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Adaptive Detection of Known Signals in Additive
Noise by Means of Kernel Density Estimators

Rolf T. Gustafsson, Ola G. #$sjer, and Tommﬁ")berg,Member, IEEE

Abstract—We consider the problem of detecting known sig- training sequence (off-line) or simultaneously with the detec-
nals contaminated by additive noise with a completely unknown tion (on-line). This can be done either parametrically or non-
probability density function f. To this end, we propose a new ,,ametrically, depending on whethgris finite-dimensional
adaptive detection rule. It is defined by plugging a kernel density NP . b . . .

; or infinite-dimensional. A widely used physical parametric

estimator f of f into the maximum a posteriori(MAP) detector. . . ) i
The estimate f can either be computed off-line from a training Model is Middleton’s Class A model [15]-[17]. Estimators

sequence or on-line simultaneously with the detection. For the Of the parameters in this model have been considered in [27]
off-line detector, we prove that the (asymptotic) error probability —and [28].
for weak signals converges to the minimal error probability of the In this paper, we will follow the nonparametric approach,

MAP detector as the number of training data tends to infinity, ; . . " .
and we also establish rates of convergence and the optimal and only impose mild regularity conditions gn\We estimate

choice of bandwidth order for a certain class of noise densities. / Py means of a truncated kernel density estimator. The
In a Monte Carlo study, the off-line plug-in MAP detectors resulting estimatef is then considered as the true pdf and
are compared with the L'- and L*detectors for various noise plugged into the maximura posterioridetector (MAP). This

distributions. When the training sequence is long enough, the “plug-in” detector belongs to the class of minimum distance

plug-in detectors have excellent performance for a wide range , - s
of distributions, whereas the L%-detector breaks down for heavy- M-detectors. As the performance criterion of the detegior

tailed distributions and the L -detector for distributions with litle W€ will use the asymptotic error probability (or riskX¢) for

mass around the origin. weak signals, as in [10]. This criterion depends essentially only
Index Terms—Adaptive, additive noise, detection, kernel esti- " the eﬁlcagy, as_noted n [14] in the case of two Slg.nals.
mate, nonparametric, training sequence. Since the efficacy is the inverse of the asymptotic variance
of an M-estimator, our detection problem has analogies to

M-estimation.
|. INTRODUCTION Statistically, our detection problem is semiparametric. The

E CONSIDER the problem of detecting one out of aetection of the (weak) signal is a parametric problem, whereas
finite number of possible messages of known fornthe noise pdf can be regarded as an infinite-dimensional
transmitted through a channel which is corrupted by additiveiisance parametgf. The statistical study of semiparametric
noise. problems started with the fundamental paper of Stein [22].
In many situations, the noise is clearly non-Gaussian dike called an estimator of a Euclidean parameter that does not
to impulsive sources, especially when there are a few exteragsume knowledge of adaptivewhen it is asymptotically
interferring noise sources with high intensity. It is well knowrefficient for eachf € F. This means that the estimator has
that even a small deviation from the normal distribution cathe same asymptotic performance as the optimal estimator with
drastically degrade the performance of the linear detectofsknown. A recent, very extensive survey of semiparametric
that are optimal for the Gaussian environment. This hasethods is given in [4].
created interest in robust detectors that have nearly optimalet ¢, be the optimal (unknown) MAP detector associated
performance for Gaussian noiaad good performance whenwith f, and¢,, the plug-in MAP detector based gfy, which
a fraction of the noise is impulsive, cf., e.g., [12] and [13]is computed from a training sequence of sizdthe off-line
Such detectors are based on the assumption that the majatiige). Then adaptiveness means tRap,) 2> P(¢o) as n
of samples have a known nominal distribution, whereas a smgdhds to infinity for allf € F. We will refer to this property as
fraction can have a more or less arbitrary distribution. consistencyf ¢,,, sinceP(¢,) can be viewed as an estimator
An alternative approach is to assume little or a@riori  of P(¢). In order to have a consistent detector, it is crucial
information about the noise statistics and then estimate tehave a good estimatén of the optimal score function

noise probability density function (pdff € 7 either from a 4, = —f//f. In fact, we will show thatP(¢,) — P(¢o)
depends essentially Oﬁ’](z/)n —10)? f dy. This loss function is

'g"af%usgmi ffece'Ve_d AP{;}' lRO' 1995; fex;e%ijla”e 8{ 1926-3 164 92 Ki also important for the theory of adaptivé-estimation in the
Sweden, arsson 1s with Fespensor A, Badegatan =, =+ “fhear model (cf. [3], [4], [6], [11], [18], and [23]).
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slightly smaller classF (e.g., f must have three derivatives),by
it still includes the Cauchy distribution, afidistributions, the M
normal and logistic c_hs_tnbutl(_)ns, and finite mixtures of these. Pi(¢) = Z?rkP(</>(X) £ k|sp).
To our knowledge this is the first result on rates of convergence Pt
of a semiparametric procedure based on kernel estimates.
We have chosen/-detectors and kernel density estimators
because of their simple structure. In fact, our density estimat®
only contains two parameters, a bandwidth and a truncation <

It is well known [25, p. 48] that the error probability is
Ilnimized by the maximuna posteriori detector

point (to avoid tail effects when estimating,), and is easy Po(X) = arglgl%iglM

to compute using the so-called WARP techniques (Weighted -

Average of Rounded Points) described in [9]. A minimum-distance detector is defined by first choosing a
Other adaptive techniques that have been studied inclugistance function: Rt — R and then selecting the signal with

Restimators andztests [1], [4], [24]; L-estimators [19], [20]; shortest distance to the received signal

and estimators based on minimizing the Hellinger distance [2]. ]

Kernel estimates have been used in [2], [3], [4], [18], and [23] P(X) = arg mun d(X — Osy,). (2.2)

for estimating f and 1) in the semiparametric context, but . . T .

other density estimation methods could also be used, such aEO" & Minimum-distancé//-detector (MDM), the distance

orthogonal series [1] and splines [5], [6], [11]. In fact, CoXS 9iven by

t
—logm — Y _log f(X; — 98ki)> :

