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straints in several areas. Unfonunatcly, these estimates may not 
yield unimodal densities. This correspondence presents a method for 

transforming the estimation problem in the case of unimodal density 
estimation. The transformed problem is then solved by information­
theoretic methods and transformed back to obtain a unimodal density 
estimate. Other qualitative characteristics of the desired density such 

as smoothness near the mode can also be incorporated into this 

unimodal information-theoretic density estimation technique. 

R EFERENCES 

[I] J. P. Burg. "Maximum entropy spectml analysis:' Ph.D. dissenation. 
Stanford Univ. Stanford. CA, 1975. (University of Microfilms No. 
AAD75-25,499) 

[2] E. Parzen, "Quantile. parameter-select density estimation. and bi­
information parameter estimators," in Proc. NASA Workshop on Density 
Esrimarion and Funcrion Smoothing (Texas A&M Univ .. College 
Station. TX. 1982). pp. 60-84. 

[3J J. H, Kemperman, "Moment problems with convexity cunditiuns I," in 
Oprimizing Methods in Sraristirs. New York: Academic Press, 1971. 

[4] P. L. Brockett, A. Chames, L. Golden, and K. H, Paick, "A Method 
for obtaining a unimodal prior distributiun density," CCS Repun 473, 
Center for Cybernetic Studies, T he Univ. of Texas at Austin, 1983. 

[5] N. Wiener , Cybernetics. New York: Wiley, 1948. 
[6J S. Kullback and R. A. Leibler, "On informatiun and sufficiency," Ann. 

Marh. Srat .. vol. 22, pp. 76-86, 1951. 
[7] H. Akaike, "An extension of the model of maximum likelihood and 

Stein's problem," Ann. /Jur. Sraris[, Marh .. vol. 29, pc A, pp. 153-164, 
1977. 

[8[ __ , "Information theory and an extension of the maximum likelihood 
principle," in Proc. 2nd Inr. Symp, on Informarion Theory, B. �. Petrov 
and F. Csaki . Eds. (Budapest ,  H ungary, Akademiai Kiado, 1973), pp, 
267-2H1. 

[9] D. y, Gokhale and S, Kullback, The Information in Conringenc}, Tahles. 
New York: Marcel Dekker, 1978, 

[IO[ S. Guiasu, Injurmutiun Theory wirll Application. London, UK: 
McGraw-Hill, 1977. 

[II] p, 1" Brockett, A. Charnes, and W. W, Coope r, "MDI estimation 
via unconstrained convex programming," Commun. Stat. Simul. and 
Comput., vol. B9, no. 3. p. 223, 1980, 

�29 

[12] A. Charnes, W, W. Cnoper , and L. Seifnrd, "Extremal principles 
and optimizati on qualities for Khinchin-Kullback-Leibler estimation," 
Math. Operationsforsch. Srarist. Ser. Optimization, vol. 9, nu. I, pp . 
21-29, 1978 . 

[13] W. Feller, An Introduction to Probability Theory and Its Application, 
vol . 2, �ew York: Wiley, 1971. 

[14] T. Sager, "Consistency in non-parameteric estimation of the mode," Ann. 
Stal., vol. 3, pp. 698-706, 1975. 

[15] S. Kullback , Information Theory and Statistics. New York: Wiley, 
1959. 

[16] L. S. Lasdon, A. D. Waren, A. Jain, and M, Ratner, "Design and testing 
of a generalized reduced gradient code for non· linear programming," 
ACM Trans. Marh. Software, vol. 4, no. 1. 

On-Line Density Estimators with High Efficiency 

Ola H6ssjer and Ulla Holst 

Abstract-We present on-line procedures for estimating density func­
tions and their derivatives. At each step, ,U terms are updated. By 
increasing Ai the efficiency compared to the traditional olT-line kernel 
density estimator tends to one. Already for ,i{ = 2, it exceeds 99.1 % for 
kernel orders and derivatives of practical interest. 

Index Terms- Asymptotic mean-squared error, efficiency, kernel den­
sity estimator, on-line bandwidth selection, on-line density estimator, 
recursive density estimator. 

