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Summary. We consider a general, class of  varying bandwidth estimators of  a 
probability density function. The class includes the Abramson estimator, trans- 
formation kernel density estimator (TKDE), Jones transformation kernel density 
estimator (JTKDE), nearest neighbour type estimator (NN), Jones-Linton- 
Nielsen estimator (JLN), Taylor series approximations of TKDE (TTKDE) and 
Simpson's formula approximations of TKDE (STKDE). Each of these estima- 
tors needs a pilot estimator. Starting with an ordinary kernel estimator j21, it is 

possible to iterate and compute a sequence of estimates f2 , . . .  ,ft, using each 
estimate as a pilot estimator in the next step. The first main result is a formula 
for the bias order. I f  the bandwidths used in different steps have a common 
order h = h(n), the bias of  fk is of  order h 2kAm, k = 1,. . . , t .  Here h m is the 
bias order of  the ideal estimator (defined by using the unknown f as pilot). 
The second main result is a recursive formula for the leading bias and stochas- 
tic terms in an asymptotic expansion of the density estimates. I f  m < c~, it is 
possible to make j2 t asymptotically equivalent to the ideal estimator. 

Mathematics Subject Classifications (1991)." 62G07, 62G20 

1 Introduction 

Given independent and identically distributed real valued random variables 
X1 . . . . .  )2. with common distribution F, a well known estimator of the proba- 
bility density fimction f = F ~ at x is the kernel estimator (KDE) 

with K a non-negative, symmetric kernel function that integrates to one and 
hi the bandwidth. A disadvantage of f l  is that the bandwidth hi does not 
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adjust for location. For instance, it is advisable to use a smaller bandwidth at 
locations where f has a spike, and a larger one at the tails of f .  This can be 
accomplished by letting the bandwidth depend on x and/or the data. A general 
class of varying bandwidth estimators has the form 

l ~ 2 ( x ,  Xi ;h l )K ( (X -X t )~2 (x 'X i ;h l )  ) 
(1.1) 92(x;h2)  = h2 ' 

i=1 

with h2 = (hi, h2), ~2(x,z; hl ) - P2(x,z;f l  ( �9 ; hi )) and /~2(x,z; hi ) = 
Q2(x,z;f l(" ;hi)).  Here P2 and Q2 are functionals IR x IR • J l - +  IR, with 
J/l an appropriate class of real valued functions on the real line. The ef- 
fective bandwidth of 9~2 is h2/~2(x, Xi;hl)  for values of x close to X/. The 
quantity c~2 thus measures how the bandwidth varies with location. The other 
quantity /~2 is usually close to ~2, but it can also incorporate a multiplicative 
correction factor. Examples of estimators within this class are certain versions 
of nearest neighbour estimators (NN) (originally proposed by Loftsgaarden and 
Quesenberry 1965) and the transformation kernel density estimator (TKDE) 
(Ruppert and Cline 1994). These two estimators are usually not formulated as 
in (1.1). We explain this point a little more in Appendix A. Other examples 
are the Abramson estimator (Abramson 1982), M.C. Jones' proposed variation 
of the TKDE (JTKDE) (H6ssjer and Ruppert 1993), Taylor series approxima- 
tions of TKDE (TTKDE) (H6ssjer and Ruppert 1994), a Simpson's formula 
approximation of the TKDE (STKDE), and the Jones-Linton-Nielsen estima- 
tor (JLN) (Jones et al. 1995). See Table 1 for details. Strictly speaking, the 
JTKDE and JLN estimators are based on multiplicative bias reduction methods 
with effectively constant bandwidths, but they can nevertheless be put into the 
general framework (1.1). The estimator of Breiman et al. (1977) also belongs 
to this class. See also Jones (1990) for a comparison of different types of 
varying bandwidth estimators. 

Continuing as in (1.1), we may recursively compute estimates f 2 , . . . , f t  
according to 

(1.2) 

= 2/ Ax, X ;hk-I)K (x k = 2 . . . . .  t ,  
i=I h k  ' 

with hk = (hl,h2,. . . ,h~),  ~k(x,z;hk-1) = Pk(x,z; fk_ I) and f ik(x ,z;hk_l)= 
Qk(x,z;fk_ 1 ). (Here fk-1 means j2~_i(- ,hk-1 ).) Notice that we allow different 

functionals Pk and Qk at each iteration, and f l  corresponds to P1 = 1 and 

QI 1. (For technical reasons, the exact definitions of fk, Ek and ]~k will be 
changed slightly in Sect. 5.) 

All the functionals considered in this paper have the form 

qk 
(1.3) Pk(x,z; g) = ~ Pkl(x,z; g)(z -- x) l 

l=0 

qk 
Qk(x,z; g) = ~ Qkl(X,Z; g)(z - x) l , 

I=0 
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where Pkl(X,Z;9) and Qkt(x,z; 9) depend on g,g (1),.. .,g(l). Hence, Pk and Qk 
depend on the first qk derivatives of  g. Observe that qk = 0 for all functionals 
in Table 1 except the TTKDE. 

Table 1. Examples of varying density functionals 

Estimator P(x,z; 9) Q(x,z; g) s(k ) 

KDE 1 1 2 
NN-type 9(x ) 9(x ) 2 
Abramson 9(z) 1/2 g(z) 1/2 2k A 4 

1 z TKDE ~-x fx g(v) dv 9(x) 2k 

TTKDE ~ q (z-x)J~(j)~x~ g(x) 2k A (2[q/2] + 2) j = 0  ( j + l ) l  v \ ~' 

STKDE lg(x) + ~g((x + z)/2) + 19(z ) g(x) 2k A 4 
1 z 

JTKDE e(x)(i- x5 fx g( v ) dv 1 2k 
JLN 1 g(x)/g(z) 2k 

The main result of this paper (Theorem 5.1) is an asymptotic expansion 

(1.4) )~(x; hk) = f ( x )  + bk(x; hk) + Wk(x; hk) + remainders, 

where bk is the main bias term for the kth step and 

(1.5) 
1 

Wk(x; hk) = -- >_~ (Lk(X,~; hk) -- ELk(x,X; hk)) 
H i = 1  

the main stochastic term, and the remainders are asymptotically negligible. 
Even though bk and Lk have been derived in various special cases (see the 

references in Sect. 5), we give a general formula for computing these quanti- 
ties. Previous results in the literature also require (Pk, Qk) to be the same for 
all k, whereas we allow them to vary with k. The remainder term estimates 
are derived in LP-norm uniformly over compact intervals. For the TKDE and 
JTKDE functionals for instance, this generalizes pointwise results obtained in 
H6ssjer and Ruppert (1993, 1995). 

We will refer to Lk as the effective kernel of  J~k, since the stochastic part 

of  f k  is essentially the same as for a kernel estimator with kernel Lk. Notice 
however that Lk may depend on f ,  so the corresponding kernel estimator may 
be ideal. Assuming that the bandwidths ha . . . .  , ht used in the different steps are 
of the same order h = h(n) and that f is sufficiently smooth, one consequence 
of Theorem 5.1 is that bk = O(hs(k)), where the numbers s(1) , . . . , s ( t )  will 
be defined in Sect. 2 (see also Table 1 for examples) in terms of the ideal 
estimators corresponding to f2  . . . .  ,J~r (The ideal estimator f~d is defined by 

replacing J~k-1 by f in the definitions of  ~k and/~k). This means that the bias 

and variance of fk  have the same order of  magnitude as for a KDE with a 
kernel of  order s(k). In particular the choice h(n) = O(n -1/(2s(t)+l)) implies 
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that the bias and stochastic parts have comparable size at the last iteration. As 
a consequence, j2 t - f = Op(n-S(t)/(Zs(t)+l)). 

The local variation of f around x is crucial for determining bk(x; h~) (as 
it is for ordinary kernel estimates). On the other hand, f can be considered 
constant around x when we derive Lk(x,u;hk). This simplifies the form of 
Lk a lot. 

Within the framework of our theory, it is possible to prove that if  j~d has 

nonzero bias, then f t  is asymptotically equivalent to fitd, provided t is chosen 
large enough and that ht is of smaller order than hi . . . . .  ht-l. This is applicable 
for the Abramson, TTKDE and STKDE functionals. The resulting estimators 
have high rates of  convergence and simple asymptotic mean squared error 
(AMSE) formulas. For the Abramson functional, this answers affirmatively an 
open problem; whether or not it is possible to construct an adaptive estimator 
that is asymptotically equivalent to the ideal one. 

We hasten to add that all results in this paper are asymptotic in na- 
ture. Indeed, the work by Marron and Wand (1992) indicates that larger 
sample sizes are needed for higher order methods before the asymptotic 
expansions are valid. The finite sample behaviour of  many estimators con- 
sidered in this paper (as well as many others) are investigated by Jones and 
Signorini (1996). 

There is a technical problem with varying bandwidth estimators when elk 
depends on X/ and becomes small in the tails of  f .  As a result, many terms 
in (1.2) will contribute to fk(x), even when X/ is far away from x. This can 
be overcome by clipping or truncating ~k from below away from zero. In this 
paper, the truncation is taken care of  through Conditions (vii) and (viii) in 
Sect. 5. In fact, we also truncate /~k from below in the same way as ~k, to 

assure that J~k has a small bias. A more detailed analysis of  clipping is given 
by Terrell and Scott (1992), Hall et al. (1995) and McKay (1995). Notice that 
positivity of the estimators is guaranteed even without this truncation for all 
the functionals in Table 1, as long as K is non-negative. 

In Sect. 2 we will define the ideal estimators and bias exponents s(k). 
The recursive formulas for bk are defined in Sect. 3, and the ones for Lk in 
Sect. 4. Regularity conditions and the main result are given in Sect. 5. In Sect. 6 
we derive the form bk and Lk for the examples listed in Table 1. The 
case of different bandwidth orders and the asymptotic equivalence between f t  

and ~]d are discussed in Sect. 7. Finally, the proofs are gathered in the 
appendices. 

Throughout the paper C and e will denote positive numbers whose value 
may change from line to line. On the other hand, numbered constants like 
C 0 , C l , d l , e l , O  0 are considered fixed. We denote the Lp-nOrm (E IX l P) I / P  by 
[[XllLp, and the natural numbers as N = {0, 1,2 . . . .  }. Let g be a real-valued 

function defined on a subset of IRP, and j = ( jb . . . , j p , )  E N p', p~ <= p, is 
a multi-index. Partial derivatives of g are written as g(J)(y) := filJlg(y)/(3yJ), 

where Y = (yl . . . .  ,Yp) ,  ]j[ = j l  + �9 �9 �9 -+-jp, and yJ = y(1 �9 �9 yptJP'. For T C IRe 

we put NgIl  = sup,   lg(y)l- 
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2 Ideal estimator and bias order 

In this section we assume that the density f E C~(IR) is bounded away from 
zero in a neighbourhood of x. Given k E {2 . . . .  , t} and functionals Pk and Qk, 
the ideal estimator corresponding to fk  is 

îd 1 __~ ((X -- X~)~k(x,X~) ~ 
f~ (x;hk) = ~ _ fik(x, Xi)K hk ] ,  k = 2 . . . . .  t ,  (2.1) 

with 

(2.2) 

Standard arguments give 1 

(2.3) 

with 

(2.4) 

ak(X,Z) = Pk(x,z; f )  

flk(X,Z) = Qk(x,z; f )  . 

