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Robust Multiple Classification of Known Signals 
in Additive Noise-An Asymptotic 

Weak Signal Approach 
Ola Hossjer and Moncef Mettiji 

Abstract-The problem of extracting one out of a finite number 
of possible signals of known form given observations in an 
additive noise model is considered. Two approaches are studied: 
either the signal with shortest distance to the observed data or 
the signal having maximal correlation with some transformation 
of the observed data is chosen. With a weak signal approach, 
the limiting error probability is a monotone function of the 
Pitman efficacy and it is the same for both the distance-based and 
correlation-based detectors. Using the minimax theory of Huber, 
it is possible to derive robust choices of distancelcorrelation when 
the limiting error probability is used as performance criterion. 
This generalizes previous work in the area, from two signals to 
an arbitrary number of signals. We consider M-type and R-type 
distances and also one-dimensional as well as two-dimensional 
signals. Finally, some Monte Carlo simulations are performed 
to compare the finite sample size error probabilities with the 
asymptotic error probabilities. 

Index Terms- Additive noise, asymptotic error probability, 
known signals, M-statistic, maximum correlation, minimum dis- 
tance, multiple classification, R-statistic, robustness, weak signals. 

I. INTRODUCTION 
ONSIDER the following multiple classification prob- C lem: 

The observed vector Y ,  = (Y1,. . . , Y,) is a sum of one of 
p possible vectors acl,, . . ' , acpn and a noise vector e, = 
(e l , .  . . , e , ) .  The amplitude factor a and q, = (til,. ' .  , ci,) 
are assumed to be known while e; represents independent iden- 
tically distributed (i.i.d.) random variables with distribution 
F .  

Let 4,: R" -+ { 1, . . . , P }  be a nonrandomized decision 
rule with Bore1 measurable decision regions 0,; = qh;'(i). 
Assume that the a priori probability of Hi is T; > 0, 
i = 1, . . . , p ,  with T ;  = 1. It is well known that the optimal 
Bayes (maximum a posteriori) decision rule minimizing the 
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error probability 

is given by 

where f = F' (cf. [18, p. 481). 
When F is unknown to some degree it is important to 

find robust decision rules for which Pe(&, F )  is insensitive 
with respect to variations in F .  A minimax solution for 
Pe(q5,, F )  is obtained in [13] when p = 2 and the distribution 
of the noise components is allowed to vary independently 
under both hypotheses. Unfortunately, this approach is difficult 
to generalize to arbitrary p .  Instead, we will consider the 
asymptotic weak signal approach, where the signal amplitude 
a decreases with the sample size as 

a = a,  = K / f i ,  (1.4) 

given some constant K > 0. For reasonable decision rules, 
the error probability then converges as n -+ 00 to a nonzero 
limit. An analysis of the limiting value of the error probability 
is relatively straightforward, since it is closely related to the 
Pitman efficacy of the detector test statistic. Therefore, the 
classical robust minimax approach introduced by Huber [7] 
may be used to analyze the detector. This connection between 
the asymptotic error probability and the efficacy has been 
utilized frequently in the literature when p = 2, using power- 
level type criteria, see for instance [2], [12], and [13] or [ l l ]  
for an overview. 

In this paper, we extend the correspondence between the 
efficacy and asymptotic error probability to p > 2, using P, as 
performance measure, which is more appropriate in many com- 
munication problems. The asymptotic weak signal approach 
also makes it possible to find approximate expressions for 
P,(&, F )  when n is fixed. The exact error probabilities are 
usually hard to calculate when F is not Gaussian. 

A practical limitation of the weak signal approach is the 
decrease (1.4) of the signal amplitude with the sample size, 
since this does not correspond to collecting more and more 
samples of a fixed signal, but rather a new signal is considered 
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L l o g  n ,  

Dn( 1 p. D,( ) L l o g  n2 , G ,  

for each 7) .  On the other hand, it is interesting with a detector 
that classifies weak signals, since these are on the border of 
not being distinguishable, and therefore, the error probabilities 
are especially important to know in this case. In addition, the 
weak signal approach is mathematically more tractable than 
an asymptotic analysis based on large deviation theory. 

We will consider two kinds of detector structures. ' Z .  
I E , 0,CY") VI. -I 
I ,  1) Minimum Distance Detectors: Given some distance mea- 

sure in IR", choose the signal that is closest to the 
received data. 

2) Maximum Correlation Detectors: Choose the signal that 
has maximal correlation with some transformation of the 
received data. 

In Section 11, we define in a general framework distance 
measures in mTL.  In particular, we will consider detectors 
based on M-distances and R-distances and we investigate 
the asymptotic properties of the corresponding detector test 
statistics in Section 111. In Section IV, we show that the 
asymptotic error probability is essentially described by the 
Pitman efficacy. This is utilized in Section V in order to 
find robust detectors. The set-up is generalized in Section VI 
to two-dimensional signals. In Section VII, we compare the 
results with Monte Carlo simulations. Finally, some technical 
results from the asymptotic theory of the test statistics are 

yn- 

collected in the appendix. 

11. GENERAL DETECTOR STRUCTURES 

Let D,,: IR" x IR" + IR be a distance measure between 
vectors in R". We assume that D,, is translation invariant, i.e., 

D n ( r c f z . y + z ) = D , , ( 2 . y )  

for any vectors rc, y, and z in E". Without ambiguity, we 
will write D,(z .  y) = D.(z - y) in the sequel. We collect 
the signals into a 7 1  x p signal matrix C,, = (c;,, .  . . . . c; ,~) ) ,  
and define 

Fig. 1. General detector structures for (a) minimum distance detectors and 
(b) maximum correlation detectors. In (b) the first subtraction of ;n ,,c,,i from 
Y , ,  may be omitted if all signals have the same Lz-norm (see the remark 
after Lemma I ) .  

than that of the vector (Dn(Y7, - n n q n ) , . . . .  D,(Y,, - 
cxn cp7, ) ). 

2) Maximum correlation Detector: 

Note that if we introduce 

with 0 = (01. . . . . H P ) .  Our two detectors may now be specified 
as follows (see also Fig. l), with Y,, = (Yl..  . . . Y,). 

with T:(Y, , )  = (7':; , . . . .  TG),  then the maximum 
correlation detector can be written as 

1) Minimum Distance Detector: 
I 

4 7 1 ( Y 7 1 )  = arglll!n ( D 7 L ( y ! 1  - n 7 1 c l T L ) -  log 
A first-order Taylor expansion of D,,(Y -OC:,) with respect 

(2'2) to 8, around the point $anuZ gives T:(Yn) = T:(Y,,), so 
we expect that the minimum distance and maximum correla- 

(2.3) tion detectors perform similarly when n is large and N, = 

Note that if we introduce 

T,fl(y,)  = D 7 1 ( Y r , )  - D,,(Y, ,  - n71c711)  
K / f i  small. 

two or more of the quantities in brackets equal the maximum, 

with Tf(yll) = (T:"' "T&)> then the minimum In order to make 4, well defined in (2.2) and (2.5) when 
distance detector can be written as 

4,(y,) = argIrlax (~:(y,,) + L log 7 r L ) .  (2.4) 

The reason for rewriting the minimum distance decision 
rule (2.2) into the form (2.4) is that the asymptotic be- 
havior of the random vector T ;  is more natural to study 

we pick (say) the quantity with lowest index for definiteness. 
The norming constant L is specified from case to case. I t  is 
unity for the optimum detector (1.3) and the robust detectors 
in Sections V-B and VI-C. Note that the term L log 7rz may 
be dropped when all a priori probabilities are equal, since this 
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does not change the decision rule. It follows from (2.1) that 
Dk(Y,  - ;a,%,) takes the form of a correlation between cin 
and Y ,  - t a , ~ ~ ,  which explains the name of the detector 
(2.5). 