L INTRODUCTION 

Let XI ..... X" denote a sequence of independent and identically 
distributed (ij.d.) random variables with unknown density f. A 
frequently used estimator of f (,/,) is the olf-line kernel den,ity 

estimator 

- 1 " -1.(.I'-.\"i) fOFL"I,J') = -Lit" 1, -,--
n In l=l 

(I) 

with I, a kernel function that integrates to one , and {It,,} a sequence 
of bandwidths, cf. the books by Silverman [14] or Scott [13]. A 

drawback of jU}' L n (,I') is that it requires 0 In) operations to update 
for each new observation. On the other hand, the estimator 

, 1 "  _I . ( .I'-X, ) fRn.,,(.,.) = -; �h, T\ -h-,-,_1 
may be computed recursively by means of the simple formula 

- . n-l- 1 _l,. ( .l'-X,, ) fuu, ,,(.r) = -- fIlU"n-ll.l') + -It" " --- , 
n n hn 

(2) 

(3) 

Recursive density estimators for the ij.d. case were introduced by 
Wolverton and Wagner [17] and Yamato [18] and further treated by 

Wegman and Davies [16]. The propenies of these estimators under 

different conditions of dependence are studied by. e.g., Masry [10], 

[11] and Tran [15]. 
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There are a lot of connected real-time situations where rapid com­
putation of efficient density function estimates are of great interest, 
e.g., recursive quantile estimation. cf. Holst [4]. [5], recursive robust 
estimation. cf. Englund, Holst, and Ruppen [I J, pattern recognition 
and classification, see papers by Krzyzak and Pawlak [7], [8J. 

Recently, Hall and Patil [3] defined on-line estimators to be those 
that can be updated in () (1) operations for each new observation. 
According to (3). jlfl'l, ,,(.r) is a member of this class. If the 
sequence of bandwidths are chosen optimally (for estimating f(.I') 
under squared error loss) in both (I) and (2). Hall and Patil show 
that the limiting relative efficiency of /111'''." (.1' 1 with respect to 
f(JI L." ( .r ) is 

L R F( {jill],,, (.r)}. {luI I. " (.r)} I 

I· E(j'of!."I.r)-f(·r)" 
= 0 929.-

( )'/4 
llll ' .': ;:. J 

,, - � E(flflck" (.r) - f(·r))2 
for second-order kernels. (The exponent .)1-4 takes into account the 
convergence rate II 1/', for the risks, d., e.g., Lehmann [9, ch. 5.2].) 

This loss of efficiency can be regarded as the price that has to be 
paid for having a recursive estimator. Hall and Patil also construct 
other on-line estimators with limiting relative efficiency arbitrarily 

close to I O.9·j::J6 )',/1 = O.0.J-4S for second-order kernels. In the 
present correspondence, we propose a new on-line estimator which 
has a higher relative efficiency. 

II. DHINITIO'-l or THE ESTIMATORS 

For the development of this section, assume that a panicular 
sequence of bandwidths hi.···."" is given. Comparing (I) and 

(2) we see that jili/, ,,(.r ) uses all bandwidths II I . .... h" once, 

whereas JUI J. n 1.1') only uses" " ( II times). The higher efficiency 
of I�)J 1 .. " I.") stems from the fact that it is a sum of identically 

distributed terms. The estimators we will construct below have the 
intermediate propeny that "". It" - I · .... II n -[n / 1 IJ+ 1 are used JI 
times each. The terms of this estimator are "more similar" than those 
of 11111, ,, (  .• ). 

Deline a class of density estimators by 

. 1� _I .(.I'-Y,) j,,(.r) =, - �IIT,,(,J' ---

IJ 1=1 h,,,(J) (4) 

where T" is a transformation from the set {1. . . . . Il} into itself. This 
class contains as special cases jUl. I.- " in (I) (,,,(i) = i) and /op!.." 
in (2) (T,. (i I = Il). Suppose now that T" is replaced by T" 0 li" ] , 
where ;e" is an arbitrary permutation of {I.· ... II}. The estimator 
in 14) is then changed to 

.!. L"-] I, 
.! - . �n(» " ( . Y ) 

J/ 1=1 
T,,(I) hTn\l) (5) 

and. since the sequence of observations {.Y, } is i.i.d., the distribution 
of i" is unaffected. In other words, the distribution of /" is 

determined by the number of times each bandwidth h, is used. The 

discrete probability measure 

]In = L �T,,(,JiIl 
1=[ 

contains all this information. with f, denoting the Dirac measure at 
i. We will construct an on-line estimator wilh 

{-'I I". 
j!", = I II - [n j .1!) .1f) / Il. 