^id id . i d  . f~ (x; hk) = f~k(X, hk) + W~ (x, h~) -~- Op((nhk) -1/2) 

id . ( ( x  - z ) ~ ( x , z )  
f~k(x, hk) = f flk(x,z)K ~ j f ( z )  dz , 

hid 
the non-stochastic (or biased) part of f~ , 

(~.~ ia . 1 n 
w~ (x, h~) = - F~ (L~d(x,X,; hk) -- ELikd(x,X; hk)) k - - ~ ) ,  

/'/ i=1 

the main stochastic term, and 

(2.6) Lid~ x flk(x,x) K ( ( x  -- U)~k(X,X) 
k ~ , U; h~) -- hk \ hk J 

the effective kernel. Using a result of Hall (1990),)rid has the formal Taylor bk 
series expansion 

CX3 

id . f;k(X, hk) = E 7kj(x)h~, 
j=O 

(2.7) 

with 

(2.8) 7kj(x) = ( -  1 )J #j(K) [ fik(x, z ) f ( z )  1 (o,j) 
- S V - .  L ~k(x,z)J+l ]z=x ' 

and t t j (K)= fuJK(u)du .  Assuming that K is an even function, symmetry 
implies 7kj(x) = 0 for j odd. Consistency as hk ---+ 0 requires 

(2.9) f ( x )  = 7k0(x) ~ ~k(x,x) = fik(x,x). 

1 Actually, this requires that the clipping problem described in Sect. 1 is taken care o f  
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We define the order o f  (Pk, Qk) as 

(2.1o) re(k) = max{ j  > 0; j even, 7 k j ( x ) -  0 for any f }  + 2 ,  

with m(k) = oc if 7kj(x) = 0 for all even and positive j and re(k) = 2 if the 
set in (2.10) is empty. Notice that re(k) does not depend on x or f ,  since 
we vary f over all C~ with f ( x )  > 0 in (2.10). I f  we choose 
another x we may translate the functions f correspondingly. 

^ i d  Even though re(k) was defined in terms of  the ideal estimator f~ , it has 

importance for the bias bk of  fk. We will prove in Theorem 5.1 (or, more 
specifically, in Lemma B.6) that bk = O(hSr where h is the common order 
of  h l , . . . , h t  and {s(k)} are defined through 

(2.11) s ( 1 ) = 2  and s ( k ) = m ( k ) A ( s ( k - 1 ) +  2), k = 2  . . . . .  t .  

Let us now give a few examples with (P2,Q2) = (Pt, Qt) = (P,Q),  and (P,Q)  
taken from Table 1. Let us write ek = o:, flk = fl, 7~j = 7j, r e (k )=  m. This 
implies s(k) = 2k /~ m. 

Example 2.1. NN-type estimator: ~(x,z) = fl(x,z) = f ( x ) ,  7j(x) = ( - 1 ) @ j ( K )  
f (J)(x) / j ! ,  m = 2, s(k)  =-- 2. 

Example 2.2. Abramson estimator: cffx, z) = fl(x,z) = f ( z )  1/2, 3)j(x) = ( - 1 )  j 

#j(K)[f(x)t-J/2](j) / j! ,  m = 4 and s(k) = 2k /~ 4. 

Example 2.3. TKDE estimator: cffx, z)  = (F(z)  - F(x ) ) / ( z  - x), fl(x,z) = f ( x ) ,  
id  . f~k(x, hk) = f ( x )  f K( (F(z )  - F ( x ) ) / h k ) ) f ( z ) d z / h k  = f ( x )  ~ 7j(x) = 0 Vj > 

0, m = oc. This implies s(k)  = 2k, as found by Ruppert and Cline (1994). 

Example 2.4. TTKDE estimator: ~(x, z)  = ~ qo(Z - x)J f ( J ) ( x ) / ( j  + 1 )!, fl(x, z)  
= f ( x ) ,  7j(x) = 0 for j = 1 , . . . , q  and 7q+ffx) = ( -1 )J~ j (K) f (q+l ) (x ) /  
( j [ f ( x )  q+l). Hence, m = 2[q/2] + 2 and s(k) = 2k/~ (2[q/2] + 2). Here [ .  ] 
denotes the integer part function and 7j(x) is calculated using the fact that 
7j, Tr, DE(X) = 0 for j > 0 and eTTKDE(X,Z) is defined as a Taylor series expan- 
sion (w.r.t. z) o f  ~zr~z(x,z). 

Example 2.5. STKDE estimator: a(x,z) ----- f ( x ) / 6  + 2 f ( ( x  + z)/2)/3 + f ( z ) / 6 ,  
fl(x,z) = f ( x ) ,  7j(x) = 0, j = 1,2,3 and 74(x) = -m(K) f (4 ) (x ) / (Z42 f (x )4 ) ,  
m = 4 and s ( k ) =  2k/x 4. Notice that 7 i , - . . ,  74 can easily be computed since 

roll x z'~(~ 1 for j = 1, 2, 3. [~(x,z)(~ = ,  ~ , JrT~ZJz=x 

Example 2.6. JTKDE estimator: e(x, z)  = (F(z)  - F ( x ) ) / ( f ( x ) ( z  - x)),  fi(x, z)  
= 1, 7 j ( x ) = 0  Vj > 0, m = o c  and s ( k ) = 2 k ,  as derived by H6ssjer and 
Ruppert (1993). 

Example 2.7. JLN estimator: e ( x , z ) =  1, f i ( x , z )=  f ( x ) / f ( z ) ,  7 j ( x )=  ( - 1 )  j 
#j(K)[dJf(x)/dzJ]~=~/j! = 0 Vj > 0, m = oc and s(k) = 2k. 

Notice also that we may change functionals (Pk, Qx). I f  for instance (P2, Q2) = 
Abramson functional and (P3 ,Q3)=-TKDE functional we obtain s ( 1 ) =  2, 
s(2) = 4 and s(3) = 6. 
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3 Reeursive formulas for bias 

We will now derive recursive formulas for the bias be. We first specify the 
asymptotic expansion (1.4) in more detail. Write 

(3.1) fk(x; he) = fbk(x; he) + We(x; he) + Re(x; he) ,  

with fbk the non-stochastic (b_iased) part of fk and Rk a stochastic remainder 
term. The non-stochastic part is expanded as 

(3.2) fbk(X; he) = f ( x )  + be(x; he) + re(x; he),  

with rk a non-stochastic remainder term. We will give recursive formulas for 
fbk and be. When k = 1, standard asymptotic theory for kernel density estimates 
yields 

(3.3) fbl(X; hi ) = f K ( v ) f ( x  + hlV) dv 

bl(x; hi) = �89 2 

Assume next that we know the form of be-1 for some fixed k E {2 . . . . .  t}. In 
order to compute be, we first need to find the non-stochastic parts of ~2e and 
/~k. These are defined as 

(3.4) 

O~bk (X ,  Z;  h k _ 1) = Pk (x, z; fb, e-1) := C~k(X, Z) + b~k (x, z; hk_ L) + r~(x, z; he-1) 

flbk(X,Z; he-1 ) = Qe(x,z; fb, e-1 ) := fik(x,z) + b~k(x,z; he-1 ) + rflk(x,z; he-! ) ,  

with b~k and b~k the main bias terms and r~k and r~k non-stochastic remainders. 
Since abk(x,z;hk-1)=Pk(x,z;fb, k - 1 ) ~ P k ( x , z ; f + b k - 1 ) ,  and bk-i is small 
for large n, we will find b~k through Taylor series expansion of the functional 
g--+ Pk(x,z; 9) around 9 = f .  Similarly, b/~k is derived by Taylor expanding 
9 --+ Qk(x,z; g). We say that g --, Pk(x,z; 9) has Gateaux derivative dPk(x,z; 9) 
at 9 ~ dg if for each t/C Jr 

(3.5) lim Pk(x,z; g + eq) - Pk(x ,z ;  9 )  = dPk(x , z ;  g)(t/),  
e---+0 8 

with t/---+ dPk(x,z; g)(t/) a linear functional. (We refer to Fernholz (1983) for 
a discussion on Gateaux derivatives and related concepts.) Similarly, dQk is 
defined as the derivative of Qk. Taking derivatives in (1.3), we obtain 

(3.6) 
qk 

dPk(x,z; g)(rl) = ~ dPkl(x,z; g)(rl)(z -- x) l 
l=0  

qk 
dQk(x,z; g)(tl) = ~ dOkl(x,z; g)(rt)(z -- x) 1 . 

/=0  
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Table 2 lists dPk and dQe for the functionals from Table 1. Taylor expansion 
of  Pe and Qe now gives 

(3.7) b~t~(x,z; hk-1 ) = dPk(x,z; f ) (bk-1  ) 

b#e(x,z; he - l )  = dQe(x,z; f )(be-1 ) ,  

with be = be(.  ;he). Next, fbe is computed recursively from C~be and fibe 
(cf. (2.4)), 2 

1 ( (x - - z )c~be(X , z ;hk_ l ) )  
(3.8) fbe(X;hk)=-f fkkf  f lbk(X'z;he-t)K hk f ( z ) d z ,  

and be recursively from b~e and bgk according to 

(3.9) b~(x; h k )  id . ad . = b e (x, hk) + bk (x, he ) ,  

Table 2. Examples of functional derivatives 

Estimator dP(x,z; g)(tl) dQ(x,z; g)(tl) 

KDE 0 0 
NN-type t/(x) t/(x) 
Abramson n(z) n(z) 2g(z)U 2 2g(z) 1/2 

TlmZ ~f~(~)d~, ~(x) 

TTKDE ~ q (~-x)~ j=o ~ t/O~(x) ~/(x) 

STKDE {,l(x) + ~r/((x + z)/2) + lr/(z) r/(x) 

JTKDE f ;  ~l(v) dv f ;  g(v) dv . . g(x)(z-x) ( ~ t l ( x )  0 

JLN 0 n(x) g(x)n(z) a(z) o(z) 2 

where bikd(x;hk):=Tks(k)(x)hk (k) comes from the ideal estimator (cf. (2.8)) 
a n d  b~. d is the adaptive correction term. It has the form (see Lemma B.6 for a 
derivation) 

(3.10) 

badrx" hk) = O, s(k)  = s(k - 1) k k ,  

badgx" hk) -- #2(K) [bBk(x,z; hk-1 ) f ( z ) ]  (0,2)h 2 3#2(K) 

k , ,  2 L ~ J==x 2 

[ b~k(x,z;hk_l ) f lk(X,Z)f(z)]  (0'2) 2 
x C~k(x,z) 4 ]z=x hk' s(k)  = s ( k -  1 ) + 2 .  

The ideal estimator corresponds to b~k = bt~k =-O, and hence fbk = f i~bk and 
b~d= 0. Notice that the adaptive bias term vanishes when s ( k ) =  s ( k -  1) 
and the ideal bias term vanishes when re(k) > s ( k -  1 ) +  2. Equations (3.4) 

2 The domain of integration in (3.8) is actually a subset of N to avoid tail effects (cf. 
Lemma B.6.) 
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and (3.8) together give fbk in terms of fb, k-1, and Eqs. (3.7), (3.9) and (3.10) 
bk in terms of bk-1. The recursive bias formulae will be exemplified in Sect. 6. 

4 Recursive formula for the effective kernels 

When computing the effective kernels L1 . . . . .  Lt, we ignore the local variation 
of f ,  ek( ", �9 ) and ilk( ", �9 ) around x and (x ,x)  respectively. Asymptotically, 
this variation is only of secondary importance, so simpler kernels can be ob- 
tained by neglecting it. The cost of this simplification is larger remainder terms 
(intuitively, we have no theoretical result comparing the remainder terms) and 
some extra technicalities to define them. Let x' and u be numbers close to 
x. Given x and hk, define ( x ' , u ) -+Lk(x t ,  u,x;hk)  as the effective kernel we 
obtain at x' if  f ( .  ) is replaced by f~(.  ) = f ( x ) ,  ~ j ( . ,  �9 ) by ej(x ,x)  and 
f ly( . ,  �9 ) by f l j(x,x) for all j < k. The extra x-argument of/~k indicates that 
this replacement depends on x. In analogy with (1.5), put also 

n 

(4.1) Wk(x ' ,x;hk)  = 1 Y~, (s  -- E[,k(x ' ,X,x;hk))  
iv/ i = 1  

After having computed/Tk, we put 

(4.2) Lk(x, u; hk) = Lk(x, u,x; hk). 