=1

establishes a rate of convergence®/3 of [ (¢, — 10)2f dy t

towards0 in [5], assuming a third derivative and periodicity d(z) = Zp(wi) (2:3)

of f. This is faster than our rate—*°, but our regularity i=1

conditions seem to cover more standard densities. with = (z1,---,2:) and p:R — R a real-valued function.
As one referee noted, it may be more realistic to considepr equala priori probabilitiesr;, = 1/M, the MAP detector

the error probabilityP;(¢) for a fixed signal lengttt instead 4, pelongs to this class withy = — log f. The L*detector

of the asymptotic imitP(¢) = lim, P;(¢). The rate at which corresponds tg(z) = 22 and Gaussian noise, whereas the

Py(¢,) converges ta(¢o) is then of interest. Alternatively, 1,Ldetector withp(z) = || corresponds to Laplacian noise
to get a simpler performance criterion, an exponential boupdl(;) = exp (—|z|)/2).

of P,(¢) could be used. This is indeed an interesting topic for

further research. Our limi> may be viewed as an explicitg Asymptotic Error Probability and Efficacy

and relatively simple approximation d?,. . .
The paper is organized as follows: We review the theory for In the weak signal approach, the amplitude depends on the

detection of weak signals in Section II; the off-line detecto?Ignal length

and its asymptotic properties are considered in Sections Ill and h—6 — < 2.4)

IV. We present an on-line detector in Section V with recursive T '

° Vi
updating of f. Finally, numerical results are given in Sectior} . .
. . or some constan . For weak signals, the asymptotic
VI, and the proofs are collected in the Appendices. >0 9 ymp

error probability

P(¢) = lim Pi(¢)

[I. DETECTION PROBLEM t=00
usually exists, and has a tractable expression for MDM de-
A. Model and Optimal Detector tectors and equaa priori probabilities. (Strictly speakingl®

depends on the whole sequence of decision rules-asoo,
but this will not be shown in the notation.) In practice, the
signal amplituded is constant. The weak signal approach is
merely a tool for finding a simple expression B, which
may be approximated by, with C' = 6+/¢.

Under certain assumptions? is closely related to the
efficacy

We consider a received vector of the form
X =0s,+N (2.1)
where

X:(le"'vXt)

2 2
and < P f dy) < Pp fdy)
k=1, M _ /‘ _ /‘0 _ B()?

Sk :(Sklv"'vskt)v 8(”(/})

[eeray [eray A
is one of M possible transmitted signalg,is an amplitude
factor, andN = (NVy,---, [Vy) is an additive noise vector. We Here, ¢y = p’ (analogous to the score function fd-
assume that th&; are independent and indentically distribute@stimators) andyy = py; = —f'/f is the optimal score
(i.i.d.) random variables with pdf, and that the signals havefunction corresponding to the MAP detector. Before exploring
a priori probabilitiesw, -, mp. The error probability of a the relation between the efficacy and the asymptotic error
nonrandomized decision rule R* — 1,..., M is then given probability, let us state some regularity conditions:
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Assume that Theorem 2.1: Assume equah priori probabilities, ia),

ia) The densityf is absolutely continuous witt I( f)<oo, i), iiia)—iiib), and iva). Then the asymptotic error probability
whereI(f) = [(f")?/f dy is the Fisher information. exists

ii) Let S; = (s},---,s},) be at x M signal matrix. Then
S.S1/t — ¥ ast — oo, whereX = (oy;) is a positive- P(¢) = G(E®W)) (2.6)
semidefinite symmetric matrix of dimensign< M.

iiia) 0< A(y) < 0. or if ivb) holds instead of iva)

iiib) ¢ is discontinuous at most at a finite hnumber of points
and has a bounded derivative outside these points. Pi(¢) = GE®W)). (2.7)

iva) [ ¢ fdy = 0.

ivb) For some subsequende = {¢;} of N and fork = A more complicated asymptotic risk expression can also
1,--- M be derived for arbitrarya priori probabilities, cf. [10]. We

state Theorem 2.1 here to stress the dependencE oh
the efficacy. When we estimatg, (or pp) in the follow-
Z ski = 0. ing sections, it is thus important how wefl(¢);) can be
=1 approximated. The functiod (and hence alsd®) depends
not only oné&, but also on the matrix and the amplitude

Condition iva) is satisfied whefiis symmetric and) skew- i X X
tor C. Since we consider the signals and C known,

symmetric. However, the symmetry is not necessary accordi h v th lici
to ivb), as long as all signals, have zero mean. In this case//'° Nave made only the dependenceédexplicit. 1t may be

we consider the asymptotic error probability as the limit alon?een by orthogonal transformations tH@atonly depends on
the subsequence m.l""’mM.} throggh the pairwise dlstanc¢b(zj — my|.
This makes it possible to choose;, in a convenient way.
Pr(¢)= lim Py(¢). Example 144 = 2.): The case of two signals is thoroughly
Tot—oo treated in the overview [13]. Supposge = 0 (the zero vector)

and thats, is arbitrary with0 < < oo and
The detection problem (2.1) can naturally be embedded 52 y 02 =00

into a multiple linear regression model [10X = S} + N, t
with the signal matrixS; in ii) interpreted as the design 099 = lim Z 53 /t.
matrix and@ € R the unknown regression parameter. If e i

fs; is the transmitted signal, thel = #fe;, and ¢;, =

(0,---,0,1,0,---,0), the unit vector withl in position ;.. Theng =1, and we may choosg; = 0 andm; = C\/02.
When ivb) holds,@ only contains slope parameters. It isthis implies

well known that symmetry off is not needed for estimating

the slope parameters, whereas some condition like iva) is G(E) =1-2(C\/E022/2)

necessary when an intercept is included in the model.

Notice that ii) implies that the pairwise signal distancewith @ the cumulative distribution function of a standard
converge normal distribution. In particular, for the signal

16055 = Oesill ey — C*(0ji + onn — 205x) @St — o0, L

$% = T/
(25) V 14+ 7_2

) ) ) ] with 7 € R, we havec,, = 1 and hence
It is possible to find vectorsn,,---,mjy; in R? whose

pairwise distances agree with those in (2.5) (cf. [10]). Define GE)=1- @(C\/§/2).