Example 1) M-Distance: Given a function p: IR -+ R, we 
define the M-distance as 

n 
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k = l  

where z = (51, . . . , x,). For p' = $, we obtain 

k=l 

which may be regarded as a correlation between G, and the 
vector (+(zl), . . . , $(x,)). The canonical choice p(z )  = x 2  
yields the (squared) L2-distance. Simple calculations show that 
(2.2) and (2.5) are actually algebraically equivalent for this 
distance. Huber's p-function, 

defines a family of distances. Note that outliers of magnitude 
greater than a are weighted down by this distance. Since the M- 
distance is generally not scale invariant, we assume that a scale 
parameter of the error distribution has already been estimated 
for some training data. The L2-distance corresponds to the 
case when a = 00 and there is no protection against outliers. 
The L1-distance corresponds to the case when a -+ O+. Here, 
p(x) = 1x1 and there is high protection against outliers. 

Example 2) R-Distance: Given z = (21, . . . , xn), let R l  
be the rank of ( z k l  among lzll,. . . , IZ,~. The R-distance is 
defined as 

n 

DR,n(z)  = xan(R:)lxkl, (2.11) 
k = l  

where a, (1), . . . , a, (n)  are appropriately chosen scores. The 
derivatives are given by 

n 

oh, n(z )  = c c i k  sgn ( zk )an (Rt ) ,  (2.12) 

which is a correlation between G, and the vector 
(sgn (xl)an(R:), . . . , sgn (z,)u,(RL)) of signed ranks. The 
scores a,(.) are generated from a function h: (0, 1) -+ R 
according to 

k=l 

a,(k) = h( ") n + l  ' (2.13) 

Examples of such scores are 
a) Wilcoxon scores, h(u) = U; 

b) van der Waerden normal scores, h(u) = @-'( (~+1) /2) ,  
where @ is the c.d.f. of the standard normal distribution; 

c) truncated normal scores, hb(u) = min(@-'((u + 
l ) / Z ) ,  b) ,  given some b > 0, introduced by Rousseeuw 

d) Jaeckel's minimax solution in [9], L(u) = min (@-'((U 
( ~ 5 1 ,  [161); 

+1 - €)/2(1 - E ) ) ,  b ) .  

Also note that h = 1 yields (up to scaling) the L1-norm. 
Since the R-distance is scale equivariant, there is no need for 
a preliminary estimate of scale, as for the M-distance. For an 
account of R-distances, see [6]. 

Remark: We close the section by remarking that our signal 
model can be imbedded into a linear regression model, 

Y ,  = + e,, 

where 0 = (01, . . , 0,) is the unknown regression parameter 
and e, = (e l ,  . . . , e,) the noise vector. The hypothesis testing 
problem (1.1) is now written as 

, P, Hi:e = a,u,, i = I,... 

with ui being the unit vector in Rp with one in position i. A 
detector may then be constructed by first estimating 0 from 
the data according to 

e = arg min D,(Y, - ec:,) 
e 

and then make a decision according to 

4 , ( ~ , )  = argmin (8 - a , u i ) ~ ~ I l  

= arg min ec:, - anG, 11, z II 
z ) I ^  

where I( . ( 1  is the Euclidean norm in R". However, the 
computational burden of estimating 6 is often quite large, so 
we will prefer the other two detector structures. 

111. ASYMPTOTIC PROPERTIES 
In this section, we investigate the asymptotic behavior of 

the statistics T: and T," introduced in (2.3) and (2.6), and 
start with the following regularity conditions. 

1) The distribution F of the random variables ei is sym- 
metric with an absolutely continuous density f such that 
the Fisher information I ( f )  = s-", (f'2(z)/f(z)) dx is 
finite. 

CLC,/n = 
E, where E = ( ~ i j ) ; , ~ = ~  is a symmetric, positive 
semidefinite p x p matrix. Let also ~ 1 ,  . . . , up be the 
row vectors of E and c = (011,. . . , upp) the vector of 
diagonal elements. 

2) The signal matrices C, satisfy 

A. M-Detectors 

Assume that D,  = DM,, ,  (cf. (2.8)), with p absolutely 
continuous and a derivative $ that is skew symmetric' and 
satisfies 

0 < A M ( $ ,  F )  = $2(z) d F ( z )  < 00, (3.1) s 
/($(x + h)  - $ ( x ) ) ~  d F ( z )  = o(1) as h + 0 (3.2) 

and 

' I t  is actually only necessary that $(x) d F ( z )  = 0 in Lemma 1, but in 
Section V, we need this stronger requirement. 
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for some BM($ ,  F )  > 0. If, for instance, $ is absolutely 
continuous with $' bounded, it follows that BM($ ,  F )  = 
J $' d F .  Assume also that 

/(P(S + h + 4 )  - P(z + h - 9) 

/ ( P ( S  + h + 4 )  - P(Z  + h - 4 )  

- 2q$(z + h))2 d F ( z )  = o(h2 + q 2 ) ,  (3.4) 

and 

- 2q$(z + h ) )  d F ( z )  = o(h2 + q 2 ) .  (3.5) 

as h, q ---f 0. Conditions (3.2H3.5) are satisfied if $ is dis- 
continuous at most at a finite number of points and absolutely 
continuous with a bounded derivative $' outside the points 
of discontinuity. Conditions (3.2H3.3) are the same as those 
in [l]. 

We may now prove asymptotic normality for the test statis- 
tics TE, , and Tff, introduced in (2.3) and (2.6), where the 
subscript M indicates that the distance measure is of M-type. 

Lemma 1: Suppose that D, is the M-distance defined in 
(2.8). Then, under (F), (C), and (3.1H3.3), 

Tfl, I ,  -% N b , .  K2Azi(llj. F ) Z )  (3.6) 

p, = K2B*f(?j'. F )  0 - -0 > (3.7) 

under H,, where the mean vector is given by 

( I  1 )  
and with 0, and CT defined in (C). If p satisfies (3.4H3.5) as 
well, (3.6H3.7) also hold with Tfl .  , in place of Tff, ,. 

Proof: See the Appendix. 0 

Remark: In Lemma 1, T& is defined by differentiating 
D,(Y,  - BC',) with respect to H, around the point t9 = 
ia,,uJ. When all a priori probabilities are equal, this choice 
of differentiation point always yields asymptotically optimal 
decision regions among all decision rules based on TZ, see 
Proposition 2 and the remark following. If instead B = 0 is 
chosen as the differentiation point, it follows as in the proof 
of Lemma 1 that (3.6) holds with p, = K2BLtf(li,, F ) a , .  
Hence, the mean vector under H,, p, is translated in a direction 
proportional to 0 = (011, . . . ~ opp)  for z = 1 . . . . p .  Since the 
decision rule picks the maximum of T$ + L log 7rJ it is easily 
seen that the asymptotic error probability is unaffected after 
the change of differentiation point only when 011 = . . . = opp.  
This corresponds to (cf. (C)) that the signals ancl,, . . , a,cpn 
have equal asymptotic L2-norm. This remark is also valid for 
R-statistics and two-dimensional signals. 

B. R-Detectors 

Assume that D ,  = DR,  , (cf. (2.11)), with scores a,( i)  
generated from a function h according to (2.13). Also suppose 
that h is nonnegative, nondecreasing, 

0 < A R ( ~ )  = h ( ~ ) ~  d~ < X, (3.8) 

~ ( u ) ~ F ( ' I L )  d u  < M, (3.9) 

1' 

where 

As for M-detectors, we may prove asymptotic normality for the 
test statistics T i ,  , and TZ, ,, with the subscript R indicating 
that the distance measure is generated from ranks. 