O. 

if 1/ - [lIjJI] + 1 < i < " 
if i = " - [Ill-H] 
otherwise 

(6) 

with JI a positive integer and 1'", the relative freqnency of the 

number of times It. is used. Note that .11 = 1 corresponds to /lII.""·." 
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and .\1 = Il to /()T'! " (even though J[ i, considered fixed in the 
sequel). 

A transformation that yields a distribution ji" of the form (6) is 

T,,(//-il=//-[i/.l1]. i=O .. . ·.1I- 1 .  0) 
If T" is insened into (4). the resulting estimator ./., demands () (Il) 
calculations per data value. However, there exists a permutation ;en 
such thal T" 0 ;e';-' produces an on-line estimator I,I.". We will 
construct {;e,,} from an array I as follows: Assume Iii) = i for 
1 :::: i :::: JI If II � .H . the length of I is t n = JI (Il - .II + 1 ). 
The permutation ;e" will be picked frol1l the last 1/ elements of J. In 
other words, introduce a bottom indicator 

and put 

/i" = t" - II = (.U -1)[ /I -.11) 

(8) 

This means that .11 new cells arc concatenated to I each time a new 
observation arrives, since t" - 1,,-1 +JI. The concatenated elements 
of I are defined by putting the contents of ([1/;,,-1 + 1 ) . · · · .  I(h,,)) 
into II(tn_1 + 1 ) . ·  · · . I ( tn -1») and letting lit,,) = II. In this way , 
it is easy to see by induction over II that ;en defines a perl1lutation. 

It remains to establish that this construction produces an on-line 
estimator. Notice that (7) and (8) imply T" (i) = ',,-I! i + .11 -1) and 
;e" (i) = IT n I ( i + .H - 1) for i = 1. .... II -JI. In other words. the 

II - JI pairs {( Tn _ I (i j. ;e" _ I (i)): i = .11 . ·  .. . Il - I} are identical 

to {I Tn (i). ;e" (i) I: i = I., . . . /I - 1f}. Therefore, only ,U -1 terms 

of /,,_] in (5) have to be changed when ./., is computed. The array 
I is actually virtual in our construction. Instead, we need to store 

the data. and I determines in which order to store them. Therefore, 
define the array.Y = (.\'(I) .. Y(2) . .. . j, with .\'(i) = XI(,), which 
contains all the data. Combining (5), (7), and (8), we see that the 

resulting estimator takes the form 

F ( .I-X(I,,,+') ) . ,  h[III .. +.11-"+,-II/111 
. 

We are now ready to formulate a recursive scheme for {f,.r.,,}: 
I Staning up (1 :::: 1/ :::: JI) 
I) .Y(i) = X, i = 1. . .  · . .11 
2) Iun (.t) = /()II .. " I.e) 
3) b,'.1 = O. hI � .U. 
n Induction step (I I > .H I 
I) Updating S': 

Y . _ {Y(lrn-1 + i). . It,,-l+I)- X". 

2) Updating f: 
, f) - 1  . r\i." (.1') = -- !.Jl.n-l(.r) f) 

i = 1. .... JI - 1 

i = .II. (9) 

1 :� 1
, _1 F ( .r - .\'(/;,,_' + i) ) 

- - L l[i.'.[n-Il�IJ/:.fJ \. I /l ,=1 1[( \in-n+,)/·\il 

1 � _ I ' (., - .Y (t" _ I + i) ) . + - � II" I, 
11 lin ,-I 

(10) 
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3) Updating b and t 

This means that .'Ill new cells of X are given a value in (9) for 
each new data value, and;lf terms are updated in (10). The algorithm 

requires storage of X (bn + 1) . . . . , X (t n l. which is of size 0 ( n ) . 
On the contrary, fllLJ{nlJ') requires only 0 (1) storage. Hence, the 

price for increased efficiency is enlarged memory. To our knowledge, 
there is no proposed on-line estimator with 0 (1) storage and higher 

efficiency than fREKn (�'). 