(1+7(-1)"), i=1,--,t (2.8)

O =z € RY [l —mu[| <|lz —my|| V5 # k} Example 2 (Sinusoidal Signalsfix t, > 3, let T =
. {to, 2t0, 3t0,- -}, M > 3, and
as the set of points closest#ey, k= 1,.--, M. Let I, be the

g x q identity matrix andZ(€) ~ N,(0,£711,) a normally C(2mi k2n .
distributed stochastic vector. Define the “error probability — Sk = V2sin <K W)’ =11 (2.9)
function”
LM for somet € T (a sampled version of MPSK signals). Then
G(E) = i Zp(mk T Z(E) £ ). g = 2, and we may choose
k=1

my, = C(cos (k2n /M), sin (k27 /M)).
It is easily seen thatGG is differentiable and strictly
monotone-decreasing. We then have the following theoreMvhen M = 4, G has a simple expression
which follows by combining [10, Lemma 1 and Propositions

1-2]: Q) =1-d(CVE/2)2.
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lll. OFFLINE DETECTOR Lemma 3.1 implies iiia)—iiib) for fixech andh. In conjunc-
Suppose that we have an i.i.d. training sequefte= ton with Theorem 2.1 this gives:
(Ny,---,N,) of noise samples with marginal distribution Corollary 3.2: Assume ia), ii), ivb), and va)-vc). Then the
7. This means that the recipient knows the sent messagyMPptotic error probability of,, exists and is given by
corresponding to the firsh samples or that no signal is = 0N -
sent(s = 0) during this time. Our objective is to ush Pr(¢n) = G(E@n)). (3-1)
for estimation of f. This in turn produces an estimate of When the signals have nonzero mean, we need iva), which

po = —log f that is plugged into the MAP detector. is typically not satisfied for) = 1,,. However, iva) holds if
Let A = h, — 0 be a given sequence of numbers aidid ib) f is symmetric

a kernel function. Define ands skew-symmetric. It is possible to modify, to obtain

. 1 « y—N; a skew-symmetric score function. Define
nh — h _ 174 ~
i=1 Pr(y) =3 (bn(y) + Pn(—¥))

as a kernel estimate gfwith bandwidthi. Various properties Vo (y) =70 (y) = % (pA/n(y) - 5/n(_y)) (3.2)
of kernel estimates can be found in [21] and [26]. Next define
estimators ofpy andy by and letg,, be the corresponding detector. Cleapy, is sym-

o) = { —logfn(y), if |y] < ar ;ngtr\:\t/: arr:d\;/;,? skew-symmetric. Analogously to Proposition

" —log fu(an), if Jy|>an e e

Proposition 3.3: Assume ia)—ib), ii), and va)-vc). Then the

N y _JiT/l(y) if |y <a asymptotic error probability of,, exists
Un(y) = 0nW) =9 Fu(y)’ - o a
0, it Jy| > a.. P($,) = G(E())- (3.3)
Let also d;n be the “plug-in” MAP detector defined by
putting p = p, in (2.2) and (2.3). The truncation point IV. ASYMPTOTICS OF THEOFFLINE DETECTOR

a = a, may either be infinite or finite, where in the latter case

a, — oo asn increases. It is actually preferable to choosA. Convergence of the Efficacy

ap, finite to avoid tail effects, as will be seen in Section IV. |n order to see how weIFT(JJn) and P(,,) approximate
We will first check whether Theorem 2.1 holds with= ¢, P(4), Theorem 2.1 tells us that we should investigate how
whenn and h are fixed. For this we need some regularity,q £(ih) and £(,) approximates(vy). It is easy to see,

assumptions: N using the Cauchy-Schwarz inequality, thit= 1/, maximizes
va) K is stiictly positive =~ £(1)). This means thaf (1) — £ () and& (o) — £(xp,,) will
vb) K/ is differentiable withK’/K bounded. _ ~always be nonnegative, and we can regard these quantities as
vc) K’ is continuous except in a finite sBy. Outside this 555 functions when we estimatg,. Since G is a strictly
A i 1 1 1 =V = E=vars =
set K is differentiable withK” /K bounded. _ decreasing function?(¢,,) — P(¢o) and P(¢,,) — P(¢o) will
These requirements are violated by the Gaussian kernel ;55 pe nonnegative.
K(u) = exp(_u2/2)/\/% Define the inner product
and kernels with compact support, such as the Epanechnikov (hy, o) = / Y1t f dy
kernel
K(u)=3(1- u2)1|u|§1/4- the (squared) norm
Instead, we will use the logistic kernel [[])? = (1, 1)
K(u) = exp (—u)/(1 + exp (—u))? En =t —
in all of our simulations. and

Lemma 3.1: Assume va)-vc) and < a < oo, then
[1nllpe gty < K/ K| b yh ™

the setD,, of discontinuities ofz/Sn is finite (with a cardinality
that might depend om) and

10l @p,) < (K" /K] L @ypo) + I /K] [foe gy )h 7

2
1Given A C R andy € L°°(R), we define </énf’ dy)
~2 A 13
bp oo 4y = " = [ & fdy— + O(llenl]*)-
s = e 600 /4 10 g

gn:wn_w'

Proposition 4.1: If ||é,]] — 0 asn — oo

2
E(o) — E(Wn) = [lEall2 - < “—> +O(a?)
ol

(4.1)
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In particular, if||é,]] £ 0, ther? C. Rates of Convergence and Bandwidth Selection
E(ho) — S(z@n) < |léal1?(1 +0,(1)) (4.2) By adopting more assumptions dfi, f, a,,, and hy, it is
_ possible to establish rates of convergencefﬁ.f(%) and
and if (3.1) holds, then P($,). These assumptions are:
Pr(dn) — Pr(do) < |G(EWo))?||En]12(1 +o,(1). (4.3) ic) f" is absolutely continuous
If (3.3) is satisfied, the same conclusions hold witf, £,, /(f’/f)Gf dy < 00 / If" ] f13 f dy < o0

and Py replaced by, ,&, and P in (4.1)—(4.3).
Remark: If we ignore the remainder terms, Pythagorasind
Theorem implies thgtf(z/Jo) — E(p) equals_th_e distance TCIT
betweeny,, and the lineH = {ctpo; c € R}. This is natural, Y <00
since E(cyg) = E(2po) for all c. id)
[