Lemma 2: Suppose that D, is the R-distance defined in 
(2.1 I) with scores generated according to (2.13). Then, under 
(F), (C), and (3.Q-G.10), 

T:, n A Nh,. K 2 A R ( W )  (3.11) 

under H,, where the mean vector satisfies 

p, = K2B& F )  ( 0, - -0 2 ) , (3.12) 

with 0, and 0 defined in (C). Furthermore, (3.1lH3.12) hold 
with Tg , in place of Tg,  r , .  

Proof: See the Appendix. 0 

IV. ASYMPTOTIC ERROR PROBABILITIES 

Having derived the asymptotic properties of the test statis- 
tics in Section 111, we are now ready to analyze the asymptotic 
error probabilities. Let 4 = {q5n}r=;"=1 symbolize a sequence of 
decision rules. For such a sequence, we let 

- 
P r ( 4 .  F )  = limsupPe(477, F ) ,  (4.1) 

n - 3= 
the lim sup of the error probabilities, be our performance 
criterion. 

We are interested in decision rules generated from M- 
distanceslR-distances according to (2.2)-(2.7). It is clear from 
Lemmas 1-2 that the maximum correlation and minimum dis- 
tance test statistics may be treated within a unified framework, 
as may M-statistics and R-statistics. For this reason, we simply 
write T ,  in the sequel referring either to TEf, ,, TZ,  ,, Tg,  ,, 
or TZ ,. Similarly,A may stand for Al l ($ .  F )  or A R ( ~ )  and 
B for either Bl l ($ ,  F )  or B R ( ~ .  F ) .  

We say that a sequence of decision rules q5 is generated from 
{ T , }  if there exists a decomposition of IRp into p disjoint 
Bore1 measurable subsets G I ,  . . . . G, such that 

4z1(1) = [ I , , ,  = T i l ( G ! ) .  I = l:...p. (4.2) 

so that H ,  is chosen whenever TI,  falls into G,. 
In order to facilitate the computation of pe(4, F )  when 

4 is generated from {T , } ,  it is appropriate to transform T ,  
so that the covariance matrix becomes radially symmetric. In 
particular, this makes it easy to see how P ,  depends on A and 
B. According to Lemmas 1-2 we have T , 3 Z ,  where 

Z - N ( p 7 .  K 2 A Z )  (4.3) 

under H, and pt = K2B((r,  - + U ) .  The rank-q matrix Z may 
be diagonalized as 

Z = Q'DQ. (4.4) 
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where Q is a p x p orthogonal matrix and D = 
diag (d l ,  . . . , d p ) ,  a diagonal matrix with diagonal elements 
d l  2 . . . 2 d, > 0 and d,+l = . . . = d p  = 0. Then define the 
affine transformation A: IRp + IR4 by 

(4.5) 

where 

(i.e., H = 
?',(Y,) = A(T,(Y,)) A 2, where 

when q = p). Transforming Z we obtain 

2 = A ( 2 )  N N(fi,,  €-'Iq) 

j i ,  = A(p,) = Ku,ZH, 

(4.6) 

under H,, 

(4.7) 

E = B~ f~ (4.8) 

I ,  is the q x q identity matrix and 

is the Pitman efficacy. This quantity f only depends on li, 
and F (or h and F )  and it measures the concentration of the 
random vector 2 around j i , .  On the other hand, the Euclidean 
distances between the center of gravity points under different 
hypotheses depend on the signal characteristics only, since 

Ilfi, - f iJ2 = K2(% - 2g2, + 03J)  

which is the asymptotic Euclidean distance between a , ~ ,  
and ancj, .2 Consequently, the signals are separated from the 
detector and noise characteristics ( F  and $J or h)  in terms of 
means and covariance matrices of 2, respectively. Since the 
signal characteristics are fixed, so are all f i i .  We will see in 
Section V that this simplifies the analysis of P,(q5, F ) .  

It follows from (4.3H4.4) that P ( Z E M )  = 1 under 
HI, . . , H p ,  where 

M = Span {ulQ,. . . ,U,&} - -K2Ba (4.10) 

is a q-dimensional hyperplane in Et?. Given a decomposition 
{G;}:=l of RP, let 

Gi = A(Gi n M ) .  (4.11) 

When p = q we have M = IRp, Gi = A(Gi), and since A 
is then bijective it follows that q5k1(i) = T ,  JG;), so that 
Hi is chosen whenever TngGi and the sets G; correspond 

1 
2 

--I - 

2The choice of A is not unique if two of the nonzero eigenvalues of C 
coincide, since Q is not unique in this case. However, this does not affect the 
covariance matrix of Z and the painvise distances between jiz and ,%?. 

to decision regions in IR4. This may not be true when q < p 
since T, need not be concentrated to M for a fixed n and A 
is not injective outside M. Actually, A(G,) = Rq may hold 
in this case, and therefore the image of different G, under A 
overlap. However, the following proposition implies that the 
sets G, correspond asymptotically to decision regions in Rq 
as far as computation of error probabilities is concerned, even 
when q < p .  

Proposition 1:  Given a decomposition (Gz}t=l of IRp, let 
q5 be the sequence of decision rules generated from (T,} 
according to (4.2) and suppose that3 

P(Z€BG,(H,)  = 0, z = I , . . .  1 P. (4.12) 

Then, 
- 
Pe(q5, F )  = n-oo lim Pe(4n, F )  

P 
= ~ a , P ( 2 ~ G , I H , ) ,  (4.13) 

a = 1  

with G, defined in (4.11). 

Proofi Since Tn 3 2, it follows from (4.12) and the 
relation P ( Z E M )  = 1 (cf. (4.10)) that 

P 

,=I  
P 

i=l 
P 

(4.14) 

Since A is surjective and 

A-'(A(z)) = z+ Span{uq+lQ1...,uPQ}, 

it follows that the restriction A M :  M -+ R4 of A to M is a 
bijection and hence 

nk1(G;) = G: n M (4.15) 

because of (4.11). But (4.15) implies that 

P(ZEG: n M I H , )  = P(zEA&~(G:)IH,) 

= P(Z€G;JH,) ,  

which together with (4.14) proves the proposition. U 

Fig. 2 illustrates the decision regions in the spaces IR", I R p ,  
and IRq for decision rules generated from (T,} according 
to (4.2). Note that the actual decision is made in IRp, and 
the transformation A is performed in order to facilitate the 
computation of asymptotic error probabilities. 

The decision rules (2.4) (and (2.7)) are generated from 
{Tn}, with 

G, = G t ( ~ ,  L )  

= { s€IRP; '1 = arg max (x, + L log T,) (4.16) I 
and TT = (T~,-..,T~). 

set-theoretic complement and cl( ) the closure of the set. 
31n (4.12), a G ,  = cZ(G,) n c l ( G : )  denotes the boundary of  G , ,  ' is the 
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RP 

rig. L. Decision regions in the spaces IR", RI', and l R 9  for a decision rule 
o,, generated from T,,  according to (4.2). 

/ 

Fig. 3. Distribution of Z under different hypotheses and the regions 
(when 7il  = . . . = rI, = l/p). 

Proposition 2: Suppose GI-= G,(.lr. L )  is given by (4.16). 
Then the transformed regions G, = G,(?r, L )  in IRq according 
to (4.11) are given by (cf. Fig. 3) 

1 

Moreover, (4.12) is valid, so that P,  is given by (4.13). 

