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FROM BASIC TO REDUCED BIAS KERNEL 
DENSITY ESTIMATORS: LINKS VIA TAYLOR 

SERIES APPROXIMATIONS 
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The transformation kernel density estimator of Ruppert and Cline (1994) achieves bias of  order h4 (as the 
bandwidth h+O), an improvement over the order h2 bias associated with the basic kernel density 
estimator. Hossjer and Ruppert (1994) use Taylor series expansions to build a bridge between the two, 
displaying an infinite sequence of O(h4) bias estimators in the process. In this paper, we extend the work 
of Hossjer and Ruppert (i) by investigating three other natural Taylor series expansions, and (ii) by 
applying the approach to  two other O(h4) bias estimators, namely the variable bandwidth and multiplica- 
tive bias correction methods. Several further infinite sequences of O(h4) bias estimators result. 

KEYWORDS: Bias reduction, kernel smoothing, multiplicative bias correction, transformation kernel 
estimator, variable bandwidth. 

1. INTRODUCTION 

The problem of interest in this paper is the nonparametric estimation of a probabil- 
ity density function f given an i.i.d. sample XI,. . ., X ,  from that density. Approaches 
to this problem range from the simple (e.g. the histogram) to the sophisticated (e.g. 
penalised likelihood estimators). Many methods are based on the kernel density 
estimator which in its basic form is given by 

Here, K is the kernel function which we shall take to be a symmetric probability 
density function. Also, h is the bandwidth, the parameter that controls the degree of 
smoothing applied to the data, and K,(z) = h-'K(hK1z). See Silverman (1986), Scott 
(1992) and Wand and Jones (1995). 

Iff has two continuous derivatives, standard, and useful, asymptotic approxi- 
mations to the bias and variance of the basic kernel density estimator are given by 

1 
bias {f(x)) z pihIfft(x) (1.2a) 

and 

variance{ f (x)) z (nh)- 'R(K) f (x). (1.2b) 
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24 M. C. JONES AND 0 .  HOSSJER 

Here, p, = { Z'K(Z) dz and R(K) = { K2(z) dz. The asymptotics require n -r oc, 
h = h(n)+O and nh-tco. The first salient feature to notice is that the bias off is of 
order h2. 

A target of many extensions of the basic kernel estimator is to achieve bias of 
order h4, provided f can be assumed to have four continuous derivatives, and at no 
loss, at  least in order of magnitude terms, in variance. A whole raft of such methods 
already exists (e.g. Hossjer, 1995, Jones and Signorini, 1995), and this paper adds yet 
further to that raft. One example is the "transformation kernel density estimator" of 
Ruppert and Cline (1994). This is given by 

where is the natural estimator of the distribution function F arising fromf: namely 

P(x) = [' f(z) dz, 

and both f and E in the right-hand side of (1.3) use the same bandwidth hl (which 
may differ from h,). 

If f has four continuous derivatives, the bias and variance of fT(x) are given, 
asymptotically, by 

and 

variance{fT(x)} = (nhl)-'R(K + K, - K*K,)f (x). (1.4b) 

Here, 

and * denotes convolution. It is therefore optimal to choose hl - h2 - h, say, and 
hence the claim of order h4 bias (and order (nh)-' variance). See Hossjer and 
Ruppert (1995) for rigorous mathematics. 

However, an interesting link between fT and f was described by Hossjer and 
Ruppert (1994). By taking a Taylor series expansion of E(xi) about P(x), a whole 
series of density estimators is built up, bridging the gap from f to fT. A one-term 
Taylor approximation to fT yields 

This is the same as f(x) except for the local bandwidth choice h2/ f(x) replacing h , .  
Local bandwidths are themselves popular variations on the basic kernel theme (e.g. 
Fan, Hall, Martin and Patil, 1993, Hall, 1993), and the choice of variation inversely 
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REDUCED KERNEL DENSITY ESTIMATION 25 

proportional to the estimated density is essentially that of the nearest neighbour 
estimator, dating back to Loftsgaarden and Quesenberry (1966). Local bandwidths 
do not improve the bias order, however, and this choice results in the same bias and 
variance as at (1.2) except for h&x) replacing h. 