B. Consistency /| i (F'/)2f dy = O(z~2)
y|>z

In this section, we will prove convergence of the asymptotic
error probability. According to Proposition 4.1, we should firsgs + — ~c.
investigate the quantity ie) Let

leall = [ =021 7= [ " )26,
Yy

y—6
We will need the following additional regularity assumptions.

vd) The kemelK satisfiesy,(K) = 0 and ji2(K) < oo, Then there exist$, >0 and 0 < ¢y < 1 such that

where Fs(w) > cofs(y), VO<8 <6< &
pi(K) = [ v K(u) du. andvy € R.
via) h, — 0. ve) There exists a number, >0 such that—u?K’(u) is
vib) a, — oo nonincreasing for > wug.
vic) a,h3n"t — 0. vid) a,, = C1h? for some constan€; > 0.

Theorem 4.2: Assume ia), va)—vb), vd), and via)-vic). Then Vi€) h, = Con=1/9 for some constan€s > 0.
Condition ic) is equivalent to

/(z/?n — )2 fdyL0 ic}’ +, is absolutely continuous
asn — oo. /z/)gfdy<oo /|z/)6|3fdy<oo
Convergence of
_ and
Il = [ @ = vl fdy
o | | [ whyray<.
is implied by Theorem 4.2 and the following result, which
may be found in, e.g., [3] and [4]: Theorem 4.5:Assume ia), ic), ie), va)-vb), vd)-ve), and
Proposition 4.3:If f is symmetric (Condition ib)), then  vija). Then
[ @ =voritu < [ = vopran B [ =0 a0)
Combining Propositions 3.2, 3.3, 4.1, 4.3, and Theorem 4.2,
we obtain consistency af,, and ¢,.: = O<hj§ +n7th2a, +/ (f'/0%f dy). (4.4)
Corollary 4.4: Assume ia), ii), ivb), va)-vd), and via)-vic). ly[>an
Then ¢, is consistent, i.e., If also id) and vid) are satisfied, then
Pr(p) 2P . .
1(6n) = Ploo) E(/(wn — 0)2f dy) —O(ht +n7th7%)  (45)
asn — oo. If ia)-ib), ii), va)-vd), and via)-vic) hold, then
¢,, is consistent, i.e., and then choosing the bandwidths according to vie) gives the

optimal rate of convergence

P(,) 5 P(go).

We do not need/ K du = 1, since multiplicative factors E</(z/3n — o)’ f dy) = O(n=Y9). (4.6)

of fn will not affect the decision rules. Conditions vib)-vic)

imply that the truncation pointg,, tend to infinity, but witha  Here h4 is essentially the integrated squared bias/?gf It

slower rate thamh;, (and henceh,, > n~"/%). has the same order of magnitude as the squared integrated
2Y,, = 0,(1) means thaP(|Yy,| > <) — 0 for anys > 0. bias when estimatingf or f/. The second term of (4.4),
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n~th3a,, is an integrated variance term @f, over the X, s;.
interval [-a,, a,]. Compare this with the pointwise variance Detector
of 1, (y), which is O(n='h-?) for eachy € R, a smaller

order asa,, — oc. It is the presence of in the denominator i
of 49 that makes the integrated variance larger. There is no m
such discrepancy whefi or f’ are estimated, then the local

and integrated variances are of the same or@¥n{1h;t) Update
and O(n~th;?), respectively). The third term of (4.4) is the -
error induced by the truncation @f, at +a,,. The magnitude .
of this terms depends on the behaviour of the tailsf ofVe N,
could have required a faster rate of convergence tha?)

in id). This would makeJ|, |, (f'/f)*/ dy smaller, and then /\\ B
we could have chosen smaller valuesagfand h,,, giving a by
faster rate tharO(n=*°) in (4.6). However, a fast rate of v
convergence in id) would exclude heavy-tailed densities Illg?g 1 Flowchart of the on-line detector.
the Cauchy distribution anéddistributions with few degrees
of freedom. Therefore, apart from the assumption tA@&t
exists, the regularity assumptions ia) and ic)—ie) imposed 8f-line case,p., is computed from a density estimaf,
f are rather weak. For instance, they are satisfied by tRecording to
normal, logistic, Cauchy and atidistributions and also by . _ [=log fmly), i |y| < iim
finite mixtures of these distributions. pm(Y) —10g fn(@m), if |y|>a
The bandwidth choice vie) is optimal for our chosen class e "
of densities. It is oflarger order than the typlcal ones forWherea,, is an appropriate sequence of truncation numbers.

estimation of f (h, ~ n=1/3) and f (hn, ~ n~Y7). As The density estimatg,, is computed fromy,,,_; according to
mentioned above, if we restricted ourselves to lighter tailed —(1_
densities, the optimal bandwith would be of a smaller order fm(y) S %l)fm_l(y) +%lfm(y) (5-2)
than n—1/9, where

Combining Theorem 4.5 with Propositions 3.2, 3.3, 4.1, and t o
4.3 we obtain fly) = < "”)

Corollary 4.6: Assume ia), ic)-ie), ii), ivb), va)-ve), and i=1 him

vid)-vie). Then h,,, is the bandwidth in stepn, and 0 <+,, < 1 measures

§5) ((;)n) — P(¢o) = Op(n_4/9). how much faith we put in the latest noise estimates relative
to the past information. The structure of the on-line detector
If ia)—ie), ii), va)—ve), and vid)-vie) hold, then is shown in Fig. 1. : :
o . If we haven training samplegVy, - -+, N,,) available, it is
P($,) — P¢o) = Op(n*?). natural to use

V. ON-LINE DETECTOR

Suppose now that the transmission procedure (2.1) is Iaen-d
peatedL times Y = (5.3)
m—+mn

This means that we put equal emphasis on all noise samples
(both from the training sequence and the estimated ones), since

anzeskm+anv m:1727"'7L (51)

with X,,, = (X1, -+, Xmt), and all noise vectorV,, =
(N1, -+, Nme) are independently distributed, each havin&s'z) may now be expanded as
i.i.d. components with marginal density. The numbers - LR
ki,--+,kr € {1,---, M} determine the true signals during fm(y) = fO m+n Zf
the L transmission intervals.