For k = 1, the local variation of f makes no difference, so we have 

(4.3) [,l(x' ,u,x; hl ) = Ll(x ' ,u;  h~ ) = 1 X  ( x '  - u'~ 
hi \ hi J" 

Suppose now that Lk-1 has been computed for some k E {2 . . . .  , t}.  In order 

to find/;k, we need asymptotic expansions of 02k and ilk: 

(4.4) ~k(x,z;hk_l)  = %k(x ,z ;hk-1)  + 17V~k(x,z,x;hk_l) + R~k(x,z;hk_l)  , 

flk(X,Z; hk-1) = flbk(X,Z; hk-1) § 17r hk-1) § R#k(x,z; hk-1),  

with lg'~k and l~k main stochastic terms, R~k and R~k stochastic remainders and 
ebk and fibk the non-stochastic parts, defined in (3.4). Here l ~ k ( - , .  ,x;hk-1) 
and ~ k (  ", -,x; hk-1) are computed by ignoring the local variation o f f ,  ej and 
flj ( j  __< k) around x. According to (3.1) we have ~k(x, z; Ilk-i) ~ Pk(x,z; fb, k-1 
+ Wk-l( �9 ;hk-1 )) ~ Pk(x,z; fb.k-l  + l/Vk- 1( . ,x; hk-1 )), The last approximation 
follows, as we only consider Wk-1 restricted to a small neighbourhood of x. 
Since l~k-1 is small and fb, k-1 close to fx for x' around x and large n, we 
define 

(4.5) 

Define then 

(4.6) 

~k(Xt,Z,X; hk-1 ) = dPk(x' ,z;  f x ) ( ~ - l (  . ,x ,  hk-a ) ) ,  

~7~k(x',z,x; hk-1 ) = dQk(x' ,z;  fx)(I~k-i(.  ,x, hk-1 ) ) ,  

L~k(x',z, u,x; hk-1 ) = dPk(x' ,z;  f x )( s  l ( " , u,x; hk-1 ) ) ,  

s z, u, x; hk- 1 ) = dQk(X', z; f x ) (Lk- I  ( ' ,  u, x; hk-1 ) ) .  
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By the iinearity of dPk and dQk,  it follows from (4.1),(4.5) and (4.6) that 

(4.7) iTf~k(x, ,z ,x;hk_l) = _1 ~ ( s  -- EL~k(x- ' , z , X , x ;  hk-1 )) , 
r/ i=1 

]7~flk(Xt,Z,X; h k _ l  ) = 1 ~ .  (j~fik(Xt,Z, Y i , x ;  h k _ l  ) __ Es h k - 1  ) ) ,  
n i = l  

Here s and s can be interpreted as the effective kernels corresponding 

to ~k and/~k- Observe that the expansions for I~z~k and l/V~k in (4.7) are analo- 
gous to the expansion (4.1) for Wk. 

Table 3 displays functional derivatives when the local variation of g around 
x is ignored (g~_ =_ g(x)) .  We will show (Lemma B.5) that s can be computed 
from s and L~k according to 

(4.8) s  u , x ; h k )  - ~ K , hk i] 

f ( x )  r ~ , , " -  )K  ( ( x '  - Z)ak(X,X)~ 
+ h---Z j c ~ k t x  , z , u , x ,  nk_l  hk j d z  

f ( x )  e ~ , , " h k _ l ) X  ( ( x '  - -Z)ek(X,X) '~  + 

-id l __2 -ad,v t U X : = L k ( x , u , x ; h ~ ) + ) _ 2 L k  ( x ,  , ;hk),  
v=l 

for k = 2, . . . ,  t and/( (v)  = vKt(v) .  Equations (4.6) and (4.8) together give s 
in terms of s This recursive scheme will be exemplified in Sect. 6. We 
see that s can be decomposed into an ideal and adaptive part, the first term 
in (4.8) representing the ideal part, and the last two the adaptive part. Notice 
that the ideal part here agrees with Lik d in Sect. 2 (when x~= x) because of 
(2.9). The adaptive part is derived from U-statistics theory. The reason is that 
when (4.4) and (4.7) are inserted into (1.2), we obtain double sums after 
linearization. 

Table 3. Examples of functional derivatives, local variation of g ignored 

Estimator dP(x t, z; gx )(tl) d Q( f f  , z; 9x )(tl) 

KDE 0 0 
NN-type q(x' ) tl(X' ) 

Abramson '(~) ~(z) 29(x)1/2 29(x)1/2 
TKDE z l-x , fs tl(V ) dv tl(X') 

V" q (z-x~)J TTKDE z. j=0 (j+l)! tl(J)(x') tl(x') 

STKDE ~:q(xt) + 2~/((x' + z)/2)+ -~r/(z) r/(x') 

JTKDE f~  n(v) dv ~l(xr) 0 g(x)(z-x') g(x) 

JLN 0 ~7(x' ) _ ~(z ) g(x) g(x) 
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5 Regularity conditions and main results 

Before giving the main result (Theorem 5.1), we state a number o f  regularity 
conditions. 

(i) The bandwidths hi = hl (n) , . . . ,h t  = ht(n) are all o f  the same order as 
n ---, ec, i.e. for some 0 < C0 _-< 1 and sequence h = h(n), Co < hk/h < Co 1 
for all n and k = 1, . . . ,  t. 

(ii) There exists a t0 > 0 such that hn ~o --+ 0 and hn l-~o ~ oo as n ~ oc. 
(iii) The bias exponents defined in (2.11) satisfy s(1) __< s(2)__<..-__< s(t). 
(iv) Let ft = [~o1,e92] be a closed interval and put f t 6 =  [ e ) l -  6,co2 + 6]. 

Then, for some 60 > 0, Ilf(J)[la~0 < oo for j = 0,1 . . . .  ,s(t)  + 1 + 2 t k=2 qk 
and infxEa~ 0 f ( x )  = _f > O. 

(v) The kernel K is non-negative, symmetric and supported on [-CbCa] 
for some 0 < C1 < oo. In addition, /t0(K) = 1 and K has (3 A2  + t 2 k=2 qk) 
bounded derivatives. 

(vi) p(ki'J)(x,z; g) and Q(ki'J)(x,z;g) depend only on g . . . .  ,g(i+j) restricted to 
[x,z], 2 <= k < t. In particular, Pko(x,x;9) = Uk(9(x)) for some Uk " IR ---+ IR. 
The function Uk is strictly positive and non-decreasing on the positive real line. 
This implies min2_<k<t in fxc~  0 C~k(X,X) >= min2<k<t Uk(_f) :=  c~ > 0. 

(vii) ~k(X,Z; hk-1) = Pk(x , z ; fk_  1) and fik(X,Z; hk-1) = Qk(x , z ; fk_ l )  
where J~- i  = 4 ~  The function 4 :  [0, o o ) ~  [0, o o) is non-decreasing, 
4 ( 0 ) : = 4 0  > 0 and 4 @ ) = v  for v => 41, with 40 < 41 < f .  Finally, 4 has 
2 t  k=2 qk bounded derivatives. 

(viii) fk (x;  hk) = ~ ~=~]~k(X,X/; hk-1 )K((x - Xi)Sk(x, Xi; hk-i  )/hk)/(nhk), 
where 5k = Z o cik and /~k = Z o/~k. The function )/ " [0, oc) ~ [0, co) is non- 
decreasing, Z ( 0 ) : =  Z0 > 0 and Z(V)= v for v => ZI, with ;go < )/i < c~. Fi- 
nally, Z has 2 ~=2 qk bounded derivatives. 
(ix) P k ( x , x ; 9 )  = Qk(X,X; g), and hence dPk(x,x; g)(rl) = dQk(x,x; g)(rl) as 

soon as the derivative exists. 
(x) Suppose g : IR • (3--+ 1R for some (3 c IRP, and put hkl(x,z;O) 

=Pkl (x , z ;g ( . ;O) ) .  Let ~ c I R  2 and P ( E )  c I R  be defined by P ( ~ )  
= [..J(x,~)~z[x,z]. Then, if  g is bounded from below away from zero on 
P(~ )  • (9, 

(5.1) I #'J'a~ll~• -- < c 2 1-I Ila (~'~ I[~(-~• 

for some finite constant C, where the sum ranges over all finite sequences {v~}, 
of  vectors v, = (v~l,v~2) c IN p+I with 2 ~v,1 = l + i + j  and 2 ~v~2 = d; and 
at most one v~ = 0. The constant C may depend on the lower bound of  g as 
well as the functional Pkl. Formula (5.1) is also true if  Pkz is replaced by Qkl 
in the definition of  hkz. 

According to (i), all bandwidths have to be o f  the same order. This condition 
is somewhat restrictive, but it will be relaxed in Sect. 7. 

We require K to have compact support in (v). This could be weakened 
to exponentially decaying tails (e.g. Gaussian or logistic K),  by approximating 
such a kernel with a smoothly truncated kernel having compact support. 
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Condition (vi) can be verified for each of the functionals in Table 1. 
For instance, the Abramson functional has Uk(y)= yl/2 and P(ki'J)(x,z;g)= 
Q(ki'J)(x,z;g) = dJgl/2(z)/dz j, which only depends on 9(z) .... ,g(J)(z). 

The definitions of ~k and fik in (vii), and offk  in (viii), differ from the ones 
given in Sect. 1, since ~_1 is truncated from below by ~(- ) and ~k and /~k 
from below by X(" ). The first truncation is done to avoid derivatives of terms 
like P(k')J)(X,Z;fk_l) becoming too large. The truncation of ~k guarantees that 

only Xi close to x contribute to fk(x;hk). (Actually, for the Abramson, TKDE 
and NN-functionals in Table 1, a truncation of fk_  1 from below automatically 

gives a truncation of ~k and/~k from below.) 
Notice that (ix) implies (2.9), and also 

(5.2) ~bk(X,X; h~_~ ) = [3b~(x,x; hk-~ ) . 

Whereas (2.9) is necessary for consistency offk,  (5.2) is a higher order ana- 
logue which guarantees that b~ d in (3.10) is of smaller order than bk-1, b~k and 
b~k (this will be seen in Lemma B.6)~ 

Condition (x) can be viewed as a kind of product-rule of differentiation for 
Pk~ and Qkt. It gives smoothness conditions o n  p(~j,d) and Q()j,d), in particular 
how these fimctions depend on 9 (v~,v2), Vl < l + i + j ,  Iv21 < Idl, restricted to 
the set P(E) x O. If O is a single point, E = {(x,z)} and P(E) = [x,z], (x) 
states that P(k~d)(x,z; 9) and Q~d)(x,z; 9) only depend on 9 and its partial deriva- 
tives up to order t + i + j  restricted to the interval [x,z]. Some consequences 
of (x), important in the proofs, are given in Appendix D. 

Theorem 5.1 Assume (i)-(x). Then, for k = 1,. . . , t ,  

(5.3) fk(X;hk) = f ( x )  + bk(x;hk) + Wk(x; hk) +rk(x;hk) +R~(x;hk), 

with bb. . . ,bt  defined recursively in (3.3),(3.7),(3.9) and (3.10), Wk defined 
in (1.5) and L1 .. . . .  Lt defined recursively in (4.2),(4.6) and (4.8). Finally, r~ 
and Rk are remainder terms, defined in (3.2) and (3.1) respectively, with 

(5.4) sup Irk(x; hk)l = o(h~(k)), 
xE~2 

and 

sup lRk(x;hk) I = O((nh)-U2n -~) Vp > 0 (5.5) 
xEf~ LP 

for some ~ > O. 

Remark. 5.1. We may also allow stochastic b a n d w i d t h s  t~ 1 . . . . .  ]st. Typi- 
cally,/~k is then an estimator of hk, with hk chosen optimally according to some 
risk criterion. In such cases, hk depends on f and has to be estimated. It is 
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possible to extend Theorem 5.1 to this case, using techniques of  Hall and 
Marron (1988). Since this would include extra technicalities we have not in- 
cluded these calculations in the paper. 

