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Adaptive Detection of Known Signals in Additive
Noise by Means of Kernel Density Estimators

Rolf T. Gustafsson, Ola G. Ḧossjer, and TommÿOberg,Member, IEEE

Abstract—We consider the problem of detecting known sig-
nals contaminated by additive noise with a completely unknown
probability density function f: To this end, we propose a new
adaptive detection rule. It is defined by plugging a kernel density
estimator ^f of f into the maximum a posteriori (MAP) detector.
The estimate ^f can either be computed off-line from a training
sequence or on-line simultaneously with the detection. For the
off-line detector, we prove that the (asymptotic) error probability
for weak signals converges to the minimal error probability of the
MAP detector as the number of training data tends to infinity,
and we also establish rates of convergence and the optimal
choice of bandwidth order for a certain class of noise densities.
In a Monte Carlo study, the off-line plug-in MAP detectors
are compared with the L1- and L2-detectors for various noise
distributions. When the training sequence is long enough, the
plug-in detectors have excellent performance for a wide range
of distributions, whereas theL2-detector breaks down for heavy-
tailed distributions and the L1-detector for distributions with little
mass around the origin.

Index Terms—Adaptive, additive noise, detection, kernel esti-
mate, nonparametric, training sequence.

I. INTRODUCTION

W E CONSIDER the problem of detecting one out of a
finite number of possible messages of known form,

transmitted through a channel which is corrupted by additive
noise.

In many situations, the noise is clearly non-Gaussian due
to impulsive sources, especially when there are a few external
interferring noise sources with high intensity. It is well known
that even a small deviation from the normal distribution can
drastically degrade the performance of the linear detectors
that are optimal for the Gaussian environment. This has
created interest in robust detectors that have nearly optimal
performance for Gaussian noiseand good performance when
a fraction of the noise is impulsive, cf., e.g., [12] and [13].
Such detectors are based on the assumption that the majority
of samples have a known nominal distribution, whereas a small
fraction can have a more or less arbitrary distribution.

An alternative approach is to assume little or noa priori
information about the noise statistics and then estimate the
noise probability density function (pdf) either from a
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training sequence (off-line) or simultaneously with the detec-
tion (on-line). This can be done either parametrically or non-
parametrically, depending on whetheris finite-dimensional
or infinite-dimensional. A widely used physical parametric
model is Middleton’s Class A model [15]–[17]. Estimators
of the parameters in this model have been considered in [27]
and [28].

In this paper, we will follow the nonparametric approach,
and only impose mild regularity conditions onWe estimate

by means of a truncated kernel density estimator. The
resulting estimate is then considered as the true pdf and
plugged into the maximuma posterioridetector (MAP). This
“plug-in” detector belongs to the class of minimum distance

-detectors. As the performance criterion of the detector,
we will use the asymptotic error probability (or risk) for
weak signals, as in [10]. This criterion depends essentially only
on the efficacy, as noted in [14] in the case of two signals.
Since the efficacy is the inverse of the asymptotic variance
of an -estimator, our detection problem has analogies to

-estimation.
Statistically, our detection problem is semiparametric. The

detection of the (weak) signal is a parametric problem, whereas
the noise pdf can be regarded as an infinite-dimensional
nuisance parameter The statistical study of semiparametric
problems started with the fundamental paper of Stein [22].
He called an estimator of a Euclidean parameter that does not
assume knowledge of adaptivewhen it is asymptotically
efficient for each This means that the estimator has
the same asymptotic performance as the optimal estimator with

known. A recent, very extensive survey of semiparametric
methods is given in [4].

Let be the optimal (unknown) MAP detector associated
with , and the plug-in MAP detector based on, which
is computed from a training sequence of size(the off-line
case). Then adaptiveness means that as
tends to infinity for all We will refer to this property as
consistencyof , since can be viewed as an estimator
of In order to have a consistent detector, it is crucial
to have a good estimate of the optimal score function

In fact, we will show that
depends essentially on This loss function is
also important for the theory of adaptive-estimation in the
linear model (cf. [3], [4], [6], [11], [18], and [23]).

Under very weak conditions on , we prove consistency
of the off-line detector. Related results for-estimators can
be found in [3] and [4, Sec. 7.8]. We also establish a rate of
convergence of for . Even though this requires a
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slightly smaller class (e.g., must have three derivatives),
it still includes the Cauchy distribution, all-distributions, the
normal and logistic distributions, and finite mixtures of these.
To our knowledge this is the first result on rates of convergence
of a semiparametric procedure based on kernel estimates.