The detector will be updated recursively asichultaneously "1
with the detection as follows: To choose the signal, use tm+ Zh_
the MDM detector¢,,_; described in (2.2) and (2.3) with =t
p = pm—1. This produces a signal estimaig which can be Y- Nu
used to estimatéV,, according to o + Jz:“z_: K< ))
Ny = Xp—0s;, = Ny +0(sk,, =85, ):=Nm1,+, Nine)- Hence,f,, is based on a noise vector of size +n. Using

the asymptotic theory of Section IV-C, it is natural to choose
Since we now have more information about the noise, we ymp y

will use NV, to recursively updaté,,_;. Analogously to the By = Co(tm +n)~ /9 and a,, = Clh;l
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TABLE |
WIiTH SIGNAL CONFIGURATION S1 AND VARIOUS NOISE DISTRIBUTIONS F', ESTIMATES OF P;(¢) ARE GIVEN FOR THE L{-DETECTOR ¢1, THE
L-DETECTOR 2, AND THE PLUG-IN MAP DETECTOR &,,, WITH 1 THE LENGTH OF THE TRAINING SEQUENCE (NO TRAINING SEQUENCE IS
NEEDED FOR$1 AND ¢3). THREE REPLICATES OF EACH PLUG-IN MAP DETECTOR ARE CONSIDERED THE AsYMPTOTIC LiMiTs P(+) ARE
GIVEN IN BRACKETS (WHICH CORRESPOND TOt = 0o FOR (1 AND ¢2 AND 1, t = oo FOR THE PLUG-IN MAP DETECTOR i.e.,F(d)U))

Error probabilities in %
F é1 P(¢1) 2  P(d2) | b0 100 100 1000 000 Pr000  Pio000  Hroo00  Hiocoo  P(do)
F1 | 4.40 (5.53) | 2.30 (2.28) | 3.9 358 301 248 300 274 237 231 231 (2.28)
F2 | 6.08 (7.10) [13.39 (13.90) | 6.14 600 674 479 485 434 401  3.88  3.86 (3.70)
F3 7.24 (8.64) 2.56 (2.55) 2.57 3.03 3.62 2.36 2.44 2.38 2.29 2.25 2.27 (2.13)
F4 | 33.18 ¢) |14.57 () | 4371 37.94 3854 4347 4603 4507 43.28 4378  43.79 )
F5 14.52 (15.87) 4.18 (4.16) 0.13 0.06 0.10 0.03 0.04 0.03 0.02 0.01 0.02 (0.00)
Fe 3.18 (2.28) 7.74 (7.86) 11.34 13.94 4.58 4.34 4.12 3.66 3.44 3.61 3.42 (2.28)
F7 | 9.75 (10.15) |43.19 (50.00) | 14.62 11.04 19.67 1016 958 1075  8.61 865  8.70 (7.86)
F8 | 6.19 (7.08) [11.32 (12.41) | 11.34 12.82 1004 6.66 7.66 6.99 562 563 564 (5.12)

for some positive constant€’; and C,. (When the error  F7: Cauchy distribution.

probability is smallN,, = N, with high probability, and the  F8: #distribution with three degrees of freedom.

situation is then very similar to the one described in SectionsSignals: Two sets of signals are included:

Il and V) S1: The signals from Example (M = 2), (2.8), with
If no training sequence is available we have to use a= 0.5,¢ = 100, andC = 4.

deterministic fo, e.g., the logistic or the double exponential S2: The signals from Example 2, (2.9), wifd = 4, ¢ =

distribution. We can still use (5.3), and then> 0 can be 100, and C = 4.

interpreted as tha priori confidence we have irf. Number of Monte Carlo Iterations100 000 iterations for
For symmetric noise and signals with nonzero mean, we caach combination of detector, signal, and noise. For each

symmetrizes,,, as was done in Section Il for the off-line caseMonte Carlo replicate, the true signal was chosen randomly
In situations where the noise is nonstationary, it is advisabMth equal probabilityl /A among allA/ possible signals.

to use Calculation of</3n: In practice, it is advisable to standardize

B the data and replach by (N — j1)/3, with ji = (fi,- -+, fi).

Tm =7 Here /i and § are robust measures of location and scale. We
which produces a detector that is more flexible to fast chandd@ve used the median and normalized interquartile range. That
in £. On the other hand, the resulting detector is not consistel®, if V) < --- < N, are the ordered training samples, we
when the data is stationary. The reason is that the effectivet fi = N(o.sn)), and
number of samples used for calculatifig is of the ordert/~ § = (Npoursng) — No.25m1))/(20(0.75) — 1),

for all largem, which does not increase wittn.
When we have Gaussian noise, the normalization ensures that
VI. NUMERICAL RESULTS § is a consistent estimator of the standard deviation for a

In this section, we perform a Monte Carlo study, Whickrform"jlI distribution. The next step is to compufg., and

o , e 0 n,st from the standardized noise samples, with = 1/20
compares the error probability of the off-line detectgrwith ~ *75t S . o .
the I?l- and L2-detecfors, for (?I/ifferent noise distrilfﬁ%ons an ndC; = 1/5in vid)-vie) and a logistic kernel. (The subscript

; : . ) - st” indicates “standardized data.”) Then transform back and
signals. Let us first give a more detailed description of th(?efineA () = poos((- — A)/3). The symmetrized versio
simulation study: Pn\") = Pn,st n)/s). y A,

. - - is then computed frong,, according to (3.2).
_ Detectors: L-detector(¢, ), L*-detector(¢z), ¢100, ¢1000, The results of the M%nte Carlo simulations are shown in
¢100007 ¢1007 ¢10007 and ¢10000'

. )7 LO0Y. . . e . Tables I-Ill. Notice that the symmetrized detectgy is used
beNL(J);seed.Dlstrlbutlons.The following noise distributions will for S1, for which ivb) does not hold. We have also included
o ] asymptotic error probabilities for various signals, detectors,
F1: Normal: N(0,1). : L N
' . . - and noise distributions. (Apart from the combination F4/S1,
F2: Normal mixture with heavy tails: : oy .
where neither ib), iva), nor ivb) hold.)