However, more terms in the Taylor approximation yield new estimators, each with 
properties progressively becoming more like those offT. In fact, Hiissjer and Ruppert 
(1994) show that the bias remains of order hi for one and two term approximations, 
jumps to order h:hi + h: for a three term approximation (which is therefore the first 
new "O(h4) bias" density estimator), and settles down to the order hfhi expression that 
is (1.4a) for five and more terms. Hossjer and Ruppert also derive the variances which 
remain of the form (nh)-'R(K,Jf(x) (when h, - h, - h) throughout. The precise "effec- 
tive kernel" K, develops as more terms are taken, only converging to the effective 
kernel in (1.4b) as the number of Taylor terms m+ cc. 

The purpose of this paper is to extend the work of Hossjer and Ruppert (1994) to 
three other Taylor expansions and to two more estimators. Re the former, think of 

fT as comprising an "outer" factor depending on x, external to K (i.e.f(x)), and an 
"inner" factor, depending on x, internal to K (i.e. p(x) - P(xi)). Hossjer and Ruppert 
only expanded the "inner" factor about x. Here we also expand the inner factor 
about Xi and the outer about Xi, and take each combination of these. Further O(h4) 
bias estimators of interest include variable kernel estimators and the multiplicative 
bias correction of Jones, Linton and Nielson (1995); see Jones and Signorini (1996). 
These can also be crossed with the different Taylor series expansions. All told, we 
explicitly investigate some 10 "links", each comprising a whole infinity of estimators 
(and could have looked into many more), almost all of which are O(h4) bias 
methods, a property once thought difficult to achieve! A guided tour of the methods 
and links is given in Section 2. 

Because of the large number of estimators and links, we do not attempt to prove 
the results we display nor to stress the technicdities underlying them (for instance, in 
the transformation case, the resulting "approximate transformation" may not be 
monotone, while in the variable bandwidth case there can be difficulties with overly 
large bandwidths, McKay, 1993). Hossjer and Ruppert (1994) give an example of the 
deep mathematics that is needed and which could be developed for any of the new 
ideas. Also, since for the moment we have no particular expectation of important 
advantages in practice for any one of the "hybrid" estimators, we do not attempt to 
make any practical investigations. Our work gives scope, however, for such work in 
the future. Instead, we compile tables of the asymptotic biases and variances of the 
methods, and these are provided and discussed in Sections 3 and 4, respectively. 
Some final remarks are given in Section 5. 

2. THE ESTIMATORS 

2.1. Four Ways of Taylor Expanding 

Consider again the transformation estimator fT given by (1.3). Taylor series expan- 
sions will allow "associated" estimators to be denoted by fT,,,, for k = 1, ..., 4 and 
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26 M. C. JONES AND O. HOSSJER 

m = 1,2,. . .. Essentially, m refers to the number of terms of the Taylor series expansion 
used, thought of "relative to f rather than p, that is, m - 1 is the degree of Taylor 
expansion used if we expand f(x) or  ?(xi), but rn is the degree of Taylor expansion 
used when we expand p(x) or p(xi). Recall that f s and ps all use bandwidth h,. 

The case k = 1 refers to expansion of both external and internal f-dependent 
quantities about x. Thus, the internal quantity p(x) -F(X,) is Taylor expanded 
about x as 

and the external f (x)  is left alone. When m = 1, the estimator f,,,,, 
results. The m = 2  extension of this would be 

given by (1.5) 

(2.1) 

and so on for larger m. The family fT,,,, is the one investigated by Hijssjer and 
Ruppert (1994). 

The case k = 2, on the other hand, refers to Taylor expansion of the external term 
about x and the internal term about Xi. For the transformation estimator, this again 
requires no change to the externalf(x) but p(x) - E(x,) is now represented by 

rn x (l!) - (x - xi)yl - (Xi). 
i = l  

For example, 

The opposite to k = 2 requires Taylor expansion of the external term about Xi  and 
the internal term about x. This requires two Taylor expansions, of both f(x) about 
?(xi) and p(x) - p(xi)  about x. Let this correspond to k = 3. The m = 1 case is now 

Finally, k = 4 is the remaining case, expansion of both internal and external 
quantities about Xi. The m = 1 version of this is 