We have chosen -detectors and kernel density estimators
because of their simple structure. In fact, our density estimator
only contains two parameters, a bandwidth and a truncation
point (to avoid tail effects when estimating , and is easy
to compute using the so-called WARP techniques (Weighted
Average of Rounded Points) described in [9].

Other adaptive techniques that have been studied include
-estimators and -tests [1], [4], [24]; -estimators [19], [20];

and estimators based on minimizing the Hellinger distance [2].
Kernel estimates have been used in [2], [3], [4], [18], and [23]
for estimating and in the semiparametric context, but
other density estimation methods could also be used, such as
orthogonal series [1] and splines [5], [6], [11]. In fact, Cox
establishes a rate of convergence of
towards in [5], assuming a third derivative and periodicity
of This is faster than our rate , but our regularity
conditions seem to cover more standard densities.

As one referee noted, it may be more realistic to consider
the error probability for a fixed signal length instead
of the asymptotic limit The rate at which

converges to is then of interest. Alternatively,
to get a simpler performance criterion, an exponential bound
of could be used. This is indeed an interesting topic for
further research. Our limit may be viewed as an explicit
and relatively simple approximation of

The paper is organized as follows: We review the theory for
detection of weak signals in Section II; the off-line detector
and its asymptotic properties are considered in Sections III and
IV. We present an on-line detector in Section V with recursive
updating of Finally, numerical results are given in Section
VI, and the proofs are collected in the Appendices.

II. DETECTION PROBLEM

A. Model and Optimal Detector

We consider a received vector of the form

(2.1)

where

and

is one of possible transmitted signals, is an amplitude
factor, and is an additive noise vector. We
assume that the are independent and indentically distributed
(i.i.d.) random variables with pdf , and that the signals have
a priori probabilities The error probability of a
nonrandomized decision rule is then given

by

It is well known [25, p. 48] that the error probability is
minimized by the maximuma posteriori detector

A minimum-distance detector is defined by first choosing a
distance function and then selecting the signal with
shortest distance to the received signal

(2.2)

For a minimum-distance -detector (MDM), the distance
is given by

(2.3)

with and a real-valued function.
For equala priori probabilities , the MAP detector

belongs to this class with The -detector
corresponds to and Gaussian noise, whereas the

-detector with corresponds to Laplacian noise

B. Asymptotic Error Probability and Efficacy

In the weak signal approach, the amplitude depends on the
signal length

(2.4)

for some constant For weak signals, the asymptotic
error probability

usually exists, and has a tractable expression for MDM de-
tectors and equala priori probabilities. (Strictly speaking,
depends on the whole sequence of decision rules as ,
but this will not be shown in the notation.) In practice, the
signal amplitude is constant. The weak signal approach is
merely a tool for finding a simple expression for, which
may be approximated by , with

Under certain assumptions, is closely related to the
efficacy

Here, (analogous to the score function for -
estimators) and is the optimal score
function corresponding to the MAP detector. Before exploring
the relation between the efficacy and the asymptotic error
probability, let us state some regularity conditions:
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Assume that
ia) The density is absolutely continuous with ,

where is the Fisher information.
ii) Let be a signal matrix. Then

as , where is a positive-
semidefinite symmetric matrix of dimension

iiia)
iiib) is discontinuous at most at a finite number of points

and has a bounded derivative outside these points.
iva)
ivb) For some subsequence of and for

Condition iva) is satisfied when is symmetric and skew-
symmetric. However, the symmetry is not necessary according
to ivb), as long as all signals have zero mean. In this case,
we consider the asymptotic error probability as the limit along
the subsequence

The detection problem (2.1) can naturally be embedded
into a multiple linear regression model [10], ,
with the signal matrix in ii) interpreted as the design
matrix and the unknown regression parameter. If

is the transmitted signal, then and
, the unit vector with in position

When ivb) holds, only contains slope parameters. It is
well known that symmetry of is not needed for estimating
the slope parameters, whereas some condition like iva) is
necessary when an intercept is included in the model.