0.9N(0,1) +0.1N(0,52). The agreement between the Monte Carlo results and the
_ ) asymptotic limits is quite good faps, ¢ 4000 @aNd d10000. ON
F3: Normal mixture with several modes: the other hand, fop, the asymptotic error probability is some-
0.8N(0,1) 4+ 0.1N(—1,0.52) + 0.1N(1,0.52). what higher than the simulated one. This discrepancy was also

noted in [10] and is probably due to the discontinuity of the

F4: Normal non-symmetric mixture:0.8N(0,1) + function, which makes the convergenceRgftowarqlsﬁ rather

0.2N(2,1). slow in Theorem 2.1. The detectof§ g, $10000, P1000, aNd
F5: Uniform: U[-2,2], f(y) = 1)y <2/4. $10000 Show excellent performance for all noise distributions.
F6: Laplace:f(y) = exp(—|y|)/2. However, it is clear from the tables that a training sequence
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TABLE 1l
WIiTH SIGNAL CONFIGURATION S2 AND VARIOUS NOISE DISTRIBUTIONS F', ESTIMATES OF P;(¢) ARE GIVEN FOR THE L{-DETECTOR ¢1, THE
L>DETECTOR ¢, AND THE PLUG-IN MAP DETECTOR ¢y, WITH 1 THE LENGTH OF THE TRAINING SEQUENCE (NO TRAINING SEQUENCE IS
NEEDED FOR¢1 AND ¢2). THREE REPLICATES OF EACH PLUG-IN MAP DETECTOR ARE CONSIDERED THE AsYMPTOTIC LiMiTs P(-) ARE
GIVEN IN BRACKETS (WHICH CORRESPOND TOt = o0 FOR ¢1 AND ¢2 AND n, t = oo FOR THE PLUG-IN MAP DETECTOR i.e.,f(qﬁo))

Error probabilities in %
P é1 P(¢1) 2 P(¢2) | b100 @100 P00 Hlooo  b1000  P1000  b10000  Pioo00  b10000  Pldo)
F1i 1.47 (2.39) 0.48 (0.47) 1.89 2.65 2.72 0.72 0.69 0.80 0.51 0.48 0.48 (0.47)
F2 | 256 (3.75) {11.85 (12.11) | 11.71 7.40 5.09 193 1.79 229 143 133  1.34 (1.15)
F3| 341 (5.32) | 058 (0.58) | 069 095 132 081 077 070 052 046 046 (0.41)
F4 | 424 (6.10) | 2.64 (3.47) | 3.88 450 564 253 284 297 224 218 213 (2.02)
F5 | 12.43 (15.11) | 1.39 (1.43) | 001 001 003 000 000 000 000 000 000 (0.00)
F6 1.07 (0.47) 4.46 (4.50) 3.00 6.42 4.54 1.56 1.74 2.12 1.31 1.48 1.24 (0.47)
F7 6.71 (7.05) 63.44 (75.00) 20.30 21.90 10.41 6.52 7.46 9.46 5.67 5.62 5.64 (4.50)
F8 | 288 (3.72) | 894 (9.98) | 826 1064 1137 374 340 377 241 269  2.64 (2.08)

TABLE Il
WIiTH SIGNAL CONFIGURATION S1 AND VARIOUS NoISE DISTRIBUTIONS F', ESTIMATES OF P;(¢) ARE GIVEN FOR THE
L1-DETECTOR ¢, 1, THE Lo>-DETECTOR ¢,,2, AND THE PLUG-IN MAP DETECTOR ¢un' WITH n THE LENGTH OF THE TRAINING
SEQUENCE (n = 1000 FOR ¢1 AND ¢2). THREE REPLICATES OF EACH PLUG-IN MAP DETECTOR ARE CONSIDERED

Error probabilities in %
F bu1 bu2 100 $u100  bu100 1000 Pu1000  $u1000  Pu10000 Pui0000  Pu10000
F1 | 405 | 230 | 21.30 474 11.95 3.37 4.25 3.05 2.46 2.46 2.39
F2 | 20.28 | 1354 | 545 968  6.67 4.75 4.45 5.61 3.97 3.98 3.86
F3 | 391§ 275 | 1639 18.18  8.98 3.72 3.84 4.17 2.20 2.21 2.28
F4 | 20.04 | 20.31 | 11.21 30.93 12.84 1413  11.38 9.16 11.31 11.99 10.84
F5 | 12.96 | 6.69 | 3231 1331 26.28 1.01 0.04 0.33 0.01 0.07 0.02
F6 | 12.44 | 1004 | 932 6588 859 5.16 4.78 3.71 3.47 3.53 3.58
F7 | 44.29 | 43.08 | 33.71 19.17 19.07 9.89 9.77  11.16 8.45 8.92 8.72
F8 | 15.90 | 11.48 | 1849 1160  7.51 7.16 6.44 7.11 5.86 5.91 5.69
of 100 is too small for the plug-in MAP detector when the APPENDIX |
noise distribution has heavy tails (F2, F7, F8). Tifedetector PROOFS FROMSECTIONS Il AND Il

deteriorates for heavy-tailed distributions and fitedetector

for distributions with little mass around the origin (F3—F5).
As expected, all detectors significantly degrade in perfor- Equation (2.6) is proved in [10], assuming ia), ii), iiia), iva),

mance for the nonsymmetric noise distribution F4 and signaihd the additional requirements

S1 (which has a nonzero sum). To reduce this effect we

symmetrized the-functions around: instead of0. This means /T/)(y 6 f(y) dy = SB() + o(6)

Proof of Theorem 2.1

purr(y) =y — fi s
pur>(y) = (y — i)’ /(1/(er )= (y)"f(y) dy = o(1)

Pun(y) = 2 <ﬁn,st <y ; ﬂ) + Prst <%)) /(P(y +64+m) = ply+6—n) = 2mp(y + 6)* f(y) dy