Remark. 5.2. The requirement of  s(t) + 1 + ~ ~=2 qk derivatives in (iv) can be 
lowered to s(t) + ~ + ~ t k=2 qk derivatives for any e > 0, provided we sharpen 
(x) to hold also for derivatives of  non-integral order. In the proof of  Theo- 
rem 5.1 in the appendix, we just change Jk + 1 in (B. 11 ) and (B. 15) to ark + e 
and J0 - qk + 1 in (B.8) to J0 - qk + ~. 

6 Examples of bias and effective kernels 

Assume P2 . . . . .  Pt = P and Q2 . . . . .  Qt = Q throughout this section, 
with P and Q taken from Table 1. We also write ek=c~, /?k=fi ,  7kj= 
Vj, re(k)= m, qk = q  for k E {2 . . . . .  t}, and we put Kh(v)=K(v/h)/h.  To 
simplify notation, we will omit hk as argument and also x for the effective 
kernels, so bk(x ;hk)=  bk(x), s and so on. All 
the effective kernels we study have the form 

(6.1) s u,x; bk) = Kk(x' - u ) ,  

Lk(x, u; hk) = kk (x  - u) , 

where/s may depend on x, but this will not be made explicit in the notation. 
Notice that K1 = Khl. To simplify the exposition, we have provided/s for all 
estimators in Table 4. 

Tab le  4.  Effective kernel k2 after first iteration, with / s  = vK'(v) + K(v) and / s  = 
vK'(v) 

Estimator K2 

KDE Kh2 
NN-type Khz/ f (x ) 
Abramson Kh2/f(x)I/2 "4- Kfq * t(.hz/f(x)l/2/2 
TKDE Khl + Kh2/f(x ) -- Kh~ * Kh2/f(x ) 

TTKDE Kh2/f(~) -- E q--1 ,ul(K)(K(O)h~ h~/(l l f(x)lh~) 

STKDE Kh2/f(x ) + 5Khl/6 + 2Kh~ * l(h2/(2f(x))/3 A- Kh~ * I~hz/f(x)/6 
JTKDE Kht + Kh2 -- Khl * Kh2 

JLN Kht + Kh~ -- Khl * Kh2 

Example 6.1. NN-type: Example 2.1 and Eqs. (3.9) and (3.10) give bk(x)= 
1~2(K)f(Z)(x)h2/(2f(x) 2) for k _>_2. By (4.6), s 
= kk_~(x'  - u), so (4.8) implies Kk = Khk/f(x) for k > 2. 

Example 6.2. Abramson: b~k(X,z)= b~k(x,z)= bk_ffz)/(2f(z)l/2), so the 
adaptive bias term becomes b~d(x) = -#e(K)[bk_ffx)/f(x)](2)h2/2. Combining 
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this with Example 2.2 we obtain b2(x)= # 4 ( K ) [ 1 / f ( x ) ] ( 4 ) h 4 / 2 4 -  #2(K)2[f (2) 
(x)/f(x)](2)h2h2/4 and be(x )=  #4(K)[1/f(x)](4)h~/24 for k > 3. For the ef- 
fective kernels we have s  
SO (4.8) gives K~ = Kh,,/f(x)l/2 + l~hk/f(x)l/2 * I~k--1/2 , with /~(v) = vK'(v) + 
K(v), ~2h(v) =~2(v/h)/h, and * denotes convolution. In particular, /s 

= Kh2/f(x)~/2 + Kht * ~[~h2/f(x)U2/2 and/s = K~,~/f(x#2 + Kh2/f(,:)l/2 * Kh3/f(x)l/2/2 

+ Kh 1 * Kh2/f(x)l/2 * Kh3/f(x)l/2/4. 

Example 6.3. TKDE: b~k(x,z) = f~ b ~ _ l ( V ) d v / ( z -  x), b~(x , z )  = bk_~(x). 
We have r e = o  o, so the leading bias term reduces to bk (x )=  
b~d(x) = -3#2(X)f(x)[b~k(x,z)f(z)/c~(x,z)4](~~ = -#2(K)[b2Z)l(x)/f(x)2 

- 3fO)(x)bO)_l(x)/f(x) 3 + (3 fO)(x )2 / f (x )  4 f(2)(x)/ f(x)3)bk_l(x)]h2J2 :=  

BTKDz(bk-l)(x)h~, with b ~ BTm)~(b) a differential operator. Equation (4.6) 
-- I 2 gives L~k(x , z, u) = fs Kk-1 (v -- u) dv/(z - x') and [~k(x', z, u) = Kk-1 (x' - u), 

which implies, using (4.8) and integration by parts, Kk =Khk/f(x)+F2k-1 
-- Kk-1 * Khk/f(x). This yields for instance K2 = Kht + Kh2/f(x) -- Khl * Kh2/f(:~). 
The formulas for bk and s were derived by H6ssjer and Ruppert (1995). 

q b (0 ~ "~ x ) l / ( l +  1)! andb~k(x,z) Example 6.4. TTKDE: b~k(x,z) = ~ l=0 k-l~x)t  z - = 
bk_~(x). Since fl and b~k are the same as for the TKDE-functional, and c~ and 
b~k are Taylor expansions of  the con'esponding TKDE-quantities, if  follows 
that b~d(x) is the same as for TKDE when q > 2. Combining this with yj 
in Example 2.4, we obtain, when q = 3, b2(x) = #4(K)f(4)(x)h4/(24f(x)  4) + 
bZ, TKI)E(X) and bk(x) = 1~4(K)f(4)(x)h~/(24f(x) 4) for k > 3. When q = 5 we 
have b2(x) = b2,Ti~E(x), b3(x) = ]A6(K) f (6 ) (x )h63 / (720 f (x )6 )  + b3,TKDE(X) and 
bk(x) : #6(K)f(6)(x)h6/(720f(x)  6) for k _> 4. The effective kernels take the 

q k(l)  form s = ~ l=0 k _ l ( x ' -  u ) ( z - x ' ) l / ( l +  1)! and s 
-(l) t ! = Rk_l(x '  -- u), which implies /~k = Khk/f(x) -- ~ q=l IJ l (K)Kk- lhk / ( l ' f (x )  )" 

For instance, K2 = Kh2/f(x) - ~ q=l #l(K)(K(~))h,hl2/(l!f(x)lh~)" Values of  b2 
and/s  were given by H6ssjer and Ruppert (1994). 

Example 6.5. STKDE: Notice that the first three partial derivatives of  7,fi, 
b~k and bat w.r.t, z are the same as for the TKDE-functional. In combination 
with Example 2.5 this gives bk = -l~4(K)f(4)(x)h4/(242 f ( x )  4) + BTKDE(bk-1) 
(x)h~. For the effective kernels we obtain [ ~ k ( x ' , z , u ) = / s  
2/~k- l ( (x '  + z)/2 - u)/3 + Kk_l(Z -- u)/6 and L~k(x',z, u) = / ~ k - l ( X '  -- u). In- 

sertion into (4.8) implies /~k = Kh~/f~) + 5/s + 2/s * I~hk/(2f(x))/3 

+ K k  1 * ff2h/r 

Example 6.6. JTKDE: bc~k(x,z) = f~ bk- i (v )dv / ( ( z  - x ) f ( x ) )  - cffx, z)bk_l(X)/ 
f ( x )  2, b~k(x,z) = 0. Since m = oo, b~(x) = b~d(x) = -3#2(K)[b~k(X,z) f (z) /  

4 ( 0 , 2 ) h 2  ~(x,z) ]~=~ J 2  = f(x)2BTKDrs(b~_~)(x) := BjTK.oE(bk-~)(X). For the stochas- 
tic part, [ ~ ( x ' , z ) = f ~ , ~ 2 k  ~ ( v - u ) d v / ( ( z - x ' ) f ( x ) ) - K k  ~ ( x ' - u ) / f ( x )  
and [~k(x",z) = 0. This implies /s = Kh~ + I72~_~ --K~ k * K~_~. In particular, 

1~2 = Kh I + Kh 2 - Khl * Kh2 and/s = Kh t +Kh2 + Kh 3 -- Khl * Kh2 -- Khl * Kh 3 
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--Kh2 * Kh3 + K  hi * Kh2 * Kh3. These formulas for bk and /s were obtained 
by H6ssjer and Ruppert (1993). 

Example 6.7. JLN: b~k(x,z) = O, b~k(x,z) = bk_l(x) / f (z)  - - f (x)bk_l(Z)/  
f ( z )  2. Since m = oc, bk(x) = b~d(x) = -#2(K)f(x)[bk-l(x)/f(x)](2)h~/2 := 
BjLN(bk-1)(x)h 2, for instance bz(x) = -#2(K)Zf(x)[f(Z)(x)/f(x)](2)h2h~/4. 
The effective kernels satisfy L~#(x',z,u) = 0 and L~k(x',z, u) = (kk_l(x '  - u )  
- I s  - u)) / f (x) ,  which implies Kk = Khk + / s  --Khk */~k-a ,  the same 
formula as for the JTKDE, so K2 and/s  have the same form as in Example 
6.6. The formulas for b2 and K2 when hi = h2 were derived by Jones et al. 
(1995). 

Remark. 6.1. I f  m < oc, then s(k) = 2k A m, as noted in Sect. 2. Hence, the 
bias order agrees with the one for the ideal estimator (i.e. s ( k )=  m) when 
k > m/2. In addition, bk is exactly the same as for the ideal estimator when 
k >= m/2 + 1. 

Remark. 6.2. It follows by induction w.r.t, k that supp(Lk(x, �9 ;hk))  is Cl(hl + 
~=2 hj/ej(x,x)), with C1 defined in (v). This indicates the varying bandwidth 

strncture o f f k .  

Remark. 6.3. I f  m = oo, it follows that b~ d = 0 in (3.9). Combining (3.7) 
and (3.10) then gives bk(. ) =  Bk(bk-1)(" )h 2, where the differential operator 
b -+ Bk(b) is defined by 

,k(b)(x)  -- #2(K) [dOk(X,Z; f ) ( b ) f ( z )  1 (0,2) 

2 I Pk(x,z; f ) 3  J z=x 

3#2(K) [dP~(x,z; f)(b)Qk(x,z; f ) f ( z )  1 (o,2~ 
2 [ Pk(x,z; f ) 4  J z=x 

Notice that Bk only depends on f and (Pk, Qk). In Examples 6.4,6.6 and 6.7 
it reduces to BTVd~E,BJTrd)~ and BJLN, respectively. 

7 Dif ferent  b a n d w i d t h  orders 

So far, we have assumed that all bandwidths are of  the same order in (i). We 
now change this condition to 

(ia) The bandwidths h i , . . . , h t - 1  are all of  the same order as n -+ ec, i.e. for 
some 0 < Co =< 1 and sequence h = h ( n ) ,  Co < hk/h < Co 1 for all n and 
k = 1 , . . . , t -  1. 
(ib) For some ~2 > 0, ht/h = O ( f / - e 2 ) .  

(ic) The bias exponent in Step t - 1 satisfies s(t - 1) = re(t). 
(id) m(t) > 4 and ht >> h m(t)/(m(t)-2). 

Condition (ib) states that ht is of  a smaller order than hi . . . . .  ht-1, but not too 
much smaller, according to (id). Notice that (ic) implies 

m(t) 
t--> + 1 ,  

--  2 



174 O. H6ssjer 

since s(1) = 2 and s(k)  <__ s(k - 1) + 2. Another consequence of  (ic) is s(t)  = 
s ( t -  1), which implies 

bt(x; ht) - bid(x" ht ) - -  t \ ' 

because of  (3.10). Define also 

(7.1) 
/z 

m ? d ( x ,  h t )  : 1 ~ (L~d(x, yi ;  ht) - E L t d ( x , Y ;  h t ) )  
n i = l  

2 rad,v . . . .  (cf. (4.8)). We then have the follow- where Ladrxt ~ ,u;ht)  = ~ v=lrt I.x,u,x, nt) 
ing variant of  Theorem 5.1. 