Notice that ii) implies that the pairwise signal distances
converge

as

(2.5)

It is possible to find vectors in whose
pairwise distances agree with those in (2.5) (cf. [10]). Define

as the set of points closest to Let be the
identity matrix and a normally

distributed stochastic vector. Define the “error probability
function”

It is easily seen that is differentiable and strictly
monotone-decreasing. We then have the following theorem,
which follows by combining [10, Lemma 1 and Propositions
1–2]:

Theorem 2.1: Assume equala priori probabilities, ia),
ii), iiia)–iiib), and iva). Then the asymptotic error probability
exists

(2.6)

or if ivb) holds instead of iva)

(2.7)

A more complicated asymptotic risk expression can also
be derived for arbitrarya priori probabilities, cf. [10]. We
state Theorem 2.1 here to stress the dependence ofon
the efficacy. When we estimate (or ) in the follow-
ing sections, it is thus important how well can be
approximated. The function (and hence also ) depends
not only on , but also on the matrix and the amplitude
factor . Since we consider the signals and known,
we have made only the dependence onexplicit. It may be
seen by orthogonal transformations thatonly depends on

through the pairwise distances
This makes it possible to choose in a convenient way.

Example 1( ): The case of two signals is thoroughly
treated in the overview [13]. Suppose (the zero vector)
and that is arbitrary with and

Then , and we may choose and
This implies

with the cumulative distribution function of a standard
normal distribution. In particular, for the signal

(2.8)

with , we have and hence

Example 2 (Sinusoidal Signals):Fix , let
, and

(2.9)

for some (a sampled version of MPSK signals). Then
, and we may choose

When has a simple expression
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III. OFF-LINE DETECTOR

Suppose that we have an i.i.d. training sequence
of noise samples with marginal distribution

This means that the recipient knows the sent message
corresponding to the first samples or that no signal is
sent during this time. Our objective is to use
for estimation of This in turn produces an estimate of

that is plugged into the MAP detector.
Let be a given sequence of numbers and

a kernel function. Define

as a kernel estimate ofwith bandwidth Various properties
of kernel estimates can be found in [21] and [26]. Next define
estimators of and by

if
if

if

if

Let also be the “plug-in” MAP detector defined by
putting in (2.2) and (2.3). The truncation point

may either be infinite or finite, where in the latter case
as increases. It is actually preferable to choose

finite to avoid tail effects, as will be seen in Section IV.
We will first check whether Theorem 2.1 holds with ,
when and are fixed. For this we need some regularity
assumptions:

va) is strictly positive
vb) is differentiable with bounded.
vc) is continuous except in a finite set Outside this

set is differentiable with bounded.
These requirements are violated by the Gaussian kernel

and kernels with compact support, such as the Epanechnikov
kernel

Instead, we will use the logistic kernel

in all of our simulations.
Lemma 3.1:Assume va)–vc) and , then

the set of discontinuities of is finite (with a cardinality
that might depend on ) and1

1GivenA � and 2 L1( ), we define

 L (A) = ess sup
x2A

j (�)j:

Lemma 3.1 implies iiia)–iiib) for fixed and In conjunc-
tion with Theorem 2.1 this gives:

Corollary 3.2: Assume ia), ii), ivb), and va)–vc). Then the
asymptotic error probability of exists and is given by

(3.1)

When the signals have nonzero mean, we need iva), which
is typically not satisfied for However, iva) holds if

ib) is symmetric
and skew-symmetric. It is possible to modify to obtain

a skew-symmetric score function. Define

(3.2)

and let be the corresponding detector. Clearly, is sym-
metric and skew-symmetric. Analogously to Proposition
3.2 we have:

Proposition 3.3: Assume ia)–ib), ii), and va)–vc). Then the
asymptotic error probability of exists

(3.3)

IV. A SYMPTOTICS OF THEOFF-LINE DETECTOR

A. Convergence of the Efficacy

In order to see how well and approximate
, Theorem 2.1 tells us that we should investigate how

well and approximate It is easy to see,
using the Cauchy–Schwarz inequality, that maximizes

This means that and will
always be nonnegative, and we can regard these quantities as
loss functions when we estimate Since is a strictly
decreasing function, and will
also be nonnegative.

Define the inner product

the (squared) norm

and

Proposition 4.1: If as

(4.1)
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In particular, if then2

(4.2)

and if (3.1) holds, then

(4.3)

If (3.3) is satisfied, the same conclusions hold with
and replaced by and in (4.1)–(4.3).