Proof: One may verify directly that A transforms G, n M  
to the set G, in (4.17). We prefer to show this indirectly in the 
following way: Let z be an observation of the random vector 
2, whose multivariate normal distribution under H ,  is given 
by (4.3). We know that P ( Z E M )  = 1 and that the density 
of Z under H ,  is 

z E M .  (4.18) 

where 

E- = Q' diag ( d l l .  . . . . d y l .  0. . . . . 0)Q 

is a (pseudo)inverse of E. Suppose now that given z we want 
to determine Hi and that the cost of making an error is Ci 

under H,. The optimal decision regions F, that minimize the 
average cost 

are given by (cf. [18, p. 481) 

J 
F, = X E M :  I = argriiaxC,TJ f , ( x )  { 

= { x € ~ :  I = arg niax 

(4.19) 

where the last equality follows from (4.18). On the other hand, 
we may make the decision after observing Z = A(z).  Here, 
z is an observation o f  Z ,  which is distributed according to 
(4.6) under W,. Let f,(y) denote the corresponding density. In 
analogy with (4.19), the optimal choices of decision regions 
when observing Z are 

Since F, and F, are unique and A,r ,  the restriction of A to kf, 
is bijective, i t  follows that F, = A ( F , ) ,  7 = 1:'. . p .  If now 

, inspection the costs are chosen according to C,  = 7rFBl4-' ' 

shows that G,  n = F, and 6, = F, when G, is given 
by (4.17). Hence, et = A(G,  n &I),  which proves the first 
assertion of the proposition. 

We observe finally that 

P(ZE~)G, IH , )  = P ( Z E ~ ~ G ,  n MIH,)  = 0. 

because of (4.18) and (4.19). 0 

Remark: We say that a sequence of decision rules is 
asymptotically optimal if it minimizes Pc($ .  F )  given F .  The 
asymptotically optimal sequence of decision rules among all 
based on { T , l }  (cf. (4.2)) have 

This follows from (1.3), (4.6), and Proposition 1. The set G, 
always agrees with G,(.lr. L )  in Proposition 2 when 7r1 = 
. . = xP. This is also true if p = - log f or /L = h F ,  L = 1 

and .lr is arbitrary, since in these cases A = B. In fact, the latter 
two sequences of decision rules are asymptotically optimal 
given F among all decision rules. 
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V. ROBUST DETECTORS 
We now turn to the problem when F is not known exactly, 

but rather belongs to some appropriately chosen class F of 
distributions. Our goal is to find a sequence of decision rules 
that minimize 

We found in Section IV that Fe($,  F )  is given by (4.13) and 
(4.17) when q5 corresponds to a minimum distance/maximum 
correlation M- or R-detector. A problem is that the regions 
Gi(x, L )  depend on B in general, which in turn depends on 
F. An important special case when Gi(x, L )  is independent 
of F is when x = ( l / p , . .  . , l/p), which corresponds to a 
uniform a priori information. 

A. Equal a priori Probabilities 

Assume that x = ( l / p , .  .. , l /p).  Let FO be the nominal 
distribution, assumed to have a symmetric, strongly unimodal 
and twice continuously differentiable density fo with finite 
Fisher information. We consider the gross-error neighborhood 

Fe = { F  = (1 - f )Fo + E H ;  H E M }  (5.2) 

introduced by Huber in [7], where 0 < E _< 1 and M is the 
set of all symmetric probability measures with finite Fisher 
information. First we show that Fe is equivalent to the efficacy 
E as performance criterion. 

Lemma 3: Suppose x = (l/p, . . . , l /p),  that 4 = {&} is 
generated from a sequence of M- or R-statistics according to 
(2.4) or (2.7). Then, p,(q$, F )  is a decreasing function of the 
efficacy, E.  

Proof: It follows from Propositions 1-2 that P,  = 
Cy==, ~iP(.%@GilHi), with 

Gi = y d R q ;  i = argmin I(y - jijjll . (5.3) 

Let 20 be a random vector with distribution N ( 0 ,  I q ) .  It 
follows then from (4.6) that 

- {  J 1 
2) 

Moreover, 0 is an interior point of the convex set Gi - j i i  
for each i ,  and hence, a(Gi - j i i )  c b(Gi - F i ) ,  whenever 

0 

In order to find minimax decision rules, we introduce F as 
the element of Fe that minimizes the Fisher information. Its 
density is given by 

0 < a < b, and this proves the lemma.4 

for some a and b depeyding on Fo and E ,  chosen so that f 
becomes a p.d.f. and - f ' / f  is continuous (cf. [7]). Define 

b(x) = - 1% f(.) 

and 

k (u )  = hp(u )  

(cf. (3.10)). In particular, when FO = a, the standardnormal 
distribution, j equals Huber's p-function (2.10) and h gives 
Jaeckel's scores defined in Example 2 of Section 11. It is shown 
by Huber ([7], M-statistics) and Jaeckel ([9], R-statistics) 
that the following saddle-point conditions are satisfied (with 
$ = J ) :  

sup E M ( $ >  F )  EM('$', @) 
?L 

= inf ER(&,  F ) ,  
F € F C  

(5.6) 

and moreover, 

which follows from the definition of Ahf, B M ,  A R ,  and BR. 
Let 4~ and 4~ denote sequences of M-detectors and R- 
detectors respectively, either of minimum distance type (2.4) 
or maximum correlation type (2.7) and with p = 6 or h = h. 
(The choice of L is arbitrary since x = ( l / p , .  . . , l/p).) We 
then have the following minimax result. 

Theorem I :  Let x = ( l / p , .  . . , l /p) .  Then the sequences of 
decision rules $hf and d ; ~  defined above satisfy the relations 

where the uncertainty class Fe is defined in (5.2) and the 
infimum is taken over all sequences of decision rules. 

Proof: It follows from Lemma 3 and (5.5H5.7) that 

(5.9) 

(1 - E ) f o ( Z ) ,  

(1 - t ) f o ( a )  exp(-b(Izl - a ) ) ,  
1.1 I a, 
1x1 > a ,  

Since b(z) = -log f(x), the minimum distance M-detector 
coincides with the optimal Bayes decision rule (1.3) at F .  
Hence, q 5 ~  minimizes PP(&, F )  for each n and (5.4) 

More generally, let ji, (&) and %(e) denote mean vector and covariance 
matrix of-2 as a function of & and suppose also that the transformed decision 
regions G,(&) depend o_" &. Then a sufficient condition for Lemma 3 to 
remain valid is that P ( Z o € E ( & ) - ' / 2 ( G : , ( & )  - ji,(&))) is an increasing 
function of €, for z = 1. . . . , p .  

in fP , (4 ,  = F , ( $ M ,  F ) .  (5.10) 

0 

4 

(5.9) and (5.10) together prove the theorem. 
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B. General Case 

In this subsection, we impose no restrictions on T .  As 
mentioned previously, the regions G,(T. L )  then depend on 
B, which in turn depends on F. We will, therefore, restrict 
the uncertainty class to 

3; = { F  (1 - f )Fo  + FH. H€,2/I'}. (5.11) 

where M' is the subclass of M (cf. (5.2)) of probability 
measures with H ( ( - o ,  a ] )  = 0, 11 = Q ( F .  Fo) being the 
constant in (5.4). FL is thus a subclass of Fe where con- 
tamination is restricted to the tails. The class F: is not a 
genuine neighborhood of Fc since Fo itself does not belong 
to 3:. On the other hand, F-the least favorable distribution 
of 3e-belongs to 3 L. 

Lemma 4: Let T be arbitrary and let $,$I and (#IF be defined 
as in Section V-A with L arbitrary. Then, P,(4,1. F )  and 
P?($R. F )  are identical and constant over 3:. 

Proof According to Propositions 1-2, p c  ( $ 7 1 .  F )  de- 
pends only on An[( $. F )  and Blf(  $. F )  and P ,  ( 4 ~ .  F )  
only on A R ( ~ )  and BR(&, F ) .  Since (/I = - f^ ' / f^  is skew- 
symmetric, a change of variables (1 = 2p( r )  - I. r > 0, 
shows that 

A ~ J ( $ .  F )  = An(;/)  

- 

Moreover, since ?i;(x) is constant when 1.1.1 > O ( F .  Po), 

A,bf(?i;. F )  = A A f ( J .  P ) .  V F E 3 ;  

follows. Similarly, 

BAkr(?j;. F )  = I?\[(&. k)- ' d F E 3 :  

A change of variables plus integration by parts rhows that 

where FEFL. In particular, putting F = F gives 

L?& P )  = 2 $ ( . r ) f ( r )  ds = n,f( 4. P ) .  1% 
since ?i;' is symmetric. The facts that F (  r )  = F(.r.) when 
/ S I  5 a(F, Fo)  and j1'(2F(n.) - 1) = 0 when r > a(F. Fo) 
finally imply 

B R ( k 3  F )  = L?R(h .  p ) .  V'FEFL. 