III. RISK EFFICIENCY 
In this section, we will investigate the asymptotic (integrated) 

mean-squared error for fA?n as an estimate of f(8), where s is an 

arbitrary nonnegative integer, and compare it to the off-line estimator 

f�1L'" 
For this we first need some preliminaries . Define 

R(g) = J l(ll)dll 
for any function 9 and 

By definition, 1/0 (T\-) = 1. Define the order of the kernel as the 

smallest positive integer r such that Ii, (Ii) f= O. We will also make 

the following assumptions: 

i) The density f is r + 8 times conti nuously differentiable at 

.r. (If integrated mean-squared error is of concern we require f to 

831 

Proof The first equality in (11) is a special case of Lehmann 

[9, ch. 5, Theorem 2.3], given the fact that the convergence rate is 

11-2,./(2,.+2,+1) when the bandwidths are chosen as above. It remains 

to compare the mean-square errors to verify the second line in (1 1 ). 
The bias 

has the asymptotic expansion 

� )' 
( n ) ' bll.,,(C) � dl ;P",h, (12) 

with p,,, as in (6), dl = 1I1,(I')fl'+')(.1'1/r!)2, and An � En 
meaning that A." / En -+ 1 as " :x.. Viewing the sum in (12) as 

a R iemann sum, we obtain 

21' - -'-"-
�dlC :I(.\f)n 2r12,'l. 

S imilarly, the variance 

1\1,,(e) = Var(j\;l,,(J')) 
has the asymptotic expansion 

Jf)II- 2r+';d1 

be l' + " times continuously differentiable on the whole line and with 

RI fl'-'J) < x.) 
ii) The kernel 1\' satisfies 

JIIII'llI:(II)ld1l <:xc 

and is " times differentiable with R( Iii.') < x. 
The compact suppon in ii) can be weakened, but then some extra 

conditions on f have to be imposed. We have the following result: 

Theorem i: Suppose conditions i) and ii) hold, that the kernel Ii 
is of order r, and that II" = (.,,-1/,2"+2.+ I I, with c chosen optimally 

for both l\�\, and f�'kL.n (that is, two separate values of (-). The 

limiting risk efficiency of U\; 1 n} with respect to {fgL ,,} is then 
given by 

where 

and 

(2r + 28 + 1 ) 2 " ( 1 "+2;+1 ) 2 
;1(Jf) = .U- 1-(1--)2'+2>+1 

r + 28 + 1 JI 

'2(.\1)= JI 1-(1- _'12,+2,+1 . 
2,. + 28 + 1 

( 
1 J,+.h+J ) , 2,. + 4s + 2 J[, 

(If integrated mean-squared error is the risk criterion, we simply 

modify d 1 and d2 hy integrating with respect to .I' over the real 

line.) Combining the last two displays. it follows that 

inf r: (f\(Sf1 (.1') - /1,'(.1')) ' 
= inf (bH,,, (r)2 + l':\I.n(e» ) r>() _ .11 1'>0 

where 

2r 

C(· '. 1f) - _-_'_ - -, �I �., 12r+2>+1 d,Jr+2,+1 ( .) , ) - ""-'.+1 .) . + .J . + 1 2dl 2r 
, .. '. . -

28 + 1 28 + 1 (I 2 

The minumulll is attained for 

(14) 

In a similar way, one finds (this may be deduced from, e.g" Prakasa 
Rao [ 12. pp. 44]) that 

inf E (f'(')"1'1 (.1') _ 1'1"(.1')) " 
� (�)-2.+2;'+1 

,>0 .n · 28 + 1 
21' + 28 + 1 12,,�.t/--l /2 .. /J'._1 . 28 + 1 (, (2 I) 

Combining (13) and (15). we obtain ( 1 1 ). 