Remark: If we ignore the remainder terms, Pythagoras’
Theorem implies that equals the distance
between and the line This is natural,
since for all

B. Consistency

In this section, we will prove convergence of the asymptotic
error probability. According to Proposition 4.1, we should first
investigate the quantity

We will need the following additional regularity assumptions.
vd) The kernel satisfies and ,

where

via)
vib)
vic)
Theorem 4.2:Assume ia), va)–vb), vd), and via)–vic). Then

as
Convergence of

is implied by Theorem 4.2 and the following result, which
may be found in, e.g., [3] and [4]:

Proposition 4.3: If is symmetric (Condition ib)), then

Combining Propositions 3.2, 3.3, 4.1, 4.3, and Theorem 4.2,
we obtain consistency of and :

Corollary 4.4: Assume ia), ii), ivb), va)–vd), and via)–vic).
Then is consistent, i.e.,

as If ia)–ib), ii), va)–vd), and via)–vic) hold, then
is consistent, i.e.,

We do not need , since multiplicative factors
of will not affect the decision rules. Conditions vib)–vic)
imply that the truncation points tend to infinity, but with a
slower rate than (and hence ).

2
Yn = op(1) means thatP (jYnj>")! 0 for any "> 0:

C. Rates of Convergence and Bandwidth Selection

By adopting more assumptions on and it is
possible to establish rates of convergence of and

These assumptions are:
ic) is absolutely continuous

and

id)

as
ie) Let

Then there exists and such that

and
ve) There exists a number such that is

nonincreasing for
vid) for some constant
vie) for some constant
Condition ic) is equivalent to
ic} is absolutely continuous

and

Theorem 4.5:Assume ia), ic), ie), va)–vb), vd)–ve), and
via). Then

(4.4)

If also id) and vid) are satisfied, then

(4.5)

and then choosing the bandwidths according to vie) gives the
optimal rate of convergence

(4.6)

Here is essentially the integrated squared bias of It
has the same order of magnitude as the squared integrated
bias when estimating or The second term of (4.4),
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, is an integrated variance term of over the
interval Compare this with the pointwise variance
of , which is for each , a smaller
order as It is the presence of in the denominator
of that makes the integrated variance larger. There is no
such discrepancy when or are estimated, then the local
and integrated variances are of the same order (
and , respectively). The third term of (4.4) is the
error induced by the truncation of at The magnitude
of this terms depends on the behaviour of the tails ofWe
could have required a faster rate of convergence than
in id). This would make smaller, and then
we could have chosen smaller values of and , giving a
faster rate than in (4.6). However, a fast rate of
convergence in id) would exclude heavy-tailed densities like
the Cauchy distribution and-distributions with few degrees
of freedom. Therefore, apart from the assumption that
exists, the regularity assumptions ia) and ic)–ie) imposed on

are rather weak. For instance, they are satisfied by the
normal, logistic, Cauchy and all-distributions and also by
finite mixtures of these distributions.

The bandwidth choice vie) is optimal for our chosen class
of densities. It is oflarger order than the typical ones for
estimation of and As
mentioned above, if we restricted ourselves to lighter tailed
densities, the optimal bandwith would be of a smaller order
than

Combining Theorem 4.5 with Propositions 3.2, 3.3, 4.1, and
4.3 we obtain

Corollary 4.6: Assume ia), ic)–ie), ii), ivb), va)–ve), and
vid)-vie). Then

If ia)–ie), ii), va)–ve), and vid)–vie) hold, then

V. ON-LINE DETECTOR

Suppose now that the transmission procedure (2.1) is re-
peated times

(5.1)

with and all noise vectors
are independently distributed, each having

i.i.d. components with marginal density The numbers
determine the true signals during

the transmission intervals.
The detector will be updated recursively andsimultaneously

with the detection as follows: To choose the signal, use
the MDM detector described in (2.2) and (2.3) with

This produces a signal estimate which can be
used to estimate according to

Since we now have more information about the noise, we
will use to recursively update Analogously to the

Fig. 1. Flowchart of the on-line detector.

off-line case, is computed from a density estimate
according to

if
if

where is an appropriate sequence of truncation numbers.
The density estimate is computed from according to

(5.2)

where

is the bandwidth in step , and measures
how much faith we put in the latest noise estimates relative
to the past information. The structure of the on-line detector
is shown in Fig. 1.