U 

We may now state the minimax robustness result for general 
T .  The difference from Theorem 1 is only that the uncertainty 
class 3: is narrower. 

Theorem 2: Let T be arbitrary and let $1, and d~ be 
defined as in Lemma 3 with L = 1. Then, 

inf sup P C ( 4 .  F) = sup Ff(JAt[. F )  * F E F :  FEF:  

= sup F,( (Jn.  F ) .  (5.12) 

with the uncertainty class .FL given by (5.1 1) and the infimum 
taken over all sequences of decision rules. 

FE3: 

Proof. According to Lemma 4, 

hllp P,  (&> F )  = slip P,($,f. F )  
F € 3 :  F t F :  

= P?(&I> F ) .  (5.13) 

Since 4.11 yields the optimum decision rule for each n (5.10) 
holds, which together with (5.13) proves the theorem. 0 

VI. TWO-DIMENSIONAL SIGNALS 

A. Problem Stutemrrit 

Let us generalize our hypothesis testing problem to the case 
when the observed data are two-dimensional vectors: 

H , :  Yk = n,,c,k +ek .  

where Yk = ( Y A . ~ .  Y k 2 ) ,  c , ~ ,  = ( r l k l .  c i k 2 ) ,  and ek = 
( c k l .  t ' k 2 ) .  We also assume that the errors ek are i.i.d. random 
vectors with distribution F ( d z )  = f(llz1l) dx, which is radi- 
ally symmetric, so that 27rr f (7.) becomes the p.d.f. of the noise 
envelope Ilell. As before, the norming constant a,  approaches 
zero as 7) 4 x according to (1.4). Note that the model (6.1) 
reduces to (1.1) if we assume that and Fk2 are independent. 
However, this is only true when the marginal distributions of 
e are Gaussian. In many radar and communication problems, 
(6.1) corresponds to detection of bandpass signals in bandpass 
noise.' 

We restrict ourselves to generalize the M-detector from 
the one-dimensional case. Much of the analysis is analogous, 
so we will be rather brief. Let g = ( 5 1 . '  . . 5,) and y = 
(yl .  . . . , y,, ) be given 2 x n-matrices and 1): IR 4 IR a given 
function. Define the M-distance 

h. = I..'. , T I .  i = I . . . .  . p .  
(6.1) 

/ I  

k=1  

and the corresponding minimum distance detector 

4ri(l',l) = argiiiiii (D, , (E/ ,  - f v l l c , r i ) - L  log 7 r t ) .  (6.3) 

where l',, = (YI :... Y , , )  and clTl = ( & 1 . ' . . , c z n ) .  In- 
troducing ?'fl(l',,), a vector with components TE(y,)  = 
Dn(l',,) - D,,(Y, - ( Y ~ , ~ , , ~ ) ,  / = I.....p, we may rewrite 
(6.3) as 

(,),,(~,,) = xrgmax(Trfl(I',,) + L log 7 r l ) .  (6.4) 

The maximum correlation detector takes the form 

where 

'The set-up may easily be generalized to observations in any dimension. 
For notational simplicity, we will continc ourselves to two dimensions. This 
caw is also most interesting for applications. 



602 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 2, MARCH 1993 

are the components of the p-dimensional vector T,"(Y,), . 
denotes the dot product and w: R2 --f R2 is given by 

with $ = pl .  We may interpret this detector as one that chooses 
cin in order to maximize the correlation with a transformation 
of y, - ;ancin. The remark following Lemma 1 holds even 
in two dimensions: If the L2-norms of anqn, . . . , a,cpn are 
the same, we may replace w(Y,  - ;angin) by w(Y,) in (6.6). 

B. Asymptotics 

As in Section 111, we first consider the asymptotic behavior 
of the test statistics T," and e. First, we impose a set of 
regularity conditions: Suppose that the limits 

exist and put 3 = (eij);, j=l, 6i = ( C i l ,  . . . , i ? ip ) ,  and 6 = 
(611, . . . , ~ 7 ~ ~ ) .  Assume also that p is absolutely continuous 
with p 1  = $, 

0 < A($, F )  = m - j ( r ) $ ( ~ ) ~  dr  Loo 
1 
2 

= -Ellw(e)l12 = E(wl(e)) '  < oc, (6.9) 

(with w = ( w l ,  wg)), and 

lim Ellw(e + h) - w(e)l12 = 0. (6.10) 

Further, there exists a B($, F ) ,  0 < B($, F )  < CO, such that 

Ew(e  + h) = B($ ,  ~ ) h  + o(llhll) (6.11) 

h-0 

holds. Finally, 

E(p(lle + h + qII) - 411. + h - qII) 
- 2 q .  w ( e  + = o(l(h112 + 11qll2) (6.12) 

and 

% 4 l l e  + h + 41) - p(lle + h - qII) 
- 2 q .  w(e + h) )  = o(llhIl2 + 11qIl2> (6.13) 

hold as llhll and llqll + 0. What is the explicit form of 
B($, F)? First we note that the derivative 

if $ is differentiable. If also $' is bounded, we can differentiate 
under the integral sign in (6.11) to obtain 

= B($, F)I2 

We now proceed and prove asymptotic normality for the test 
statistics T," and T,". 

Lemma 5: Let TE and T," be defined as in Section VI-A 
and suppose that (6.8X6.11) are valid. Then, 

T," A N(p i ,  K2A($,  F ) E )  (6.14) 

under Hi, where 

pi  = K 2 B ( $ ,  F )  (6i - i6). (6.15) 

If also (6.12X6.13) are satisfied, (6.14) holds with T f  in 
place of T,". 

Proof: As in the proof of Lemma 1, we make the 
decompositions T," = TF) + Ti2) + Ti3) and TD = Ti1) + 
Ti') + Ti3) + TF), where the jth component of T f  I ,  . e . , TF) 
under Hi is given by 

and finally 

By similar arguments as in Lemma 1, it may be shown that 

Ti3) + K 2 B ( $ ,  F )  LT~ - -0 , (- ;-) 
and 

TF) -% 0, 

under Hi, from which the lemma follows. 0 
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C. Robust Detectors 

Given a sequence of decision rules 43 = {q57L}r=c=l, let 
- P(&.  F )  symbolize the error probability as in (1.2) and 
P,(4. F )  the lim sup of the error probabilities as in (4.1). 
The properties of r, in Section IV carry over directly, since 
the asymptotic behavior of TF and T$ is analogous in the 
one-and two-dimensional cases according to Lemmas 1 and 
5.  The only difference is that the quantities A ,  l?, E, etc. are 
replaced by their two-dimensional analogies '4, B, and 2. We 
also introduce the two-dimensional efficacy 

€($. F )  = l?(yt, F)*/.4(J,. F ) .  (6.16) 

The distribution of the transformed limiting random vector Z 
is then given by (cf. (4.6)) 

2 = A ( 2 )  - ,V(ji,. & -I&). (6.17) 

under H, ,  with ji, given by (4.7) (replacing E by 2). 
Since Propositions 1-2 carry over in particular, we see that 
P ,  (0. F )  only depends on A ( y ? ,  F )  and l?(~~i. F )  for general 
a prcorr probability vectors ?r. In the special case when K = 
( l / p > .  . . . l/p), P r ( 4 .  F )  only depends on & ( v i .  F ) .  