Theorem 7.1 Assume ( i a ) - ( id )  and ( i i ) - (x) .  Then 

ft(x; ht) = f ( x )  + bld(x; ht) + W~a(x; ht) + r,(x; h,) + L(x;  hi), 

with b ia W id and rt defined in (3.9),(2.5) and (3.2), respectively, and Rt t ~ t 
Rt + W~ d. Moreover, 

(7.2) sup Irt(x; ht)[ = o(hm(O), 
xEf~ 

and for  some ~ > 0 

(7.3) sup I/~t(x; ht)l LP = O((nht)- l /2n -~) Vp > O. 

Example 7.1. Abramson estimator. Put t = 3, (P3, Q3) = Abramson functional 
and (P2, Q2) any functional with m(2) > 4. Then (ib) and (id) reduce to h 2 << 
h3 << h (where the last relation is sharpened by the factor n -~2). We have 
b~d(x; h 3 ) = #4(K)[1/f(x)](4)h4/24 and L~d(x, u; h3) = K h 3 / f ( x ) l / 2 ( x  - -  U). 

Example 7.2. TTKDE with q > 2. The same assumptions as in Example 
7.1, but with (P3, Q3) = TTKDE functional. Then bi3a(x; h3) = #4(K)f(4)(x)h4/  
( 2 4 f ( x )  4) and L~d(x, u; h3) = Kh3/f(x)(x -- u). 

Example 7.3. STKDE. The same assumptions as in Example 7.1, but with 
(P3, Q3) = STKDE functional. Then b~d(x; h3) = - # 4 ( K ) f ( 4 ) ( x ) h 4 / ( 2 4 2 f ( x )  4) 
and L~d(x, U; h3 ) = K h 3 / f ( x ) ( X  - -  u ) .  

Examples 7.2 and 7.3 represent varying bandwidth estimators with simple 
asymptotic mean squared error (AMSE).  This makes it possible to develop 
automatic bandwidth selectors for these estimators based on so called plug-in 
rules. 

Remark. 7.1. The result of  Theorem 7.1 is surprising: It is always possible to 
construct an adaptive estimator that is asymptotically equivalent to the ideal 
one if rn(t) < oo. The basic trick is t o  let the bandwidth hi . . . . .  ht-1 be of  
larger order than ht, and compensate this by choosing a larger t. This means 
that we should avoid irregularities (large variances) for the preliminary estima- 
tors f l  . . . . .  f t -1 ,  since these irregularities will otherwise be transferred to later 
iterations. Even though this causes a larger bias in each step, we can iterate 
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more times instead. We conjecture that (ia) can be weakened, for instance 
so that hi >> h2 >> .- '  >> ht-l ,  and still have asymptotic equivalence with the 
ideal estimators. In this way we allow more irregularities/smaller bandwidth for 
each iteration. We imposed (ia) in order to utilize the proof of Theorem 5.1 as 
much as possible in Theorem 7.1 (since everything is the same until the last 
iteration). 

Remark. 7.2. We may also assume h l , . . . , h t - i  <<hr. Formulas (3.9) 
and (3.10) then imply bt ~ b id and this can be achieved already for t = 

t 

re(t)~2. We conjecture Wt(x;ht) = Op((nmin(hb. . .  ,ht)) -V2) in general, which 
is of  a larger order of  magnitude than wtld(x;ht)= Op((nht)-l/2). This is 
the case for the TKDE, TTKDE (q > I), JTKDE and the JLN estimator. 
However, for the Abramson estimator we may actually sharpen this to Wt = 
Op((nht)-t/2), even though hi . . . .  , h t - I  <<hr. The reason is that Kht,Kht/f(x)t/2 

, . . . ,  Kht _l/f(x)l/2,Is I?2ht _l/f(x)l/2 only appear in convolutions with ei- 
ther Kht or Kht/f(x)i/2. This explains why Hall and Matron (1988) could choose 
hi of smaller order than h2 for the Abramson estimator, and obtain an estima- 
tor f2 with the same leading bias, and a variance of the same order as for the 
ideal estimator fi2 d. Hall and Marron prove that Var(f2)N C Var(f~ d) for some 
constant C > 1, so this adaptive estimator has efficiency strictly less than one 
compared to the ideal estimator. 

8 Outlook 

By putting p = 2 in (5.5), we may easily compute the leading terms of both 
E(fk(x  ) -- f ( x ) )  2 (AMSE) and f~ E( fk(x  ) -- f (x))2  dx (AIMSE). 

The representation in Theorems 5.1 and 7.1 can also be derived for weakly 
dependent data (under the appropriate regularity conditions). Technically, we 
just have to replace Rosentahl's inequality for martingale differences in the 
proof with the corresponding inequality for mixingales. 

The varying location estimator of Samiuddin and E1-Sayyad (1990) and 
the varying location and scale estimator of  Jones et al. (1994) are not included 
in the class (1.2). An interesting research topic would be to derive recursive 
formulas for s(k), bk and Lk for a larger class of estimators including these two 
examples. Indeed, McKay (1993) has obtained a bias formula (generalizing the 
one in Hall (1990)) for such a class of estimators. 

Appendix A 

Properties o f  T K D E  and N N  estimators 

The TKDE is usually calculated in several steps. Let us illustrate this for 
X ^ 

t = 2. Define/~ 1 (x; h 1 ) = ~ 2  oo f 1 ( u; h 1 ) du as the c.d.f, computed from the pilot 
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estimate. Transform the data into Yi = b31(Xi; hi)  and compute 

f r ( y ;  h2) = N,=K 
as an estimate of  the transformed density. Since Pl is a monotone function, 

we may transform back f r  to obtain 

f2(x; h2) = ~ ' (x ;  hl )fy(ffl(X; hl ), h2) 

as an estimate o f  f(x). I f  the last two displays are combined we have 

f2(x;h2)- fl(X;hl) s K (P~(x;h')~haP'(X~;h') ) 
nh2 i= 1 

which coincides with (1.1), if  we take/>2 and Q2 as the TKDE-funcfionals in 
Table 1. 

The NN-esfimator is defined as 

l 
f N(X) - 2ndl(x) ' 

where d~(x) is the distance from x to the lth nearest o f  X1 . . . . .  Xn. Here l = l(n) 
is a sequence of  numbers. I f  now K is the uniform kernel supported on [ -  1, 1 ] 
and h2 = 1/(2n) we have 

1" .~  ( x - ~ . )  _ fN(x) ~.~ (fu(X)(_x--Xi)) 
(A.1) 

Thus fN(x) can be formulated as a varying bandwidth estimator with itself as 

pilot estimate. I f  we choose f l  as a pilot instead o f  fN in the RHS of  (A.1), 

we obtain a special case o f  (1.1), with P2(x,z;fl ) = Q2(x,z;fl ) = f l (x ) .  

Appendix B 

Proof of Theorem 5.1 

Theorem 5.1 will be proved by induction w.r.t, k, k = 1 . . . . .  t. Before proving 
the theorem in a series o f  lemmas, let us introduce some notation. Put C2 = 
Cff(CoZo), with C1 and Z0 as defined in (v) and (viii). Then Ix-Xi[ > C2h 
implies 

Ix-X~lz(~k(x, Xi;h~-l)) > Ghz0 
hk = C o~h -- C1 , 

and hence 

(B.1) 
\ J hk 
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Choose numbers 0 < 6~ < -.- < gl < 60, The behaviour of  fk will be studied 
on f~e~. We will assume that n is so large (h so small) that 

(B.2) 6~ + Czh < g~-~, k = 1 , . . . , t .  

By (B.1), this means that for x ~ f ~  and Xi ~ f~z~-~, the corresponding term 
in (viii) does not contribute to f~(x;h~). 

Put 

(B.3) d ~ = ( k - 1 ) C z + C 1 C o  ~, k =  l . . . .  , t .  

Then 
(B.4) 

Lk(x ~, �9 ,x;hk)  is supported on [x' - t2~h,x ~ + C~h] for any x', x ~ f~k . 

and 

(B.5) L~k(x',z, . , x ;hk_ l )  and s " ,x ;hk-1)  are supported on 

[x' - Ckh,x' + Ckh] for any x, x' C f~k, [z - x' I < C~h . 

Notice that L l ( x ' , u , x ; h l ) = K ( ( x ' - u ) / h l ) / h l ,  which is zero for I x ' - u  I < 
Cihl < Clh, because of (i). The rest follows by induction w.r.t, k, mak- 
ing use of (4.6) and (4.8), noticing that c~ (x ;x )>  Z0 in (4.8) and fi- 
nally, observing that s u,x; hk-1 ) (and L~k(x~,z, u,x; hk-1 )) only depend 
on/~k- 1 ( ' ,  u, x; Ilk- 1 ) restricted to [x ~, z] (this follows from (vi)). In addition 
to (B.2), assume that n is so large that gL + Clh < g0. Then 

(B.6) g k + C k h  < g0, k =  1 , . . . , t .  

This implies that only those data with X~ E f~60 contribute to Wk(x; hk) in (1.5) 
for x E Qsk. 

Define the regions 

Ak = {(x,z); x ~ azk, I z -  xl _--< G h } ,  

A~ = {(x',u,x); x ' , x  c f~k, l u -  x'l <-_ dkh}  , 

5~k = {(x ' , z ,u ,x);  x ' , x ~  ~ ,  t z - -x ' l  <= C2h, l u - x ' l  <= ~ k h } ,  

lik = {(x,u); x C f?~, [u - x [  =< d~h},  

consisting of the relevant values of x,x~,z and u at each iteration. Introduce 
also 

(B.7) 
t 

Jk = s(t)  - s (k)  + ~ q~, 
l=k+l 

t 
Jk = s(t)  - s(~ - 1) + ~ q~, 

/=k+l 
l 

Yk = ~ ql .  
l=k+l 
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Theorem 5.1 will be proved by establishing the following 9 conditions recur- 
sively w.r.t, k: 

(B.8)  II  e'J)]IA  and tI  *'J>IIA  = o ( a ) ,  o i + j  < 3"o - qk + 1,  

IIA  and = - (B.9) l'(i'J) (i'J) [[bfik ]ltk O(hS(k -1 ) ) ,  0 5 i + j ~ J k ,  

IIr (  r (;J) = o(hS(k-a>), 0 < i + j  < f fk,  (B.10) J)IIA~ and /~k Ak = = 

7(i,o,o,d) 7(i,O,O,d) I = = (B.11) , ~  Ak and ~flk Ak =O(h-( l+i)) '  0 < i + d  < J k +  1, 

(B.12) IIR~IIAk rp and = 

0 _ < i < J k a n d  a n y p > 0 ,  

(B.13) IIb(i)ll~k ---- O(hS(k)), 0 <-- i <_ Jk , 

(B.14) r (i) = o(hS(k)), 0 < i < Jk k Ut~k ~ --  

s =O(h-(~+i)), 0 < i + d  < Jk + l ,  (B.15) II k' ' = = 

(B.16) IIR~;>II~ LP = O((nh)- l /2h-in-e) '  

0 - - < i - - < J k  and a n y p  > 0 .  

l~(i'J) b (i'j) r (i'j) and r~  j) We also require u~k , ~k , ~k to be continuous over Ak if i + j = ffk 

in (B.9) and (B.10). Likewise, b(k 4)  and r~ 4)  in (B.13) and (B.14) are required 

to be continuous over f2 ~k. 
Schematically, the proof  looks like that shown in Fig. 1. 

L e m m a  B.1 Equations (B.13)- (B.16)  hold for k = 1. 