If we have training samples available, it is
natural to use

and

(5.3)

This means that we put equal emphasis on all noise samples
(both from the training sequence and the estimated ones), since
(5.2) may now be expanded as

Hence, is based on a noise vector of size Using
the asymptotic theory of Section IV-C, it is natural to choose

and
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TABLE I
WITH SIGNAL CONFIGURATION S1 AND VARIOUS NOISE DISTRIBUTIONS F , ESTIMATES OFPt(�) ARE GIVEN FOR THE L1-DETECTOR�1, THE

L2-DETECTOR�2, AND THE PLUG-IN MAP DETECTOR�
n

, WITH n THE LENGTH OF THE TRAINING SEQUENCE (NO TRAINING SEQUENCE IS

NEEDED FOR�1 AND �2). THREE REPLICATES OFEACH PLUG-IN MAP DETECTOR ARECONSIDERED. THE ASYMPTOTIC LIMITS P (�) ARE

GIVEN IN BRACKETS (WHICH CORRESPOND TOt = 1 FOR �1 AND �2 AND n; t = 1 FOR THE PLUG-IN MAP DETECTOR, i.e.,P (�0))

for some positive constants and (When the error
probability is small, with high probability, and the
situation is then very similar to the one described in Sections
III and IV.)

If no training sequence is available we have to use a
deterministic , e.g., the logistic or the double exponential
distribution. We can still use (5.3), and then can be
interpreted as thea priori confidence we have in

For symmetric noise and signals with nonzero mean, we can
symmetrize , as was done in Section III for the off-line case.

In situations where the noise is nonstationary, it is advisable
to use

which produces a detector that is more flexible to fast changes
in On the other hand, the resulting detector is not consistent,
when the data is stationary. The reason is that the effective
number of samples used for calculating is of the order
for all large , which does not increase with

VI. NUMERICAL RESULTS

In this section, we perform a Monte Carlo study, which
compares the error probability of the off-line detectorwith
the - and -detectors, for different noise distributions and
signals. Let us first give a more detailed description of the
simulation study:

Detectors: -detector -detector
, and

Noise Distributions: The following noise distributions will
be used:

F1: Normal:
F2: Normal mixture with heavy tails:

F3: Normal mixture with several modes:

F4: Normal non-symmetric mixture:

F5: Uniform:
F6: Laplace:

F7: Cauchy distribution.
F8: -distribution with three degrees of freedom.
Signals: Two sets of signals are included:
S1: The signals from Example 1 , (2.8), with

, and
S2: The signals from Example 2, (2.9), with
, and

Number of Monte Carlo Iterations:100 000 iterations for
each combination of detector, signal, and noise. For each
Monte Carlo replicate, the true signal was chosen randomly
with equal probability among all possible signals.

Calculation of : In practice, it is advisable to standardize
the data and replace by , with
Here and are robust measures of location and scale. We
have used the median and normalized interquartile range. That
is, if are the ordered training samples, we
put and

When we have Gaussian noise, the normalization ensures that
is a consistent estimator of the standard deviation for a

normal distribution. The next step is to compute and
from the standardized noise samples, with

and in vid)–vie) and a logistic kernel. (The subscript
“ ” indicates “standardized data.”) Then transform back and
define The symmetrized version
is then computed from according to (3.2).

The results of the Monte Carlo simulations are shown in
Tables I–III. Notice that the symmetrized detector is used
for S1, for which ivb) does not hold. We have also included
asymptotic error probabilities for various signals, detectors,
and noise distributions. (Apart from the combination F4/S1,
where neither ib), iva), nor ivb) hold.)

The agreement between the Monte Carlo results and the
asymptotic limits is quite good for and On
the other hand, for the asymptotic error probability is some-
what higher than the simulated one. This discrepancy was also
noted in [10] and is probably due to the discontinuity of the-
function, which makes the convergence oftowards rather
slow in Theorem 2.1. The detectors and

show excellent performance for all noise distributions.
However, it is clear from the tables that a training sequence
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TABLE II
WITH SIGNAL CONFIGURATION S2 AND VARIOUS NOISE DISTRIBUTIONS F , ESTIMATES OFPt(�) ARE GIVEN FOR THE L1-DETECTOR�1, THE

L2-DETECTOR�2, AND THE PLUG-IN MAP DETECTOR �̂n, WITH n THE LENGTH OF THE TRAINING SEQUENCE (NO TRAINING SEQUENCE IS

NEEDED FOR�1 AND �2). THREE REPLICATES OFEACH PLUG-IN MAP DETECTOR ARECONSIDERED. THE ASYMPTOTIC LIMITS P (�) ARE

GIVEN IN BRACKETS (WHICH CORRESPOND TOt = 1 FOR �1 AND �2 AND n; t = 1 FOR THE PLUG-IN MAP DETECTOR, i.e.,P (�0))