- 

Let us define the f-neighborhood 

7:  = { F  = (1 - F)FO + FH: H€,bt ' /}  

as uncertainty class, where Fo and IT are probability mea- 
sures on R2,  with Fo(dz)  = fo(]lxll)  dx radially symmetric 
and absolutely continuous and with each HEM!'  radially 
symmetric and supported outside a circle of radius ( 1 ,  where 
n is a constant to be chosen below in (6.19). In this way, 
only tail contamination is allowed. This implies in particular 
that Fo#FY, so .7=: is not a genuine neighborhood of Fo 
(as in Section V-B). The least favorable distribution in 3: 
with minimal Fisher information does not have exponential 
tails ( f ( r )  = Ce-'") as in the one-dimensional case, and 
the optimal detector for this distribution would have a rather 
untractable form (cf. [8,  pp. 229-2301), We rather propose to 
start out from F ( & )  = f(llxll) dx, which has exponentially 
decaying tails according to 

(1 - f )  fo(.). 0 5 7' 5 0 ,  

A.) = { (1 - f)jo(n)r-"(r-a). 7' > 0.  

This is done by Kassam in [ lo]  when p = 2. The constants 
a = a ( € ,  f o )  and 11 = Q F ,  f o )  are chosen in order to make f 
a p.d.f. and f^ , / f  continuous at a. Then, define 

f i ( 7 ' )  = -log f ( 7 ' ) .  (6.18) 

and let J D  and $c be the sequences of minimum dis- 
tance/maximum correlation decision rules with L = 1, p = b, 
and 4 = 4. 
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It is easy to see that A(4.  F )  = iE~,$(IIell)' is constant 
over 3;. (Here, EF denotes expectation when F is the 
underlying distribution.) However, as F varies over F Y, 

varies between (1 - F)B(G.  Fo) and (1 - F)B($ .  F0) + 
~ J ( n ) / 2 n ,  so &' is not constant over the uncertainty class. 
We can, therecore, not proceed along the lines of Section V-B 
to prove that q5D and dc are minimax decision rules in terms 
of asymptotic error probability. Not even when the a priori 
probabilities are equal and P ,  depends monotonically on the 
efficacy & do J D  and s" constitute a minimax detector, since 
a saddle-point condition of the kind (5.5) is not valid. 

Anyhow, q j D  and JC are intuitively appealing as robust 
detectors because of the limiting form of 4. Moreover, when 
F is small, &' is nearly constant over FY, so that J D  and $c 
are nearly minimax. 

VII. MONTE CARLO SIMULATIONS 

In this section, we compare some Monte Carlo estimates of 
the error probabilities Pr(&.  F )  with the asymptotic formulas 
derived in Section IV. We performed 30 000 simulations for 
each combination of signal configuration, noise distribution 
and detector. The following signal configurationhoise distri- 
bution/detectors were used. 

1)  Signal Configurations: One-dimensional signals, p = 2, 
= 0, 

1 
c2k = ___ (1 - (-1)Ap). /L = 0.5. (Sl)  

J T q F  
One-dimensional signals, p = 4, 

Two-dimensional signals, p = 2, CIA. = (0. O) ,  

Two-dimensional signals, p = 1, 

c,k = ( c o s  (T + :) . sill (T + ;)) . (s4) 

2) Noise Distributions: The simulated noise distributions 
are a mixture of normal distributions (CN(F, n2)-Contami- 
nated Normal) with density functions 

in one dimension and 

in two dimensions, cp being the p.d.f. of the standard normal 
distribution. 
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( b) 

(a) (Sl) and (S3). (b) (S2) and (S4). 
Fig. 4. Mean vectors bz and decision regions G, for signal configurations. 

3) Detectors: The detectors considered are grouped into 
four categories: MD, MC, RD, and RC. The first letter 
indicates distance type, the second stands for either minimum 
Distance or maximum Correlation. For MD detectors the 
Huber functions pa (cf. (2.10)) have been used and for MC 
detectors ?,ha = p;. For a = 0 we write 1x1 for p and sgn for 
?,h and for a = 00 we let x2 denote p. The score functions 
utilized for R-distances have either been the van der Waerden 
normal scores ( h  = a-'), truncated normal scores ( h  = ha) 
or Wilcoxon scores ( h  = hw). (See Example 2.) 

Next, we describe the calculation of asymptotic error proba- 
bilities. The error probability F )  may be approximated 
b_y FE(4, F ) ,  which is given by (4.13), with decision regions 
G,(?r, L )  according to (4.17) and the distribution of the limit 
random vector 2 under each hypothesis given by (4.6) in the 
one-dimensional case and by (6.17) in two dimensions. We 
suppose equal a priori probabilities, so we may put L = 0 
in the detector (2.2), (2.5), (6.3), or (6.5). Assuming that the 
signals repeat themselves in periods equal to the length of the 
simulated signals, it is easy to see (cf. (C)) that 
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where &(x) = 1 -a(.) the upper tail probability of a random 
variable with standard normal distribution and E is the efficacy 
(cf. (4.8)). 

(S2) For this signal configuration, 

/ 1 0 -1 o \  

and q = 2. The two nonzero eigenvalues of E are equal 
to two, so the choice of A is not unique as mentioned in 
Section IV. One choice gives fi1 = K(1, 0), b2 = K(0,  l ) ,  
b3 = K(-1, 0), and /24 = K(0,  -1); so that 

1 
n E = -cl,c, (7.3) 

in the one-dimensional case with n equal to the length of the 
simulated signals. A similar trun_cation of (6.8) is possible for 
two-dimensional signals when 22 is to be calculated. Hence, 
we obtain 

. P  

with E (or 2) as given above. We illustrate the calculation 
of Fe for each of the studied signal configurations ( S l H S 4 )  
next and in Fig. 4. 

(S1) In this case, 22 = ( k  :), q = 1, j i 1  = K ,  and 

f i2  = 0, from which it follows that 

follows. 
(S3) In this case 3 = (k  :), q = 1, f i 1  = K ,  and 

f i 2  = 0, from which 
- 
P e ( 4 ,  F )  = Q(K&/2) (7.8) 

follows, with & equal to the efficacy in two dimensions (cf. 
(6.16)). 

(S4) Here, 2 is given by (7.6) and b1 - ,G4 are the same 
as for (S2). This gives 

- P e ( 4 ,  F )  = 1 - (1 - Q(K4€72)) ' .  
(7.9) 

The results of the Monte Carlo study are shown in Tables 
I-VI and Fig. 5. The simulated error probabilities are given in 
% with 95% confidence intervals. Table I gives an example that 
the enhanced performance with robust detectors in impulsive 
noise is more evident for two-dimensional signals than for 
one-dimensional signals. Table I1 gives an example of the 
effect of increasing the number of possible signals p from 
two to four. For the signal configurations (S1) and (S2), 
the error probability is almost doubled when the nearest 
neighbor distance (between different ji,) is the same. Table I11 
compares the performance of minimum distance and maximum 
correlation detectors for various signal configurations. The 
minimum distance detectors seem to be slightly better. This 
is clear for MD 1x1 compared to MC sgn, but for the other 
detector pairs the difference is not so obvious. Table IV and V 
compare the performance of the detectors in various types of 
noise. The MD p1.5 detector has the best performance, closely 
followed by MC $1.5. The Euclidean distance MD x2 has only 
a little better performance for Gaussian noise but catastrophic 
characteristics for impulsive noise. The rank-based detectors 
behave relatively well, especially the Wilcoxon detector, which 
has better performance than the other rank-based detectors 
in impulsive noise. The MD 1x1 detector has relatively low 
error probabilities for impulsive noise and finally MC sgn has 
relatively bad performance for all noise distributions. 