Proof  Recall formulas (3.3) and (4.3) for bl and/~1. Moreover, (3.2) and (3.8) 
imply r l (x;hl)  = f K ( t ) ( f ( x  + thl) - f ( x )  - f(1)(x)thl - f(2)(x)t2h2/2)dt. 
Finally, Rt(x; hi ) = O, ,11 = s(t) - 2 + ~ tk= 2 qk and J1 = Z ~=2 qk- The lemma 
follows from (iv) and (v). [] 

L e m m a  B.2 Suppose fl: has the asymptotic representation (3.1), with bk, rk, 
[~k and Rk satisfying (B.13)- (B.16)  and 1 <- k < t - 1. Then ~(fk)  has the 
same expansion 

(B.17) ~(fk(x;he))  := jTk(x;hk) = fbk(x;hk) + Wk(x;hk) + R k ( x ; h k ) ,  

with Rk satisfying (B.16). 

Proof Put Rk(x;hk)= ~ ( f k ( x ; h k ) ) -  f~(x;hk). It suffices to prove that /~k 
satisfies (B. t 6), since /~k = Rk + Rk. Write J~k(x; hk) = fbk(x; hk) + Vk(x; hk), 
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with Vk = Wk + Rk the stochastic part. We will establish below that 

(B .18)  IIW~>[l~ ~p ~ C ( n h ) - l / 2 h - i n  ~ , 

for 0 < i _< Jk, any e > 0 and any p > 0 (and e is independent of p). By 
expanding derivatives of fk( "; hk), it follows from (ii), (B.13), (B.14), (B.16), 
(B.18) and the smoothness of  ~ (cf. (vii)) that 

-(i) LP IIRk I1~ <= C h - i  , 

for 0 < i < ark, provided e in (B.18) is chosen small enough compared to 
~0 in (ii). By (vii), ~(v) = v for v > ~1 and ~1 < f .  Put ~ = ( f -  ~1)/2. It 
follows from (ii), (iv), (B.13) and (B.14) that inf~a6~ fbk(X;hk) > f - -  ~ for 
n large enough. Hence, 

IVk(x;hk)l _--< ~ ~ ~(fk(X;hk)) = fk(x;hk) �9 

By choosing p large enough and using Markov's inequality, it follows from 
(ii), (B.16) and (B.18) with i = 0 that 

P(llV~ll~k > ~) < C~-P(nh) -p/2nep < C(~,7) n-7 

for any 7 > 0, provided p is first chosen large enough and e then small enough. 
Let A be the set {][vklla6k > ~}. Then, by Cauchy-Schwartz inequality, 

(B.19) IIR~i)ll~zk LP = [Ik~)ll~zk 1A Lp 

< IIR~ II~k L2~ 

<= Ch-in-~/(ZP) = O((nh)-l/2h-in-~ ) 

for 0 < i < Jk and any ~ > 0. The last line holds provided we choose 7 
large enough given p and e. It remains to establish (B.18), and it suffices 
to consider the case p > 2. The technique, based on Rosentahl's moment in- 
equality for sums of  martingale differences, is taken from Hall and Matron 
(1988). Rosentahl's inequality states: If Z1 . . . .  ,Zn are zero mean martingale 
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differences (which means E(ZjIZ1 . . . . .  Zj_~) = 0) and t5 > 2, then 

E :~z: < c(/5) ~(z~) + e l z : l :  , 

where C(/5) does not depend on n. By (4.2), (B.4) and (B.15), 

Lg(x, �9 ;Ilk) is supported on[x  - Ckh, x + C~h] for anyx  ~ f ~  , (B.20) 

and 

(B.21) [tL~i>ll ~k = O(h- ( l+0)  for 0 ~ i _< ark + 1.  

Recalling (1.5), we will use Zj=(L(i)(x, X j ; h k ) -  EL(i)(x,X;hk))/n in Rosen- 
tahl 's  inequality, with i < ,7k. By (B.20) and (B.2t) ,  

EIZj[P <= Ch-~d+i)+ln-~ 

holds uniformly for all x c ~ k .  Let now P be a equispaced finite grid in ~2 6k 
with [I~[ = O(n s) elements and put 4 = (nh)-l/2h-in~p, where ~ is the same 
number as in (B.18) and p > 0. Then 

xEF xEP 

_-< c l r l{ (h-2( l+ i )+ln-1) : /2  Jr- h -:( l+i)+ln-:+l}4-: 

= < ClPln-~:p-:  

Given 5, choose first s and then /5 > s/e. Since i =< ark, (B.21) implies that 
L(k i) (and hence also W (i))~ is Lipschitz continuous w.r . t .x .  I f  s is chosen large 
enough we therefore have 

W (i) (nh)-l/2h-in~p) <= Cp -p P(fl k II~k > 

which implies (B.20) for any p < /5. [] 

L e m m a  B.3 Suppose 2 <_ k <_ t, that f k-~ has the asymptotic expansion 
(B.17), and that (B.13)- (B.16)  hold (for k - 1, with Rk-1 in place of  Rk-1 

^ 

in (B.16)). Then ~k and ilk, defined in (viii), have the asymptotic expansions 
(3.4), (4.4), with (B.8) - (B.12)  being satisfied 

Proof We concentrate on ~k, since the treatment o f / ~  is completely analogous. 
We start by proving (B.8). Write ~k(x,z) = ~ qk=o~kl(X,Z)(Z --x)  l, with 

"(i'j)lll = O(1), for 0 < ~kz(x,z) = Pkl(x,z; f ) .  Clearly, it suffices to prove ~kl IIAk = 
i + j  < J 0 -  q~ + 1. But this follows fi'om (D.1), with g = f and E = Ak. 
Notice that P ( E )  c f~6~_~ because of  (B.2), and l + i + j  < J0 + 1. Hence, 
because o f ( i v ) ,  [Ig(g]le(z) O(1) for 0 <_ v <_ l + i + j. 

In order to prove (B.9), write b~(x,z; hk-1) = Z qlk=ob~kl(x,z; hk-1)(z -- 
x) l, with b~l(x,z;hk_~)= dPkz(x,z; f)(b~_~). Apply (D.2) with go = f ,  1 /=  
bk-~(',hg-~), E = A~ and P ( E )  C f~6~-~. Notice that {IgOr)lie(z) = O(1) and 



Varying bandwidth estimators 181 

[]l/(v)lle(z) = O(h ~(k-t)) for 0 < v < 1 + i + j ,  because of (iv) and (B.13), 

since l + i + j < .7 + qk = Jk-1 .  
To establish (B. 11), write 

�9 q k  

(B.22) L~k(x',z, U,X; hk-1 ) = ~ [~kl(X',Z, U,X; h k - I  )(z -- Xt) l , 
I=0 

with [~kl (x~ ,z ,u ,x ;hk_a)=dPkl (X ' , z ; fx ) (s  It suffices to 
prove 
(B.23) ~-(i,0,0,d) _ ~ k t  hk = O(h-O+l+O)' 0 <= i § d <= Jk + l . 

Then (B.11) will follow by applying the product-rule of differentiation on 
each term of (B.22), using the fact that I z - x  ~] < C2h for any element 

of Ak. To prove (B.23), apply (D.5), with 01 = x ,  9 ( ' , x ) =  fx("  ), 02 = 
(u,x), t l ( ' , ( u , x ) ) = [ , k - l ( ' , u , x ; h k - 1 ) ,  E = A k ,  O l x , z = ~  6k and O2~,z= 
I x ' - C ~ h , x ' +  Ckh] x f~6k. Define T, Tt  and T2 as in (D.5). Then (iv) 
implies [[g(V,,V2)llT1 = o(1)  for 0 < v1 +v2 < ark+ l +  1. Observe next that 

T2 = Ak. Therefore, (B.15) (with k - 1 instead of k) implies II~(vl,(~ = 
O(h-O+n)), whenever 0 < Vl + v2 < Jk-a + 1. Here (0,v2) indicates differen- 
tiation w.r.t. 02. The last two estimates can now be plugged into (D.5). Then 
(B.23) follows, since 3k + 1 < .7k-1 and s z, u,x; hk-1 ) = h(x',z,x, (u,x)),  
with/~ as defined in (D.5). 

For (B.10), we decompose r~k into two terms: By (2.2), (3.2) and (3.7), 
we obtain 

(B.24) 

r~k(x,z; hk) = abk(X,Z; hk-1 ) -- ak(x,z ) -- b~k(x,z; hk-1 ) = dPk(x,z; f )(rk ) 

§ (Pk(x,z; fb, k- t  ) -- Pk(x,z; f )  -- dPk(x,z; f ) ( f b ,  k-1 -- f ) )  
2 

:= ~ r~kv(X,z;hk). 
v=l 

We have to establish (B.10) for each term r ~ .  For (r~kl) this follows similarly 
as (B.9) was proved for b~k, using (B.14) instead of (B.13). For r~k2, use (D.3), 
with g0 = f ,  gl = fb, k-t and ga - 90 = bk-~ + rk-1. Use then (iv), (B.13) and 
(B.14). 

Finally, consider R~k. By (vii), (B.17) and (4.4), we may write 

(B.25) R~k(x,z; hk) = Pk(x,z; fck_ 1) -- Pk(x,z; fb, k-~) -- dPk(x,z; f x ) (Wk-~)  

= d P ~ ( x , z ; L ) ( W ~ _ ~  - Y ~ _ ~ )  

+ (dPk(x,z; fb, k_~ )(Wk-t  ) -- dP~(x,z; fx ) (W~-t  )) 

+ dP~(x,z; fb,~_~ )(k~_~ ) 

q- ( P k ( x , z ,  fk - - I  ) -- P k ( x , z ;  fb, k--t ) 

-- dPk(X,Z; fb, k-1 )(J~k-1 -- fb, k-1 )) 

4 
:= ~R~ev(X,z;hk_~),  
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with i f 'k-  a = I~k-  1 ( ' ,  x; hk-  1 ) and Wk_ 1 = Wk- 1 (" ; h~_ ~ ). We have to estab- 
lish (B.12) for each term R~k~. We do this in detail only for v = l .  Write 
R~k~(x,z;h~_~)=E q~=oR~g~(x,z;h~_~)(z - x ) ,  with R~gz~ (x,z;hk_~) = 
dP~(x,z; fx)(W~_~ - l~k-1). We only have to prove 

(B.26) 

L = O((nh)-~/2h-(i+On -~) 0 <- i < Jk and any p > 0 

Apply (D.5), with E = A k ,  0 1 : 0 2 = x ,  g ( .  , x ) = f x ( ,  ), ~(* , x ) :  W k _ l (  �9 ;hk-~) 
- l~k-~(-  ,x ;hk-1)  and Olx  z : l~2x z : {X}. With/~ as defined in (D.5) we then 
have R~kl l (x , z ;hk- I )=  ~t(x,z,x,x), so that (B,26) will follow if  we prove 

(B.27) 

for any p > 0, when 0 __< i + d l  +d2  =< ffk, and T is defined in (D.5). Let 
W 1 : U(x,z)C,z[X,Z] X {X} and notice that IIg(~l,~)lIT 1 = 0 (1 )  for 0 < vl + 

v2 < av~ + l because of  (iv). This will prove (B.27), in conjunction with (D.5) 
and the statement 

(B.28) 

-- O((nh)- l /2h- (Vl+V2-1) t , l  e) : O ( ( n h ) - l / 2 h - ( V l + V 2 ) n - e  ) 

for all sufficiently small e > 0, 0 < vl + v2 < ark + l and T2 = T I .  The last 
relation in (B.28) follows from (ii) i f  we choose e small enough compared to 
e0. In order to prove the first relation in (B.28), notice that 

~(x',x) 1 ~ (L~_~(x ' ,Xj ,x ;h l~_~)  - ' " = - - ELk - I ( x  ,X,x ,  h k - I ) ) ,  
nj= l  

with /~k- 1 (x', u, x; hk-  ~ ) = s  1 (x', u, x ' ;  hk-  1 ) --/~k- i (x', u, x; hk-  1 ). It follows 
from (B.15) (with k -  1 instead of  k) that 

(B.29) 
[(~1,~2) _ ~ O(h-(~l+vz)), 0 < vl + v2 <= Jk-1 , 

k-1 r = [ O(h-(Jk-t+2)), vl + v2 ---- ffk-a + 1 , 

with T = {(x ' ,u ,x) ,  x E f't gk, I x ' - x  I <= C2h and lu - x '  I < Ckh}. But (B.28) 
now follows from (B.29) and (B.4), in the same way as (B.18) was proved, 
using Rosentahl 's  inequality. 