This density estimator is also interesting. Unlike fT, , , ,  which involves local band- 
width variation in which h is replaced by a bandwidth function depending on x, 
fTS4, ,  involves variable bandwidth variation in which h is replaced by a different 
bandwidth for each Xi. Unlike the local bandwidth estimator, a variable bandwidth 
approach has the potential to improve the bias order (Jones, 1990, stresses such 
distinctions between approaches). However, a special choice of bandwidth variation 
has to be employed to achieve this aim, see below. And hlf(X,) (estimated by h#(xi) 
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REDUCED KERNEL DENSITY ESTIMATION 27 

above) is not it. Nonetheless, essentially (2.4)-in a nearest neighbour formula- 
tion-was one of the earliest variable bandwidth proposals due to Breiman, Meisel 
and Purcell (1977). 

2.2. Some More O(h4) Bias Methods 

The transformation density estimator?, is not the only O(h4) bias method which it 
is reasonable to treat in this way. In this paper, we also consider what, according to 
Jones and Signorini (1996), are the two other most attractive O(h4) bias estimators. 
These are 

the multiplicative bias correction of Jones, Linton and Nielsen (1995), and 

the variable kernel estimator of Abramson (1982); see also Silverman (1986), Terrell 
and Scott (1992) and Jones and Signorini (1996). The square root of f is the 
appropriate choice to achieve O(h4) bias with variable bandwidths referred to above; 
this realisation was the breakthrough of Abramson (1982). In both (2.5) and (2.6), the 
f s  again all refer to (1.1) using bandwidth h,. 

~ s t i m a t o r f ~  has much in common with 3,-in fact, the two are different ways 
of implementing multiplicative bias correction (Jones, Linton and Nielsen, 1995) - 
and hence obviously succumbs to much the same range of extensions, fIM,,,,, 

k = l ,3,4,  m = l,2,.. .. One small change, however, is that where we used "external" 
(to K) before, continue to' mean expanding only f(x)  and where "internal" was 
appropriate to fT, think of expanding !(xi). Also, fM,,., is missing since this is 
vacuous: fM,Z,m = fM, v m. 

The m = 1 versions of fM,,,,, k = 1,3,4, are interesting. We see that lM ,,,, = 
f , , , ,  =f(?ith h2 taking the role of h in the latter). ~ h u s , f ,  links in more naturally 
thanfT w ~ t h  the basic method that is (1.1), since & has a constant bandwidth. To 
achieve such a link with f,, one has to start from a local or variable bandwidth 
version thereof to cancel with the local or variable bandwidths infT,,,, orfT,,,,. This 
is briefly discussed in Section 5. The case 

is amusing because the roles of f(x) and f(xi) are reversed, and as we shall see in 
Section 3, this means that fM,3,, has order h2 bias instead of fM9s O(h4) bias. 
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28 M. C. JONES AND 0. H ~ S S J E R  

The variable kernel density estimator fv  also allows Taylor series approximants. 
In this case, k = 4 is vacuous. The case k = 1 is of the most familiar form when 
m = 1, namely 

which is another local bandwidth kernel estimator, but with a bandwidth function 
differing from e.g. fT,,,, as in (1.5). 

There are also intriguing links (but not exact equivalences) between some of the 
Taylor estimators of the forms fT,,,, and fV,,,, and the variable location estimator of 
Samiuddin and el-Sayyad (1990) and a related proposal of el-Sayyad, Samiuddin 
and Abdel-Ghaly (1993). 

3. BIASES 

In this section, we present three tables that list the asymptotic biases of the Taylor 
series expansion estimators described in Section 2. An assumption that f has four 
continuous derivatives will cover all cases. In obtaining these expressions, much use 
of the formula of Hall (1990), which was put forward as the neatest way of perform- 
ing manipulations for the variable bandwidth estimator, was made. The tables need 
only go up to m = 5 at most, since for all m 2 5, the biases remain the same, and are 
the asymptotic biases of the "parent" estimator. 

Table 1 pertains to the transformation estimator and its Taylor approximants, 
Table 2 to the multiplicative bias correction and its related methods, and Table 3 to 
the variable bandwidth estimator and associated methods. The shorthand used for 
the f-dependent quantities in the biases offT, fM, and fv, are, respectively, 

(Hossjer and Ruppert, 1995), 

M f = - f"" + (f ")2/f+ 2 f'yl/f- 2( f ')2 f " / f 2  (3.2) 

(Jones, Linton and Nielsen, 1995), and 

(Hall and Marron, 1988, Samiuddin and el-Sayyad, 1990, Hossjer, 1996). See 
Jones and Signorini (1996) for more on the common structure of these expressians, 
a commonality that extends to all O(h4) bias expressions in Tables 1 to 3. 