Let us now discuss the agreement between the simulated 
finite sample error probabilities and the asymptotic error prob- 
abilities. About half of the 106 asymptotic error probabilities 
lie outside the 95% confidence intervals, so there is certainly 
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TABLE 1 
ERROR PROBABILITIES (IN 7%) FOR ONE- AND TWO-DIMENSIONAL SIGNALS 

Two signals Four signals 

1 dim 2 dim 1 dim 2 dim 
6 1 )  6 3 )  6 2 )  6 4 )  

Detector K=m K = f i  K = &  K=m 

Theor 9.83 9.83 1 1.06 11.06 

Sim 9.52 f 0.33 9.63 f 0.33 10.81 f 0.35 11.03 * 0.35 
Theor 4.78 4.20 4.08 3.41 

Sim 5.06 f 0.25 4.14 f 0.23 4.24 f 0.23 3.80 0.22 
Theor 6.85 4.93 6.74 4.27 

Sim 5.80 * 0.26 4.53 f 0.24 4.77 f 0.24 3.98 k 0.22 

M D  x 2  

MD PI > 

MD ! x !  

Positioning of ,!i1;..,fi,, is the same for (SI) and (S3) and also the 
same for (S2) and (S4). F = CN(0.25.3’) and n = 30. 

TABLE 11 
ERROR PROBABILITIES (IN %) FOR ONF-DIMENSIONAL 

SIGNALS WHEN 11 = 2 AND 1) = 4, RFSPECTIVEIY 

Two 
+yak 

Detector 
(SI) 

K = d %  

Four 
signals 

6 2 )  
K=m 

Theor 

Sim 
Theor 

Sim 
Theor 

Sin] 

MD x’ 

MD Pl.5 

R D  hi 5 

9.83 

9.52 f 0.33 
4.78 

5.06 * 0.25 
5.20 

5.67 f 0.26 

~ 

18.70 

17.80 f 0.43 
9.33 

9.73 f 0.34 
10.14 

11.47 i 0.36 

is 
The amplitude K is fi times larger for (SI), so that min,, , / I F ,  - b,/ 
the same for  both signal configurations. Hencc, P,, ( 5 L l  = 1 - (I - 

= 2P,, , , , , .  F =  CN(0.25.3’)and n = 30. 

TABLE 111 
ERROR PROBABlLlTlFS (IN 9;) FOR MINIMUM DISIANCF AND 
MAXIMUM CORRtLATlON DEI tClORS THAI THFORETICALLY 

HAVF THE SAME A ~ Y M P I O T K  ERROR PROBABlLlTY 

~~ ~ 

Theor 

Sim 
Theor 

Sim 
Theor 

Sim 
Theor 

Slm 
Theor 

Sim 
Theor 

Sim 

MD P I  i 

MC ILI i 

M D  ! x !  

MC sgn 

RD h ,  

RC h, 

~ 

1.90 

1.92 f 0.16 
1.90 

1.95 * 0.16 
4.22 

3.00 f 0.19 
4.22 

4.35 f 0.23 
1.94 

1.88 f 0.16 
1.94 

1.98 i 0.16 

1 . 1 0  

0.94 f 0.1 1 
1.10 

1.12 f 0.12 
3.44 

1.82 f 0.15 
3.44 

3.13 & 0.20 
1.14 

1.17 f 0.12 
1.14 

1.20 * 0.12 

1 .86 

2.04 f 0.16 
1 .86 

2.46 f 0.18 
2.77 

2.62 * 0.18 
2.77 

3.62 i 0.21 
- 

- 
- 

- 

1 .07 

1.15 k 0.12 
1.07 

1.15 i 0.15 
1.89 

1.54 f 0.14 
1.89 

1.76 f 0.15 
- 

- 
- 

- 

a significant deviation from the asymptotic values for some 
detectors/noise distributionsisignal configurations. This is due 
to the finite signal length, which in most cases was 30, except 

TABLE IV 
ERROR PROBABILITIES (IN %) FOR VARIOUS 

DETECTORS AND NOISE D I S T R ~ B U T ~ ~ N S  

__ 
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Noise distribution CN(c ,  a*) 
E = 0 E = 0.05 E = 0.25 E = 0.1 

Detector a =  1 a = 3  a = 3  a =  10 

2.06 11.06 36.54 Theor 0.62 
MD x’ 

Sim 0.67 f 0.09 2.20 f 0.17 10.81 f 0.35 31.64 -t 0.53 
1.10 4.08 2.28 Theor 0.72 

MD PI 7 

MC @ I  i 

Sim 0.78 * 0.10 0.94 f 0.11 4.24 k 0.23 2.45 f 0.17 
1.10 4.08 2.28 Theor 0.72 

Sim 0.72 i 0.10 1.12 i 0.12 4.64 f 0.24 2.60 f 0.18 
Theor 2.87 3.44 

MD !.r! 
Sim 1.31 k 0.13 1.82 & 0.15 

Theor 2.87 3.44 
MC sen 

Sim 2.38 k 0.17 3.13 f 0.20 
Thcor 0.62 1.29 

RD W 1  
Sim 0.67 _+ 0.09 1.77 i 0.13 

Theor 0.72 1 .09 
RD 1 1 ,  

Sim 0.69 * 0.09 1.13 f 0.12 
Thcor 0.74 1.14 

RD 11, 

Sim 0.68 f 0.09 1.17 i 0.12 

6.74 

4.77 & 0.24 
6.74 

6.54 k 0.28 
6.21 

6.92 i 0.29 
4.60 

5.85 f 0.27 
4.41 

5.04 k 0.25 

4.62 

2.92 f 0.19 
4.62 

4.42 f 0.23 
4.79 

4.98 k 0.25 
2.46 

3.60 f 0.21 
2.5 1 

3.24 f 0.20 

Signal configuration (S2) is used with K 
~ 

= fi and n = 30 

TABLE V 
ERROR PROBABII ITIE5 (IN %) FOR VARIOUS 

DETtClOR5 AND Noisr DI~TRIRUT~ONS 

Noise distribution C N ( E ,  a’) 
E = 0 t = 0.05 E = 0.25 E = 0.1 

Detector (r = 1 u = 3  a = 3  a =  10 

Theor 

Sim 
Theor 

Sim 
Theor 

Sim 
Theor 

Sim 
Thcor 

Sim 

MD y 2  

MD PI _I 

MC *I 5 

MD 1 U! 

MC 5gn 

0.64 

0.m 0.09 
0.76 

0.75 k 0.10 
0.76 

0.74 f 0.10 
1.52 

1.22 * 0.12 
1.52 

1.41 f 0.13 

2.06 

2.32 & 0.17 
1.07 

1.15 k 0.12 
1.07 

1.15 f 0.12 
I .89 

1.54 f 0.14 
1.89 

1.76 f 0.15 

11.06 

11.03 f 0.35 
3.41 

3.80 * 0.22 
3.41 

3.56 i 0.21 
4.27 

3.98 * 0.22 
4.27 

4.30 f 0.23 

36.54 

33.28 f 0.53 
1.83 

2.09 f 0.16 
1.83 

1.94 f 0.16 
2.70 

2.46 f 0.18 
2.70 

2.77 f 0.19 

Signal configuration 6 4 )  is used with K = fi and n = 30. 

in Table VI. This table shows how the error probabilities 
depend on n for signal configuration (S2) and various detectors 
in impulsive noise (CN(0.25. 3*)).  The convergence to the 
asymptotic error probability is quite clear but slow for some 
detectors, MD 1 . ~ 1  and RD hl 5 .  Next, Fig. 5 shows that the 
agreement with the asymptotic values is greater for smaller 
amplitudes K ,  which is natural since the convergence to a 
normal distribution for test statistics is usually slower in the 
tails. Moreover, the relative error of the estimates is roughly 
proportional to 1 / a  for low error probabilities. The simu- 
lated error probabilities are further away from the asymptotic 
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TABLE VI 
SIMULATED ERROR PROBABILITIES (IN %) FOR VARIOUS SIGNAL 