Returning to the last three terms of  (B.25), we use (D.3) for R~k2, with 
go = fx, g1 = fb, k - t  and t / =  Wk-1. (Actually, g0(" ) = g0(" ,x),  so we use a 
generalization of  (D.3), as (D.5) was stated as a generalization of  (D.2).) For 
Rc~k3, u s e  (D.2), with go = fb.k-1 and t /= /~k-1 .  Finally, apply (D.4) for Rc~k4, 
with go = fb, k-~ and gl : / k - l "  [] 

Lemma B.4 Suppose 2 < k < t and that dk has the asymptotic representa- 
tion (4.4) and (3.4), with ~k, b~k, r~.k, f-~k and R.~k satisfyin9 (B.8)-(B.12) .  
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Assume also the same for fl~. Then Z(~k) and X(fl~) have the expansions 

(B.30) 

Z(~k(x,z; hk)) :=  ~k(x,z; hk) = C~bk(X,Z) + W~k(x,z,x; hk) + k~k(x,z; hk) ,  

z(/7~(x,z; h~)) := ~Ax, z; hk) = ~bk(x,z) + V/n~(x,z,x; ilk) + k~(x,z; h~), 

with k~k and k~k satisfyino (B.12). 

Proof The proof  is analogous to the proof o f  Lemma B.2. [] 

Lemma B.5 Suppose 2 < k < t and that Z(~k) and Z(flk) have the expansions 
in (B.30), with (B.8)- (B.12)  satisfied, ((B.12) with k~k and kl3k in place 
of  R~k and R~k). Then fk, defined in (viii), has the expansion (3.1), and 
(B.15)-(B.16)  hold. 

Proof Formula (B.15) follows from (B.11) and differentiation w.r.t, x ~ and x 
in (4.8). The rest of  the proof  consists o f  establishing (B.16). We omit hk-1 
and hk in the notation for simplicity. 3 By (viii), 

(B.31) 
1 " - Xi)cTk(x,X/)'~ . 

Perform a Taylor expansion of  each term in (B.31), using the expansions in 
(S.30): 

(B.32) 

) = ( ( x  - ) 

~bk(x,z) hk ) 

+ ( 
\ h~ ) 

4 

+ ~ ~v(X,Z), 
v = l  

with K(v) = vK'(v), and eb- . - ,  e4 are remainder terms, defined by 

~k(x,z) ~ , ,,, ( (~ - z)~k(~,z) ) 
(B.33) el (X,Z)-  ~ ~ k t x ,  z )~  hk J ' 

~2(x, z) = k~k(~, z)X ( (x - z)~bk(~, z)'~ 
hk ) '  

3 Given x, we assume Iz - x I < C2h throughout the proof. This is justified because of (B.1), 
even though quantities like K((x-  z)c~k(x,z)/hk) may be nonzero for other values of z. For 
the same reason, we also assume IXi x l, iXj - x  I < C2h 



184 O. HSssjer 

_ ~(x ,z ) -~ (x ,z )  k ( ( x - ~ ) ~ ( x , z ) ) )  
~b~(x,z) h~ / / ' 

. . . .  ~k(X,Z) -- O~bk(X,Z) ~- ( (X -- Z)O;bk(X,Z) ) 
84(X'Z) = (flk(X'Z) -- Pbk[X'Z)) ~ b k - ~ 7  'lk hk . 

Put also 

Rkv(x) = ~ ev(x,X/), v = 1,2,3,4.  
i=1 

Insert the expansion (B.32) into (B.31), and use (4.7) and (3.8) to obtain 

1 ~ (ll(x, Xi) - E(ll(x,X))) (B.34) fk(x) = fbk(x) + ~ i=1 

1 ~ (12(x, Xi,Xj)-E(12(x, Xi,X) lXi)) 
+n~hki, -1 

1 ~ (~(x,X~,x,)- E(~(x, Xi,x) ixi)) 
+ n hk i,j=l 

4 
+ E R~(x) 

v--1 
with 

l l (x , z  ) = flbk(X,Z) K -- ( (X 
Z)Ogbk(X,Z) "~ 

hk / '  
fl~k(x,~) ~ ~ ( (x - ~)~(x , z ) '~  

12(X,Z, U) -- 7 ~  L, akl.X,Z, U,X)R 
~bktx, z) \ hk J ' 

13(X,Z,U) = s ( (X -- Z)O:bk(X,Z)'~ 
hk / "  

Define next 

(B.35) 1 ~ ( / l (x ,  Xi)  - E ( l t ( x , X ) )  
Rks(x) = ~ i=1 

n 

1 E (/~d(x,X/, x) - E(s 
nhk i=1 

1 ~ ( / 2 (x ,  X i , X j )  - E(12(x, Xi,X)[X~)) Rk6(X) -- n2hk i,j=l 

-1 ~; (s E(L~,l(x,X,x))) 
nhk j= l  

1 ~ (/3(x,X/,Xj) - E(13(x, Xi,X)IXi)) 
Rk7(X) -- n2hk i,j=1 

1 ~ (s xj,x)- E(s 
nhk j=l 

-id ~ d ,  1 s with Lk, and defined in (4.8). It now follows from (4.1), (4.8), 
(B.34) and (B.35) that 

7 
fk(x) = fbk(x) + 17/k(x,x) + ~ R~(x) . 
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Hence, it suffices to prove for each v = 1, . . . ,  7, 

(i) (B.36) IIR~ II = O((nh)-l/2h-in-% 0 < i < Jk and a n y p  > 0 
f ' l f k  L p - -  - -  . 

We start with the case v = 1,2, 3, 4. Suppose we can show 

(B.37) 

[[lls~OllA~llLp=O((nh)-l/2h-~n-% 0 < i <  Jk and a n y p  > 0, v = 1 ,2 ,3 ,4 .  

Let ~ E C~( IR)  be a positive function with compact support on [ -2 ,2 ]  and 
O(x) = 1 for x C [ -1 ,  1]. Then 

(B.38) R(i)/~ a~k =< [le~i)[[ak ~_~kj_~ 1 1  " O ( "  C~- X j )  a'k " 

As in Hall and Marron (1988), one shows 

l ~ ( "  - X J )  ~l, r p C z h  (B.39) ~h--~kj__~ I ~ = O(1) for any p > 0 ,  

using Rosentahl's inequality. Cauchy-Schwarz inequality and (B.37) - (B.39)  
prove (B.36). It remains to prove (B.37). For v = 1,2, this follows easily from 
(B.12). For v = 3, put 

H(~) = H(~,x,~) = x ((x -~ )~ )  
h~ ) "  Then 

(B.40) 

e3(x,z, hk ) = flk(H( ~k ) --H(C~bK) -- ( ~k -- C~bk )H' (c~bk ) ) 
~k 

= ~ f (~k - ~)~(2~(~:)d~, 
O~bk 

where we have omitted x and z in the notation for simplicity. Define ~k(x,z) 
= ~k(x ,z ) -  c~bk(x,z) = VV~k(x,z,x)§ k~k(X,Z) and ~k similarly. By differenti- 
ating w.r.t, x repeatedly in (B.40), one can show that 

~ (V 2) ~ (v3) ~(v4) (B.41) ]fe~i)llAk < C  F, h-VlllV~k ]/AkIIv~ A~II/~ [IAk, 
"~1, v2, v3, V4 

where the sum ranges over all non-negative vl, v2, v3, v4 with vl + v2 + v3 + 
v4 = i. Similarly as for (B.18), it is possible to show that 

~(i)  (B.42) [[V~)~ [[ak Lp, -(i) IIV~k IIA~ LP <= C(nh)-l/2h-in~ 

for any p > 0 and 0 _< i _< Jk- Formula (B.37) for v = 3 now follows from 
(B.41) and (B.42), (B.8)- (B.10) ,  (ii) and H61der's inequality. When v = 4 we 
have the estimate 

-v -(v2) 

V l , V 2 , V 3  
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summing over non-negative indices with V 1 Av Y2-]-Y3 = i, and then the rest 
follows as for v = 3. 

For v = 5, (B.36) is proved similarly as (B.28) was proved in Lemma B.3, 
using an estimate like (B.29) for the effective kernel involved. The main ingre- 
dient for the cases v = 6, 7 is Rosentahl 's  inequality for degenerate U-statistics 
o f  order 2, see Hall and Marron (1988) for such a proof. (Put I(X/,Xj) = 

12 (x, X/, Xj ) - s Xj,x),  i4=j. Then I(X/,Xj) - E(I(Xi,Xj)[X/) can be ap- 

proximated by a degenerate kernel I(X/,Xj), satisfies E ( 7 ( X / , X j ) [ X j ) =  

E(I(X/,Xj)IX/)-----0 a.s.) [] 

L e m m a  B.6 Suppose 2 < k <_ t and that ~bk and fibk have the expansions 
given in (3.4), with (B .8) - (B .10)  being satisfied. Then f bk, defined in (3.8), 
has the expansion (3.2). The main bias term b~ is defined in (3 .9)-  
(3.10), and (B.13)-(B.14)  hold. 

Proof 4. As in the proof  of  Lemma B.5, we omit hk-1 and hk in the no- 
tation. We assume s ( k )=  s ( k -  1 ) +  2. The case s(k + 1 ) =  s(k) is similar, 
but simpler. Formula (B.13) follows by the definition of  bk in (3.9) and 
(3.10) in conjunction with (iv), (B.8) and (B.9). Notice that Jk derivatives 
of  bk are required, and hence Jk + 2 derivatives of  b~k and b~k. However, 
since aTk = Jk + 2 when s(k) = s(k - 1) + 2, b~k and b~k have the required 
number of  derivatives. 
We now turn to rk. In order to establish (B.14), we first need some expansions. 
Put /~k = b~k + r~k and D~k = bl~ + r~k, so that ~b~ = C~k + b~k and 

(B.43) ~k(x,z) = ~k(x,z) + f~k(x,z) . 