(15) 

• 



TABLE I 
L,MITl:;G RISK EFFICIENCIES LRE ( {l\ �)" } . (i�'kLn}) 

Derivative . ., 

0 I 2 
,. = 2 .\f =1 0.92952 0.86240 0.82990 

.\1 =2 0.99765 0.99405 0.99164 

.\1 =3 0.99918 0.99792 0.99707 

r =-! .\1 =1 0.95927 0.90681 0.87439 
,\1 =2 0.99879 0.99661 0.99482 
.\1 =3 0.99958 0.99882 0.99819 

r=G ,\1 =1 0.97135 0.92952 0.90038 
.\1 =2 0.99919 0.99765 0.99628 
,\1 -3 0.99972 0.99918 0.99871 

Table I LOntains values of LRE for .H = 1.2.:i and various values 
of " and H. Already for jI = 2, the LRE exceeds 99.1 % in all cases. 

IV. BANDWIDTH SELECTIO'l 

Another important issue is bandwidth selection. The infimum in 
(13) is attained for a value of (' that depends on f, so in reality 
the optimal bandwidth is unknown. Hall and Patil have shown how 
to estimate the optimal bandwidth from the data on-line, Their 
handwidth selector could also be used for f.,/.", since the expression 

for the optimal bandwidth is essentially the same. 
More precisely, recall that the minimum in (13) is attained for a 

C' given by (14). Th e optimal bandwidth is easiest to estimate when 
the risk criterion is integrated mean-squared error. Then 

and 

d, = 11,.ll")� / fl'+')(.1')2 d./'/(!'!)'2 

I / , . (, ) ,  )2 I (:2 = It I. 0 (U. 

The only unknown quantity in (14) is 

R(/'+Ol) = / /,+0)(.1')2 d.t' 

regardless of jI. Hall and Patil construct an on-line estimator or 

RU(2». A generalization of their estimator to arbitrary I' and s 
takes the form 

E" = (_1)'+'",-1 (n _ � (III + 1»)
-1 

provided" :::> 1/1 + I, wherc 1/1 is a fixed positive integer, Itl is 

a kernel of order r" and {I)} is a new sequence of bandwidths. 
(Fur" ::; II/ we may, for instance, take H" an arbitrary constant.) 
The estimator E" is constmcted so that it can be computed from 
fi" _I in O( 1) steps. To justify that H" is a reasonable estimator of 
RU1'+"), notice that 

m/'H) = (-1)'-'EUI2,+",,(y)) 
which follows from integration by parts. Then notice that 

where 

1 r+� II 

R = � '" ]l2rH')(y) 
n 11 _ 1 L II) - ) 

J�'l 

(j-l)/\m 

_ 

) 
, 1/ - 1 1 '" ,-11, (.1' - '\J-' f"J('I') = 

. - 6 I '1 I . 11-(11/+1)/2 III ,=1 J 
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W hen j > m, this expression is asymptotically equivalent to 

as " tends to infinity. Hall and Marron l2J and Jones and SheatheI' 
[6] consider the problem of estimating integrated squared density 
derivatives in more detail. 

Suppose now that 
i') the first r + s + /'1 derivatives of f are bounded, continuous, 

and integrable. 
iii)The kernel It 1 is 2 I' + 28 times differentiable. with 

and R(It;'2,+2,) < x. 
Then 

and 

E fl., - RUi'+<)) � /1'1 (/t11 .I l' +,) (.I')},I' h-,,)(.!') d,1' 

'L1;1/(II(I'1)!) 

C'lotice that the leading bias term of R" vanishes when 1'1 is odd. 
Choosing IJ = Cd-I/12, 1+1,+4,+1) f or some fixed constant ('1> 0 
gives the optimal rate of convergence (when /'1 is even) 

Now define cJ by (14), except that flUI ''''''i) is replaced by RJ-1 
in the definition of d I, and let 

with ""ii) defined in (8), We may now define a "plug-in" version 
of /,1." as 

i.-,/.,,(.r) = - L "",I, - . : . 1 " , _ 1 • ( ." - Y'" I <J ) 
11 1=1 fill,l 

(16) 

Observe tbat when /i" = CI/-I/U,+2,+"
, /11.,,(.1') is defined by 

replacing (' with ",,,(,) in the ith term of the definition of /,1." 
If follows from the ahove considerations that f .. 1." is an on-line 
estimator, provided we store the numocrs (', . .i = L ·  ... n. 