The entries in Table 1 for k = 1 are those previously derived by Hossjer and 
Ruppert (1994). As noted earlier, the bias remains of order h2 for m < 2, jumps to 
order h4 for m = 3,4 but does not achieve the "m = co" formula until m = 5. While 
the same also holds for k = 2, it is intriguing that "convergence" to 3;s bias happens 
more quickly for k = 3 and k = 4: in these cases, the order hZ bias holds only when 
m = 1, order h4 bias is achieved for m 2 2, and 3,'s bias is achieved for m 2 4. 
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REDUCED KERNEL DENSITY ESTIMATION 29 

Table 1. Asymptotic biases of Taylor expansion estimatorsf,,,,, based on the transfor- 
mation estimator rp Each bias is at the point x, so each f-dependent quantity has 
argument x but this is omitted. The quantity T j  is given at (3.1). 

k m asymptotic bias 

Table 2. Asymptotic biases of Taylor expansion estirnat~rsf~,,,, based on the multipli- 
cative bias correction estimator fM. Each bias is at the point x, so each f-dependent 
quantity has argument x but this is omitted. The quantity M ,  is given at (3.2). 

k m asymptotic bias 
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30 M. C. JONES AND 0. H ~ S S J E R  

Table 3. Asymptotic biases of Taylor expansion estimators~,,,,, based on the variable 
bandwidth estimator?,,. Each bias is at the point x, so each f-dependent quantity has 
argument s but this is omitted. The quantities MI and V, are given at (3.2) and (3.3), 
respectively. 

k m usymptotic bias 

Very similar patterns are observed in Table 2. In particular, the slower type of 
convergence to the performance of f M  is seen for k = 1 and k = 4 in this case, and 
the quicker convergence, achieved by the time m = 4, is seen for k = 2. One is 
tempted to conclude that, in a sense, [M,3,1 as given by (2.7) is "closer" to O(h4) bias 
performance than is f,,,,,, = f,,,,,, f. (And likewise that A,,,, and f,T,4,, are closer 
to improved performance than are f,,,,, and fT.,,,.) One could then ask whether the 
same "more promising" estimators do have better performance "at the O(hZ) level", 
but we will not pursue this. 

Expansions of the variable bandwidth estimator f v  do not exhibit this behaviour. 
Instead, all three ks result in O(h2) bias for m = 1,2, O(h4) bias for m 2 3, and a 
settling down to f,'s bias once m 2 5. 
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REDUCED KERNEL DENSITY ESTIMATION 3 1 

4. VARIANCES 

There is relatively little to say about the asymptotic variance terms which are given 
for the estimators derived from fT, fM and Jv in Tables 4,5 and 6, respectively. In 
fact, each asymptotic variance is of the form n - ' f K i ( x  - u )  f(u)du, for certain 
equivalent kernels K,, general formulae for which are given in the tables. Note that 
when h,  - h, - h, all these variance are O((nh)-I). (In these tables, the notation 
(L),(u) continues to refer to h- 'L (h - 'u )  however complicated the L.) 

Again, for large m, these K ,  tend to the equivalent kernels for the "parent" 
estimators. These are 

Table 4. Asymptotic variances of Taylor expansion estimators fT,,,, 
based on the transformation estimatoryp Each variance is of the form 
n - ' J  K;(x - u) f(u)du, where a general formula for K,(x - u)  is given 
in the table. Here Ri(z )  = ziK'(z)  and Ki(z)  = ziK(z), but K1'l(z) is re- 
tained for the ith derivative of K. Any Z&, is zero. Note too that 
p, = 0 for odd I .  
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M. C. JONES AND 0. H ~ S S J E R  

Table 5. Asymptotic variances of Taylor expansion estimators fM,,,, 

based on the multiplicative bias correction estimator 3,. Each vari- 
ance is of the form n- ' 1 K i ( x  - u )  f (u)du,  where a general formula for 
Km(x  - u) is given in the table. Here Ki(z )  = z iK(z )  and KIo(z) is the ith 
derivative of K .  Any Z:. , is zero. Note too that p, = 0 for odd I. 