Perform the Taylor expansion 

(B.44) 

K (  (x - z)~k(x'z) hk J + b~k(x'z)R 
c~(x,z) h~ ) 

with e a remainder term, / s  vK'(v) and /((v) = v2K(2)(v)/2. Inserting 
(B.43) and (B.44) into (3.8) gives 

1 ( ( x  - z)o~k(x,z)~ 
(B.45) fbk(X) = ~ f fik(x,z)K hk J f ( z )  dz 

1 f[~Zk(x,z)K ( (x -- z)~k(x,z) 
+ ~ \ ~ ) /(z)dz 

+ ~1 f fik(X,z)b,k(X,Z)ff ((X--Z)C~k(X,Z)~hk J f ( z ) d z  

4 As in the proof of Lemma B.5, we tacitly assume Iz - x I <= Czh to avoid tail effects. This 
is no restriction because of (B. 1 ), and implies that all integrals w.r.t, z have bounded domain 
of integration, in particular in the definition of fbk 
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+ •1 f b=k(x,z)b~k(x,Z)~c~k(x,z) ( (x - -  z)c~k(x,z)~hk j f ( z )dz  

1 flk(x,z)fa~(x,z)2 R ((x  - z)ak(x,z)~ 
+ g f ak(x,z) 2 hk ) f ( z )dz  

l f ) ~ k ( x ~ x , z ) . R ( ( x - z ) c ~ k ( x , z ) "  ~ 
+ g f ak(x,z) h7 I1 f ( z )dz  

1 
q- g f flbk(X,Z)g(X,Z)f(z) dz 

5 7 
:= E T~(x) + E rl~-~(x) , 

v = l  v=6 

with rk6 and rk7 remainder terms. Making use of Theorem 1 in Hall (1990) 
we expand the first five terms of  (B.45) as follows: 

(B.46) TI(x) = f (x )  + ykj(x)hS~ (k) + fkl(X) , 

D~k(x,x)f(x) p2(K) [bl~k(x,z)f(z) ] 0,2) 
r2(x)--  aKx, x) + ~ [ ~ J~=x h~ 

#2(K) [rek(x,z)f(z)l(~ 
+ - - 5 - -  L ~ J z=x h~ + rk2(x), 

{~k(x,x)f(x) 3#2(K) [b~k(x,z)flk(x,z)f(z)] (0,2) 
T3(x) = =k(x,x) 2 L ~ 4 Jz=x h2 

3#2(K) [r~Kx, z)fiKx, z)f(z).] (0,2) h 2 + rk3(x) 
2 l O~k(X,Z) 4 J z=x 

Tg(x) = b~k(x'x)[)Bk(x'x)f(x) q- rk4(X) , 
~k(x,x) 2 

b~k(x,x)2 f (x )  
Ts(x) - ek(x,x)2 + rks(x) , 

where we have used (2.9) (which follows from (ix)), #0( /s  -1 ,  #2 ( / ( )=  
-3#2(K)  and #0(/() = 1. Inserting the expansions (B.46) into (B.45) we ob- 
tain, 

(B.47) 

rk(x) = fbk(x) -- f (x )  -- bk(x) 

_ #2(K) [r~k(x,z)f(z)] (0,2) 

T I ~k(x,z)3 J z=x h~ 

7 7 

+ Z , '~(x):= 2 r~(x), 
v = l  v=0  

3re(K) 
2 [ r~(x,z)f lk(x,z)f(z)] (0,2) h~ 
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where we have used the definitions of  rk and bk in (3,2),(3.9) and (3.10). 
Notice that several terms cancel since 

~ k ( x , x )  = D ~ ( x , x )  , 

which follows from (ix), (2.9) and (5.2). 
It remains to establish (B.14) for each of  the terms in (B.47). For rk0, this 

is proved in the same way as (B.13) was for bk, making use o f  (iv), (B.8) 
and (B.10). rka, . . .  ,rk5 are all remainder estimates in various Taylor series 
expansions based on Theorem 1 in Hall (1990). We omit the details, but since 
Jk derivatives w.r.t, x are required for each r~,  and we make Taylor expansions 
of  TI-T5 up to order 2_, we must require Jk + 2 continuous derivatives for the 
functions f ,  ct~, ilk, b~k and /~k appearing in T1-Ts. But this follows from 
(iv) and (B .8 ) - (B .10)  (see the remark after (B .8) - (B.16) ) .  

To handle rk6, perform the change of  variables v = ~k(X,Z)(X- z) in the 
integral defining rk6 and then differentiate under the integral sign Jk times. 
Finally, for rk7, notice first that e(x,z) is a remainder term in a Taylor expan- 
sion, and therefore 

1 1 x - - z  3 
~(x,z)= ~(~bk--C~k)3 f (1-- p)2 (~--k ) 

o 

• K (  3 ) ( ( x - z )( ~k -}- p (  c~bk - c~k ) ) dp , 

with ~k = ek(X,Z) and ebk = ~bk(x,z). Insert this identity into the integral rk7, 
change order of  integration between dp and dz and change variables v = (~k + 
p(c~bk- ~ k ) ) ( X -  Z) for each fixed p. Finally, differentiate w.r.t, x up to Jk 
times, and move the differentiation operator under the inner integral. The rest 
is similar to rk6. [] 

Appendix C 

Proof of Theorem 7.1 

Since hi, . . . ,  ht-1 are all o f  the same order, Theorem 5.1 implies (B .13 ) -  
(B.16) for k = t -  1 and (B.8) (B.12) for k = t. Using this, we will prove, 
for some e > 0 and all p > 0, 

(c .1)  

and 

(c .2)  

We will also prove 

(C.3) 

II llRtll~ IIL~ = O ( ( n h , ) - V 2 n - ~ )  �9 

I l r t l l~ t  = ~ 
The theorem then follows from (C.1) - (C.3) .  By making the change-of-variables 
v = (x' - z)~(x,x)/hk in (4.8) and differentiating under the integral sign, it fol- 
lows from (B.11) (for k = t) that 

II(L~d)(i'0'd>ll X~ = O(h-<l+~ 0 __--< i + d __--< Z + 1 = 1 , 
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which implies 

(C.4) [l(ttd)Ci)llAk = O(h -(l+i)) i = O, 1 . 

It follows from (4.8) and (B.5) that 

(C.5) Lad~x ;ht)  is supported on [x - Cth, x + Cth] for any x E f~& k k , "  

As in the proof  o f  Lemma B.2, (C.4) and (C.5) imply 

(C.6) II II wTalla t ilL, ; O((nh)-l/2n ) 

for any p > 0 and e > 0. This implies (C.1), if we choose e in (C.6) small 
enough compared to e2 in (ib). 

Formula (C.2) is proved as in Lemma B.5, provided we make some small 
adjust_ments for the fact ht << h. For instance, (B.37) and (B.38) become (notice 
that Jt  = O) 

[III  II,,IILp -- O((nht) -1~2n-e) for any p > 0 

and 

for v = 1, 2, 3, 4. The rest o f  the proof  is analogous to Lemma B.5. 
Finally, (C.3) is derived as in Lemma B.6. For the remainder terms rto - rt7 

in that proof  we obtain 

o@7 v = 1, 

o(hS(t-~)h2t) v = 0,2,3, 

Ilr-lla~, = o(h2S(t_l) ) v = 4 , 5 ,  

O(h3S(t - 1)) v = 6, 7 .  

All the quantities above are o(ht(O). For v = 0,2,3 this follows from (ic) 
and (id). When v = 4,5, (ic) and (id) imply h 2s(t-t) = h 2m(t) << h2(m(t)-2)= 
O(hm(O). 

Appendix D 

Some consequences o f  the regularity conditions 

We will state some consequences o f  (5.1) in Sect. 5, that are used in the proof  
o f  Lemma B.3. First some notation. For a function g " IR --+ IR that is v times 
differentiable on a set T C IR, define 
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where the sum ranges over the finite collection o f  sequences 0 < Vl < - �9 - =< v~ 
with v2 > 0 if r > 1 and E ~vu = v. Similarly, given two functions go and gl, 
we write 

[[{go, gl}l]v,T : ~ ] ] m a x (  g0(~u) T,I[g(lV~)[[T). 
{~} 

Recall the definitions o f  E and P (E)  from (x), and the fimction h(x,z;  O) = 
Pkl(x,z; g("  ;0)).  

(I) Let p = 0, so that g(x; O ) =  g(x).  Then (5.1) reduces to 

(D.i) iiP~J)('," ;g)tl~ =< C E Hltg('~")tiP(-=), 
{~,~,} ,u 

where the sum is taken over all finite sequences {vu} with E uv~ = l + i + j  
and at most one vu > 0. 

(II) Let p = 1, with O = {0} and g(x; O) = go(x) + Otl(X). Then dP(~J)(x,z; go) 

(11) = h(~ j' 1)(x,z; 0). Notice that g(v,d) equals g~) when d = 0 and ~/(~) if  d = 1. 
Application o f  (5.1) yields 

(D.2) Ild_P~'J)( �9 .; go)(rl)ll-= = ilhk z(i,j, 1) HF-,xO 

c E II,{V'>ll-~<'=> H IIv~")ll,o(~) 
{v#} #>2 

l+i+j 
~ c E  

v=O 
I1~ <~> I1~<~> I[go H l--,+#-v,P(~), 

with E ~v~ = l + i + j ,  and at most one v, > 0 for/2 => 2. 

(III) Let p = 2 ,  0 = ( 0 1 , 0 2 ) ,  O = ( { 0 } , [ 0 , 1 ] ) ,  g ( x ; O ) = g o ( x ) + O l t l ( x  ) 
+02(g l (x )  - go(x)).  Then, dP(~J)(x,z; g l ) ( t l )  - dP(~'J)(x,z; go)(~/) = f~ h(~ j' k ,) 
(x,z;O, O2)d02. Let g o 2 ( x ) =  g o ( x ) +  02(@l(X)- go(X)). Observe that g(~,di,dj 

equals Y02 -(') ifdx = d2 = 0, ~/(~) i f d l  = 1, d2 = 0, (gl - go) (~) i f d l  = 0,d2 = 1 
and 0 if d1 + d2 ~ 2. Applying (5.1) gives 

- dP(i'g)( "' go)(~)llz < Ilh(kg/'l'l')ll~xe (D.3) dp(i'J)( �9 ; gl )(rl) kl " kl " ~ ' ' = 

(v~) e -  _-< C sup ~ [[rl(Vl)[[P(E) [[(gl  - - g 0 ) ( v 2 ) l ] P ( : = )  1~ [[g02 [] (=) 
0<02_-<1 {v#} #=>3 

___% c E II~ <v~)llP(~)ll(gl - go)<~)llP<~)l[ {go, Ol } II~+,+j-~,-v2,P(z) 
Vl,V2 

with E ~v; = l + i + j .  

(IV) Choose p =  1 and e = [ 0 , 1 ] .  Given functions go and gl, put 
g(x; O) = go(x) + O(gl(x)  - go(x))  :=  go(x). Then P(~'J)(x,z; g~) - P(~'J)(x,z; go) 

- dP(~J)(x, z; go)(gl - g0) = fo 1 ( 1 - 0)h (/'j'2)(x, z; 0) dO. Notice also that g(V, d) 
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equals g (~) i f  d = 0, (g2 - g0) (~) i f  d = 1 and 0 i f  d > 2. Hence,  

(D.4) 

p( i , j ) ( .  . ; g l )  - P~'J)("  " ; 9o) - dp(i 'J)( " " ;go)(g2 - go)ll-z 
k l  ~ ' k l  

__< ~llh(ij,2)llzxo = 0--<0~<lSUp C {~}~ (11(91- g0)(~a)llP(~) 

x II(g~- 9~ .__>3rI [Ig~")llP~z)) 

____ c 11(92 - 9o)(">11P  )11(92 - 9o)  {9o, 92 } II l+i+j--v 1-v2,P(:::) , 

Vl,V2 

the sum ranging  over all sequences {v,}  with 2 , v ,  = I + i + j  and  at most  
one v,  > 0. 

Equat ions ( D . 1 ) - ( D . 4 )  can also be extended to the case when  9o,91 or ~/ 
depend on finite d imens ional  parameters.  We  illustrate this for (D.2):  Assume 

90 : 90(" ;01), /I = /~(-;02),  with 03 E ]p~pl and 02 c IRP2. Put ]~(x,z, 02,02) = 
dPkl (x, z; g ( ' ,  01 ))(  r l ( ' ,  02 )). W e  consider  domains  o f/~ such that for each fixed 
( x , z )  c E, 02 E Oi~_, c IRpl and 02 C O2x~ C IRp2. Then  it follows from (5.1), 
s imilar ly as for (D.2),  that 

(D.5) llh(i'Y'at'a2)llT ~ C ~ II~'(~OIIT= FI llg(~)ll'~z , 
{vu} .__>2 

where T = U[x, zl~z (x,z) x o1~ x El2~z, T~ = U(x,z)cz [x,z] x Olxz and T2 = 
U(x,z)cz [x,z] x oz~z. The sum in (D.5) ranges over the finite collection of 
sequences {v ,  = (v , l , v ,2 )}~= l  with ~ ,v ,a  = l + i + j ,  v22 : d2, ~ ,>2v ,2  = 
da, and at most  one v ,  equal  to zero for # > 2. 
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