LENGTHS COMPARED To THE (THEORETICALLY) ASYMPTOTIC 

and 

Signal length (n) 
Detector 10 30 60 100 oc 

MD x 2  10.72 +_ 0.38 11.05 f 0.35 10.94 +_ 0.35 10.92 k 0.35 11.06 
MD pl .s 5.58 +_ 0.26 4.44 f 0.23 4.46 +_ 0.23 4.31 & 0.23 4.08 
MD !n! 5.34 & 0.25 4.76 _+ 0.24 5.23 f 0.25 5.35 +_ 0.25 6.74 
MD h,,5 7.30 +_ 0.29 5.51 k 0.26 5.27 f 0.25 5.07 k 0.25 4.60 

Signal configuration 6 2 )  is used with K = fi and F = CN(0.25,32). for j = 1, . . . , p .  It follows then from the definitions of eM, 
and T$, 
T t )  + . . . +Tp).  

that FM,, = Ti1) + . . .  + TF) and T g , ,  = 

From Lemma A.l and (C) we obtain 

The components of T p )  satisfy (since E @ ( e )  = 0) 

E(  TLS))2 = var TL;) 

where 

1 Since (C) implies that 
2 3 4 5 6 I 8 (cik 1 1 0 5  

lim max - = 0 ,  i =  I , . . . , p  (A.2) 
n-+ml<k<n  S i g n a l  A m p l i t u d e  K 

Fig. 5. Asymptotic (solid lines) and simulated error probabilities for various 
signal amplitudes IC. The signal configuration is (S2) with R = 30 and 
F = CN(0 .25 .  3’). 

cf. 5 3  Theorem A10I)9 it from (‘) and (3*2) that 
o(Ti:’)2 -+ 0 as n -+ 00 and hence, 

Ti’) 3 0, (A.3) 
values for impulsive noise (CN(O.l, lo2) and CN(0.25, 32)). 
This is particularly clear for the rank-based detectors. As 
far as detector types are concerned, the agreement between 
simulated and asymptotic values is relatively good for all 

by ChebYshev’s inequality. Next, we may expand the compo- 
nents of Ti3) as 

(A.4) (3) - detectors except one-the MD 1x1-detector. This discrepancy 
is actually beneficial, since the simulated error probabilities 

Tnj - < c c j k  ‘$(. f hk, n )  dF(.) 
J- k=l 

are constantly lower than expected. The reason for this is and it follows from (c),  (3.3), and (A.2) that 
probably that the statistic T(4) converges in distribution to 
0 rather slowly because of the discontinuity of p’(x) at zero. 

1 
T s )  -+ K ~ B ~ ( + ,  F )  (btj - Tbjj) 

as n + 00, or equivalently 
APPENDIX 

Proof of Lemma 1: Let i indicate that Hi is true, and define Tk3) ---f K 2 B ~ ( $ ,  F ) ( u i  - : U )  = pi. (A.5) 
first the vectors T:) = (TL;), . . . , Ti?), 1 = 1,. . . ,4 ,  by 

Finally, for T:) we treat the variance and mean separately, 
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and 
n -  

Lemma A . l :  Let e i ,  i = 1, 2 ,  . . . be i.i.d. random variables 
with Ee, = 0, Eep = a2 and put 

- 2 q k ,  n$(x -k h k .  n ) )  d F ( x ) .  where e,  = (el  :.., e,) and G, satisfies (C). Then, there 
exists a random vector Z such that It follows from (C), (3.4), and (3.5) that var?’::) -7’ 0 and 

ET::) i 0 as n + m and hence, by Chebyshev’s inequality s A 2 N N ( 0 .  a2E) (A. 14) 

Slutsky’s Lemma now yields the asserted asymptotic normality 
for Tfl ,  , and Tf l  n. 

Proof: According to the “Cramer-Wold device,” it is 
0 enough to show that 

(A. 15) 

as n i m for each XEIRp. When XCX’ > 0, (A.15) 
follows from the Lindeberg-Feller central limit theorem, see 
for instance [SI, Theorem A.12. When A E A ’  = 0 we have 

Proof of Lemma 2: Observe that 
AS’ -11, xz’ - N(0, a2XZX’) 

TZ. = K(Sni(01). . . . % p ( e p ) ) 3  (‘4.7) 

where S,,(e,) is the jth component of S,  (e,) in (A.18) and 
8, = -K(u,  - i u 3 )  under H I .  It then follows from Corollary 
A. l  and (C) that 

E(XS’)2 = a2X- c‘cn,’ + 0, as n + Dc), 

TZ, - KS,(O) 5 K2Bn(h .  F )  at - -U = p l .  (A.8) 

because of (C). Chebyshev’s inequality then gives (A.15). 0 

LemmaA.2: Let { x k }  and { z k }  be sequences of real 

( 
Since 

KS,(O) 5 N(O, K * A ~ ( / ~ ) E ) .  (A.9) numbers such that 

again according to Corollary A. 1, the convergence result 
for Tg,n  follows from Slutsky’s Lemma. In order to prove 
asymptotic normality for Tg,  n ,  we introduce 

Inserting (A.lO) into (A. l l )  yields 

T: = KS,(O) + p, 

under Hi,  from which 

(A.12) 

follows (Corollary A.l). It remains to show that T: is close 
to Tg,  n ,  which is a consequence of Q ,  being close to D,. 
Actuallv. 

and 

with n,+,(K) being the rank of l ek  + K ~ k / ( f i ) I  and a,(.) 
defined as in Example 2. Then, 

(A.13) 

(A.16) 

as n + x, with AR and BR as defined in (3.8X3.9). follows easily from applying Lemma A.3, with 0 taking the 
values -Ku,, -K(u, - ul)?. . . , -K(u,  - up) ,  respectively. 
The asymptotic normality of Tg. , follows then from (A.12) 

Proof: Formula (A.16) may be proved exactly as in [3, 
Theorem V.1.71 (where the case xk F 1 is treated), and (A.17) 

and (A.13). 0 follows from e.g., [17, Theorem 3.21. 0 
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Corollary A.1: Let DR,,(e, - 1/&8C;) is a convex function of 8, which in 
turn is a consequence of that DR, ,  defines a norm in R” 
whenever the scores a,  (1) , . . . , a,  (n)  are nonnegative and 

U nondecreasing (cf. [14, Theorem 2.11). 
(A.18) 

1 ”  
Sn(8)  = - E c k  sgn 

&k=1 

where C k  = ( C l k , .  . . , C p k ) ,  R ik  is the rank of l e k  - 8 . C k / & l  

and a,(.) is defined as in Example 2. Then, 
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Proof: According to the “Cramer-Wold device,” (A. 19) 
follows once we show 

-% N(O, AR(h)AE:X’), 

for each A€Rp and with d k  = A&. But this is immediate 
from (A.16), since 

1 “  
lim - E d ;  = AEA‘ .  

n+oo n 
k = l  

In the same manner, (A.20) follows from (A.17). 0 

LemmaA.3 Let Q, (cf. (A.10)) be the quadratic approxi- 
mation of the rank-distance DR, , (cf. (2.11)). Then, 

1 
- Qn (e, - -8c:) 5 0, 

(A.21) 
h 

for each & E t p .  
Proof: Put 

1 
Rem (8)  = DR, , ( e ,  - -8Ck) - Qn ( e ,  - 6 

Then, according to (A.20) 

d Rem ( 8 )  
= -s,(e) + s,(o) - ~ ~ ( h ,  F ) m  5 0, de 

(A.22) 
for each & E t p ,  with C defined as in Corollary A.l. It follows 
as in [4, proof of Lemma 3.11, that (A.21) and (A.22) are 
actually equivalent. The proof makes use of the fact that 
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