Theorem 2: Given i'). iii, and iii), the on-line, plug-in kernel 
density estimator j \ I." (.1') defined in (16) is asymptotically nonnal 
in the sense that 

converges in distribution to the standard normal distrihution as 
Tl --> x, where b.'.I.n(c) and I':,/.,,(e ) are the bias and variance for 
/\1.,,(.1') when II" = (',,-1/12,+'2<-11 and c is defined in (14), with 
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Proal' Observe that hi . .0 ( .r) may be written as 

(17) 

By definition 

• • ([ -I . . ) -1/(2r+2,+1) 
hn.�;;l(,) = C; (Mn +.\1 - fI + TIn (I) - l)/M] 

so it depends only on Xj•··· .X;_I. Lct 
Un,=E ((J'-X,)/h -1(.) ) /" -1(,) 11.1rn I n,7I'1'. 1 

be the ith term in (17) and denote ".0., = E(['n.iIXI, .. ·,X,-tl 
and v;", = u,.., - Un.,. Note that n�..,} are martingale differences. 

As in [3, Appendix (ii)J) one shows that 

1 " 
� L(un,-bI1n(c)).!:,0. 

1'M.n(�) n i=1 
Further, using a Martingale central limit theorem, it follows that 

� L�·n,cl.,.Y(O.l). 
V.II n (e) II i=1 
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Abstract- The robust form of the likelihood ratio for a signal in the 
presence of white noise has an additional term in the exponent called 
the correction factor which corresponds to the trace of the conditional 
covariance of the signal given the observations, In this correspondence we 
show that this correction term is nothing but the trace of the symmetrized 
Frechet derivative of the nonlinear filter map and hence the likelihood 
ratio can be completely represented in terms of the observations 'and the 
/ilter map. 

Index Terms- Likelihood ratios, nonlinear filters, correction factors, 
white noise, Frechet derivatives, 

I. INTRODUCTION 

In this correspondence we show the relationship between the so­
called "correction factors" associated with the robust form of the 

likelihood ratio for random signals in white noise and the nonlinear 

filter map associated with the filtering problem. In particular, we 
show that the correction term is the trace of the symmetrized Frechet 

derivative of the nonlinear filter map viewed as a map on the 
observations as a mapping from (L2 (0, T): iRn) into itself. 

It is convenient to begin with a discussion of the issue in the 

context of likelihood ratios (or Radon-Nikodym derivatives) in the 
Gaussian context and for convenience we assume the processes take 
values in 3i'. 

Let (Ii, F.I") be a probability space which carries a filtration 
{F,} C F. Let {S'}'E[DTj be a zero-mean Gaussian process adapted 

to {F,} which satisfies 

E[1 1 IS,12dt] < x. 

Let {IF,} be a F/ Brownian motion independent of F;' where 

F,s denotes the filtration generated by {S,}, Define the so-called 
"observation" process {1-'} given by 

d}i = S,dt + dll',: t E [0. T] (I) 

Then the classical formula fur the Radon-Nikodym derivalive 

(RND) of the mcasurc induced by }' denoted by I'y with respect 

to (w.r.t.) 11\\' the standard Wiener measure is given by (see [6]) 
rip}' , iT c _ 1 j,r ., 2 -
rl

-(l)=exp{ S"d},,-:- IS"ldu} 11\\' 0 2 0 
(2) 

whcre 5, = EIS,/F,'L F,' is the filtration generated by the 
observations. 5, is called the filtered process and the integral .f in 

(2) denotes the Ito integral. 

It is important to point out that the result of Kailath r 6] holds not 

just for Gaussian signals {S,} but also for any signal satisfying 
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