2
= o(8* + 1)
where the subscript indicates symmetrization arourid We / s s
. — - -—n)—2 6 d
denote the corresponding detectors @y:, ¢,2, and @,,,. (ply +6+m) = ply + m) = 2mily + 8)f(y) dy
The results are shown in Table lll. The performance with = 0(52 _|_772) (A1)
F4 is now improved, especially fap,,,. The price for this

is increased failure rate for many of the other distributiongg 4 n — 0. By inspecting the proof of [10, Lemma 1]

This is especially apparent faf,, and ¢,,00, whereas for gne sees that iva) may be replaced by ivb). Therefore, it
Pu2, P 1000, ANA @ 10000 the difference is smaller. suffices to prove that iiib) implies (A1). We will concentrate

To summarize, the plug-in MAP detectors have good pegn |ast equation, the other three are easier to establish. Let
formance for a wide range of distributions when the training — (4, ... 4,1 be the finite set of discontinuities af.

sequence is long enough, whereas and ¢, have a more Then jvb) implies

variable performance. It is also worthwile to adjystand the

plug-in MAP detectors for possible asymmetry in the noise r

when the training sequence is large and at least one signal has () = P1(y) + Z b sgn (y — d;)
nonzero mean. i=1
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with ¢/, having a bounded derivative. By linearity, it suffices té’roof of Lemma 3.1
establish the last equation of (A1) fg5 and; = sgn (- —d)

o . Notice that
separately. Lefp; be a primitive function ofy; (take, e.g., y
ps = | - —=d|), and L(\) = sgn(\)(1 — |A|)+—a function b = Ji
supported orj—1, 1]. Taylor expansion op gives fn
ot f’r/L f’r/L/
(orly 64 m) = prly+ 8 —n) = 29 (y +9) Yo = ) Fa
- Fy) dy‘ wheref” may contain Dirac delta functions, and
£ ( G+1) K(’) Y- N
AWy + 6+ An) = 91y +6)) ) : Z

for j = 1,2, with

w; = N;)/R) / ZK — Ni)/h)

- fy) dAdy|n®

< /_1 |L<A>|/R|w’1<y+6+m> — Yy + 6)1f () dy AN

P = o(n?) weights satisfying; w; = 1. This proves the lemma, with
D= |J (Ni+hDo)U{—a,a}. O
where the last relation holds provided we show that 1<i<n
APPENDIX I
/ |91 (y + 6+ An) — 91 (y + 6)| f(y) dy PROOFS FROMSUBSECTIONSIV-A AND IV-B
R
Proof of Proposition 4.1
< / 91 (y + An) — ()| f(y) dy L rrop _
R Let ¢ = 1o + € be a function “close to%y. Then

+/R|¢’1(y+5+k77)—¢1(y+5)l £l (D, 00)2 (o + &,1h0)?

Sy +8) = Sl dyi=1 + I el o+ €l
IR0l — (€, o)

_ 2
tends to zero uniformly in\ asé, n tend to zero. This is true =Iloll” - l[1hol]2 + 2(&,%0) + ||€]|2
for I, because ofl.:-continuity. For the second term, |€l; IEN 1%b0])? = (&, 1b0)? .
be a large constant. Then =E&(¢o) — N + O(|[€]P%).
Apply this with eitheré = &,, or £ = g,. O
< s
L =2l (R)< ly|<Cs /y|>cg> Proof of Theorem 4.2
Jfly+6) = f(w)ldy Assume without loss of generality (w.1.0.g.) that(K)=1.
Introduce
< A || oo
<AllY1llr=@m) <03wf(5)+/|yl>Cg fy) dy) o) = Efy /K (y—uh)du  (A2)

with w; the modulus of continuity off. The last expression and
can be made arbitrarily small by first choosifig large enough by = _&
and thené small enough. (Remember thgt is absolutely "
continuous.)

For p2 we obtain

(A3)

Following [3] and [4, Sec. 7.8], we make the decomposition

(n =PIV f =0a(Vf = VF) + (W = )V fr
‘/[R(Iy—d+6+77|—|y—d+5—77l + (b Fr = Yo/ F).

Hence

[ =021 dy
<3( [ RWT = VDt [ =025 dy

= o(n”) pop
+ < = ) )::3(I+II+III).
because of the continuity of. O / Vi VI

— 2nsgn (y — d+6))f(y) dy‘

. / LOVF(d = 6+ 7)) — f(d - 6)) dA

-1
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Lemma 3.1 implies Insertion into the definition of, gives
: ~Fr @)/ Falw), 1 1y| < anand | L )
Pn(y) = |71 ()| < enfnly) I < Z/ / Ja( A u, h)u” K (u) du dA
0, otherwise 0 oo
with ¢, = ||K’/K||r=@hy;*. It is proved in [4, Sec. 7.8] With
p .
that I, Il, Ill = 0 under the assumption BB _/ F(y - )\hu)Q .
hncn — 0. (A4) A ae Sl — M)
However, inspection of the proof reveals that II, # 0 Now J5(\,u, k) < I(f) and
under the weaker assumption T
hpe, = O(1) (A5) hm Ja( A u, h) — / 2/fdy

which is satisfied in our case. (Notice thatis not involved in
11, so (A5) is trivially sufficient, given that (A4) is.) It remains for all (A, «) (dominated convergence). Another application of

to prove that (A5) also implies £ 0. Observe first that the dominated convergence theorem gives
n d N2
I < (cnh)? /<\/f_ \F) lim I, < M/ Uy (A7)
h—0 4 Ag f
so it suffices to prove
If y € A,
/<\/f_nh \/_> dy — 0ash — 0.
Let ‘
fn( )—f( )
Ae ={y; f(y) 2 €}
I = n— h) d
! /A (VI = VD)) o oy — M) = F()uk (u) dud).

and

(A8)

Since I(f) < 00, ||f||z~®) < oc and hence
Observe that

7.0) - VIW) [Py <l <o
h
1 / wf(y — Ahu) K (u) du Minkowski’s integral inequality and (A8) imply
- _Z —%0 dA.
2/0 1/2 L
< Fly = Ahw) K (u) du) 7 < —/ / JLO\ u, B)|u| K (u) du dA
The relation
where
E(U)? <U2)
<FE|l— A6
EWV) — 1% (A6) JLu, b)) = ||/ (- = Mhu) — f’(-)||L2(R).
which follows from Cauchy—Schwarz inequality, implies But