Table 6. Asymptotic variances of Taylor expansion estimators f,,,,, 
based on the variable bandwidth estimatorf,. Each variance is of the 
form n- 'SK;(x - u )  f (u)du,  where a general formula for K,(x- u )  is 
given in the table. Here &z) = zK1(z)  and K"'(z) is the ith derivative of K .  
Any Z;=, is zero. Note too that p, = 0 for odd I. 

+ - Khl(z - U) Kh,If(x.i/l(~ - Z ) ~ Z  2 'S  (4.3) 

for 3 (Hossjer and Ruppert, 1994, Hossjer, 1996, Jones and Signorini, 1996). 
The K,s evolve in various ways as functions of m. The link between K, and K, 

as m+ co has a formal justification in terms of making Taylor expansions in 
(4.1)-(4.3). We will explain this in a little more detail, since it is not obvious how to 
perform these expansions. 

For f ,,,,,, we expand J:~",~,(t.)dv around x - u in (4.1), which results in 

The last expression can be simplified further, resulting in the first entry of Table 4. If 
in addition Kh,(x - u) is expanded around z - u in the integral of (4.1), we obtain the 
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REDUCED KERNEL DENSITY ESTIMATION 33 

K, of f ,,,,,. For the remaining two cases f ,,,,, and f ,,,,, everything is the same 
as for f ,,,,, and f T , 3 , m  respectively, except that j::",hl(v)dv is expanded around 
z - u rather than x - u. 

The kernels corresponding to the multiplicative bias correction 3, are somewhat 
easier to explain. For f ,,,,,, K, is derived by expanding Khl(z - u) around x - u in 
(4.2): 

which can be further simplified to the first entry in Table 5. The kernel of f,,,,, is 
obtained by Taylor expanding Khl(x - u) around z - u in the integral of (4.2). The 
remaining case j$,,,, combines the two Taylor expansions of fM,,,, and fM,,,,. 

For the first Taylor approximation of the Abramson estimator, fV,,,,, expand 
Khl(z - u) around x - u at both of the second and third terms in (4.3). The same 
expansion is made for fV,,,,, but only at the third term. Finally, for fV,,,,, the 
expansion is made at the second term. 

Interestingly, the variances of fT,,,, and Iv,,., agree except for scaling. Also, only 
for fT,,,, and XM,,,, is there no change in either asymptotic bias or variance as m 
goes from 1 to 2. 

5. CONCLUSIONS AND EXTENSIONS 

We have seen how the O(hi) bias of variations on the basic kernel density estimate 
becomes modified, first to O(h:h: + h:) bias and then to the final form bias (O(h:h:) 
or O(h:h: + h:)) of various reduced bias kernel estimators, by the use of Taylor 
series expansions. We did so (i) for (up to) four different points of expansion, and (ii) 
for three different reduced bias estimators. In some cases, the jump from O(h;) bias 
happened at just two expansion terms, in others, it took three, with a knock-on 
effect for achieving O(h:) bias: this was achieved for m = 4 in the former case, m = 5 
in the latter. 

In each and every one of the 10 cases considered, we have provided whole infinite 
sequences of estimators, which are approximations to existing reduced bias es- 
timators, with O(h:) bias. Another-and perhaps more useful-infinite class of O(h;) 
bias methods was given by Jones, McKay and Hu (1994). Along with several other 
O(h:) bias methods (Jones and Signorini, 1996), the result is an absolute plethora 
of, at least theoretical, improvements. 

And yet further extensions are possible. In 4 out of the 10 expansion situations 
considered in the paper, two Taylor expansions, of both the external and internal 
3-factors, were performed. Clearly these could be done for different numbers of 
terms, m ,  and m,, in each expansion; we have just presented the special cases where 
m,  = m, = m. 

We have some results also for the adapted version offT in which the local band- 
width h,f'(x) is used throughout (Hossjer and Ruppert, 1993). This modification is an 
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34 M. C. JONES AND 0 .  H ~ S S J E R  

attractive rescaling of& which removes local scaling effects from its small m rela- 
tions. Results are similar to those based onTT with h, replacing h, / f (x ) ,  but are not 
precisely the same. 
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