BVn D[ - a, co] -, (C(O, R), 1 1  ,) is continuous. Then 

EXAMPLE 2 Some well known score functions are I)(x) = sgn(x) (median), I)(x) = x 
(mean) and $(x) = max (-c, min(x, c)) for some constant c > 0 (Huber's estimator). 

Remark 2 Observe that under regularity conditions on q(.) entailing 

the main term on the right-hand side of (2.5) can be written as 

Consider the case when the rank of I) o G is equal to the rank of G and is equal to 1. Then 
the asymptotic distribution of (2.6) in view of Taqqu (1975) is equal to the distribution 
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DELTA METHODS FOR LONG RANGE DEPENDENCE 

whereas the asymptotic distribution of the sample mean is J G ( z ) z ~ ( z ) ~ z z ,  Z being 
some standard normal random variable. This result was first proved by Beran (1991). In 
particular if G(x) = x and $(.) is an arbitrary monotone antisymmetric function, these 
asymptotic distributions are equal, analogously as for L-estimates. Observe however 
that the last conclusion is implied by the following general result. Consider the location 
model fee(.) = q5(. - e,), 8 , ~  R and let F,(.) be the distribution function corresponding to 
f,(.), O E  R. A statistical functional Tis called Fisher consistent if T(Fe) = 0 for every OE R. 

COROLLARY 3 Let T: (DL- co, a], I/.//,) -+ R be compactly differentiable Fisher con- 
sistent statistical functional. Then 

Observe now that the crucial condition (1.3) of the long-range dependence of the 
sequence Gx(Zi), i = l ,2 , .  . . for XER is implied by more easily verifiable condition 
m*cr < 1, when m* is the Hermite rank of the function G(.) i.e. the smallest mEN such 
that I, = E(H,(Z,) G(Z,)) # 0. This follows from the following 

PROPOSITION Assume that G (.)E~P~([W, 4) and EG(Z,) = 0. Then there exist AE%(IW) 
of positive Lebesgue measure such that Jm,(x) # 0 for XEA. 
Observe that the strict inequality m < m* is possible. 

EXAMPLE 3 Consider 0 < a < b < a3 and a function 

where c > 0 is chosen so that 

I, = c  S @(t) dt - t4(t) dt) = 0. 
iWi\(a,b) Sob 

Put G(.):= W(.) - E W(Z,). In view of the above equality the Hermite rank of G(.) is not 
smaller than 2. Suppose now that - 1 < x < 0 and let y = x - E W(Z,). Then G,(t) = 
I(W(t) r X) - F ( y )  = I ( t ~ ( a ,  b)) - F(y) .  Thus J,(y) = S~, ( t ) t4 ( t )d t  = Jtt$(t)dt > 0, 
implying m(y) = 1 and m = 1. 

3 PROOFS 

Proof of Theorem Dehling and Taqqu (1989) proved that 
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F i x ~ > O a n d  6 >O. Put A,,,= {Wm I 6for a l l m 2  n) for neN. Since A,,,E A,+,,,and 
in view of (3.1) u,"=, A,,, = R it follows that for n 2 n(6) 

P(A,,,) 2 1 - &. (3.2) 

Moreover 

in (R, 23(R)) (cf. Dobrushin, Major (1979) and Taqqu (1979)). Thus the tightness of the 
above sequence implies that there exists 0 < M E  < co such that for every n 

P(d;: xk Hm(Xi) E [- M,, M,]) > 1 - E .  (3.4) 

The set K = {(J,(.)/m!) a : a ~ [ -  M,, M,]} is compact in (DL- co, a], li.ll,) and from 
(3.2) and (3.4) it follows that for n 2 n(6) 

Without loss of generality we assume that n(6) is monotone in 6. Define 6, = 2-' for 
~ 1 ( 2 - ~ )  1 n < n(2-'-l), where i~ N. Then (3.5) implies that 

lim inf P,, -(F,(.) - F (,)) E Kan 2 1 - 2 ~ .  
n-m (L 1 

Thus the assumptions of the Theorem are satisfied with Z, = F,(.) - F(.) and a, = n/dm,. 
The first assertion of the Theorem is proved. In order to prove the second assertion 
observe that continuity of d T(F) and (3.1) implies 

The weak convergence in (2.2) follows from the above convergence and (3.3) in 
conjunction with (2.1). H 

Proof of Corollary 1 Observe that (1.5) holds when T has bounded derivative along 
the subspace Z c X (c.f. Rieder, Definition 1.3.1) provided that Z, is a function into 
Z and Z, + 0 in probability P,,. Put 2 = (r(G - F ): r E R, G E 91, where 9 is the 
space of cummulative distributions functions and Z, = F, - F. Then Zn +O in prob- 
ability in view of Dehling and Taqqu (1989) and Thas a bounded derivative at F along 
2 and dT(F )(G) = - l~ (F ( s ) )  G(y) dy provided the assumptions (i)-(iii) hold in view of 
Theorem 1.6.8 in Rieder (1994). 

Proof of Corollary 2 The proof follows from the fact that T is compactly differentiable 
with the derivative 

(c.f. Rieder (1994), Theorem 1.4.2) and To is boundedly differentiable as the continuous 
linear functional. Thus To To is compactly differentiable and the Corollary follows 
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DELTA METHODS FOR LONG RANGE DEPENDENCE 

from the first assertion of the Theorem and the remark that 

Proof of Corollary 3 Observe that the location model corresponds to G ( x )  = 
x + go, x E R. In view of Taqqu (1975), Theorem implies that 

where J ,  ( x )  = J"_'o s$(s) ds = - $ ( x  - 8,) and Z is some standard normal random 
variable. We prove that dT(FOa)  J,(.) = 1. Let heo(.): = J,(.), x :  = Fee(.) and 
he(.): = (F( .  - 8) - F(.-  8,))/(8 - 8,) for 8 # 8,. Observe that in view of uniform conti:- 
nuity of 4(.), mean value theorem implies that jl he - heo 11, +O when 8 -. 8,. Using 
Proposition 1.3.2in Reider ( l994) with X: = (D[- co, a], II.ll,) and K = {boo) we have 

where the last equality follows from the continuity of dT(Fgo)  and the fact that the 
family {he),,, is uniformly bounded. Taking derivatives with respect to 8 yields 

Proof of Proposition Let Ga(t) = min(a, G(t))  for a > 0 and I, = JG( t )  H,(t)$(t)  d t ,  
IE N. Observe that for 1 E N \(0) 

Note that JJG( t )  H,(t)#(t)I dt I (EG2(Z)) l I2  (1!) '12  < co thus from Lebesgue dominated 
convergence theorem S G , ( ~ )  Hl(t)q5(t) dt +I,, when a+ co. Put 1 = m* > 0. Then 
[Jm,(x)  dx # 0 and the conclusion follows from properties of Lebesgue integral. 
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