J1(Au, h) < 24/ flleee@I(f) and Ji(Au, h) — 0

()

=) 2
L </ wf’ (y — Ahu) K (u) du) ash — 0 for all (\, %) (L*continuity). Dominated conver-
= d\. gence gives

im I, = 0. A9
}133%10 (A9)

f’ y f'(y = Mhu)?
h K(uw) dud. o . .
fly— U) To finish the proof, combine (A7) with (A9) and let— 0.0
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Proof of Proposition 4.3 and

We include this proof for completeness. Condition |b)
implies thatig is skew-symmetric. Hence o)

@ =2 sdy (

f>2<i>2/3+ (f;—f’>21>
7 )\ i

1. 1, 2
:/<§(¢n(y)—¢o(y))+§(wn(—y)—wo(—y))> fw) <o ( . 2—/3f>2 L ; f/)2> 13
<5 [t 021w o+ [nmi0(=0) 1) dy ’
. because of Lemma IIl.1. Nowo(K) = 1 and p1(K) = 0
= [t 1w imply ° 1
APPENDIX Il Intw) =
PROOF OF THEOREM 4.5 / / 2(1 = VK (w) f® (y — Muh) du d)

It suffices to establish (4.4), then (4.5) and (4.6) follow
easily. Assume w.l.o.guo(K) = 1. We will let C denote a
positive constant, whose value may change from line to line.

Let A = {y;|y| < C1h™2}. Th 1
e {w;lyl < C1h™7}. Then Faly) >5/ 2(1 = M) fa(y; AR) dA

E /(v o)/ dy

=4 / / 21 — VK (W) f(y — Muh) dud) (A14)
=E / (P — 90)* f dy + / $3f dy.  (A10)
A Ac

because of Lemma lll.1. Therefore,
The first term of (A10) is decomposed as

(Fn=1)" f’)
E [ (=001 dy T W 2
<2 /A (= n)* f dy + 2 / (% —0)*fdy (A11) < / / 21 = NE )Py = Xuh) dW)
Notice that - / / 2(1 = VK (u) f(y — Auh) du dX
A :an—fn_fé—fé f(3)y F®(y = Muh)?

We will use the estimates , i ,
where we used (A6) in the last step. Integration with respect

E(fO(y) — £ < Chu(y)n th™1 72, fori=1,2 toy gives

derived in [23]. The first term of (Al1ll) may be estimated I 12 (32
(23] (A11) may /Md <Oh4/Mdy=Oh4, (A15)

according to f
E/ (P — Pn)2 f dy because of ic). Consider now the first term of (A13}hldter's
A X , inequality implies
; 2 E(fn - fn) d
< Al | Sy /< ; >2<fn_f>2dy
= BUL =11 1y, R
A fa f ; <<f’)6 >1/3 / = I 2/3
-2 —1p-14 —1p-3J < (%) fdy < Ldy) (A16)
< Ch /An h fndy—i-C'/An h fndy f 12
L L _ 2/3
= Onth 3/Afindy5 Cn~ha, (A12) :C</%dy) (A7)

where we made use of Lemma 3.1 as well as of Lemma Illbl £10). Combinati ¢
below. Consider now the second term of (A11). Notice that ecause of ic). Combination o

P h=f f=f PSRN Y (2) (4
tn=io= LI D =10 =% [ [ 200K (g-Nab) duds
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and (Al4) implies

| f2f|3 (y)

3
(u)f P (y — Auh) du dA

f oz
(/0/_;<1—A

Application of the relatiof E(U)|2/(EV)? < E(|U|?/V?)
(which follows from Hblder's inequality) yields

o= I f|3 <Ch6// 2(1- A

|f P (y — Auh)|?

< Ch®

K(uw)f(y — \uh) du d)\)

- K(u dudA.
) fly = Auh)?
Integrate with respect tg and apply ic).
3 2)?
/%dyﬁ@*hﬁ/‘f? fdy = ChS.

Combine this with (A17) to obtain

[ () (

I
f5/6

2
f"2—73f> dy < Ch, (A18)

fn

The theorem now follows from (A10)—(A13), (Al15), and

(A18). O

Lemma lll.1: Let

m= [ f-un

Then there exist constantg > 0 and0 < ¢; < 1 such that

(u) du

Sa(ysh) > e faly; ) VO <P <h < ho,y eR.

Proof: Let L(u) = —2uK’(u) and f; as defined in ie).

Then notice that
W= [ Tl
0

When 2/ = 0, the lemma then follows from ie). When
h' >0, we will prove thate, = (c52l/1; 4+ 1)~ suffices,
with ¢ as defined in ie).

2u0
/uo
=]
_[2 = /
wo

L : uw? K’ (u) du

and
uw? K’ (u) du.
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(It follows from vb), vd), and ve) thatl; >0 and I, < x.)
Puth' = Ah,0< A< 1. Write

jM%AM=:Am?meL@ﬁk

[ ()

A
uoh 5

ronea
o

dé
Ah
déd
)3
- déd
+ o fs(y)L <E) VA
1= far(ys AR) + fr2(ys AR) + fas(ys AR).

For h sufficiently small

ugh
)L
0 fé)\ < ) h

ugh
<i* [ Tr(})

:co_lfnl(y; h’)7
ugh /A

_l’_
Augh

fr1(y; AR) =
dé

h

6\ dbd

fn?(y;)‘h):/} f(S)\( )L <h)7
-ugh/)\_ S\ d§
Sc()_l /ugh quh(y)L(ﬁ)F

< c()_l?ug h (y)IQ
y I 2ugh

<c
Co Il

fé(y)L<

uoh
S CO_QI_lfnl%(y; h’)

and

< 6
Tn3(y; Ah) = ’ }f&(y)L<E

6

< [ e

dé
)
dé
)i
where we used the fact thaf.(«) is nonincreasing for, > ug
in the last inequality. Combining the last three estimates, we

see that we can choose the valuecofmentioned above.
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