TABLE III
WITH SIGNAL CONFIGURATION S1 AND VARIOUS NOISE DISTRIBUTIONS F , ESTIMATES OF Pt(�) ARE GIVEN FOR THE

L1-DETECTOR��1, THE L2-DETECTOR��2, AND THE PLUG-IN MAP DETECTOR�
�n

, WITH n THE LENGTH OF THE TRAINING

SEQUENCE (n = 1000 FOR �1 AND �2). THREE REPLICATES OF EACH PLUG-IN MAP DETECTOR ARE CONSIDERED

of 100 is too small for the plug-in MAP detector when the
noise distribution has heavy tails (F2, F7, F8). The-detector
deteriorates for heavy-tailed distributions and the-detector
for distributions with little mass around the origin (F3–F5).

As expected, all detectors significantly degrade in perfor-
mance for the nonsymmetric noise distribution F4 and signal
S1 (which has a nonzero sum). To reduce this effect we
symmetrized the-functions around instead of . This means

where the subscript indicates symmetrization around We
denote the corresponding detectors by and
The results are shown in Table III. The performance with
F4 is now improved, especially for The price for this
is increased failure rate for many of the other distributions.
This is especially apparent for and , whereas for

and the difference is smaller.
To summarize, the plug-in MAP detectors have good per-

formance for a wide range of distributions when the training
sequence is long enough, whereas and have a more
variable performance. It is also worthwile to adjustand the
plug-in MAP detectors for possible asymmetry in the noise
when the training sequence is large and at least one signal has
nonzero mean.

APPENDIX I
PROOFS FROMSECTIONS II AND III

Proof of Theorem 2.1

Equation (2.6) is proved in [10], assuming ia), ii), iiia), iva),
and the additional requirements

(A1)

as By inspecting the proof of [10, Lemma 1],
one sees that iva) may be replaced by ivb). Therefore, it
suffices to prove that iiib) implies (A1). We will concentrate
on last equation, the other three are easier to establish. Let

be the finite set of discontinuities of
Then ivb) implies
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with having a bounded derivative. By linearity, it suffices to
establish the last equation of (A1) for and
separately. Let be a primitive function of (take, e.g.,

, and —a function
supported on Taylor expansion of gives

where the last relation holds provided we show that

tends to zero uniformly in as tend to zero. This is true
for because of -continuity. For the second term, let
be a large constant. Then

with the modulus of continuity of The last expression
can be made arbitrarily small by first choosing large enough
and then small enough. (Remember that is absolutely
continuous.)

For we obtain

because of the continuity of

Proof of Lemma 3.1

Notice that

where may contain Dirac delta functions, and

for with

weights satisfying This proves the lemma, with

APPENDIX II
PROOFS FROMSUBSECTIONSIV-A AND IV-B

Proof of Proposition 4.1

Let be a function “close to” Then

Apply this with either or

Proof of Theorem 4.2

Assume without loss of generality (w.l.o.g.) that
Introduce

(A2)

and

(A3)

Following [3] and [4, Sec. 7.8], we make the decomposition

Hence
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Lemma 3.1 implies

if and

otherwise

with It is proved in [4, Sec. 7.8]

that I, II, III under the assumption

(A4)

However, inspection of the proof reveals that II, III
under the weaker assumption

(A5)

which is satisfied in our case. (Notice thatis not involved in
III, so (A5) is trivially sufficient, given that (A4) is.) It remains
to prove that (A5) also implies I Observe first that

so it suffices to prove

as

Let

and

Observe that

The relation

(A6)

which follows from Cauchy–Schwarz inequality, implies

Insertion into the definition of gives

with

Now and

for all (dominated convergence). Another application of
the dominated convergence theorem gives

(A7)

If

(A8)

Since and hence

Minkowski’s integral inequality and (A8) imply

where

But

and

as for all -continuity . Dominated conver-
gence gives

(A9)

To finish the proof, combine (A7) with (A9) and let
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Proof of Proposition 4.3

We include this proof for completeness. Condition ib)
implies that is skew-symmetric. Hence

APPENDIX III
PROOF OF THEOREM 4.5

It suffices to establish (4.4), then (4.5) and (4.6) follow
easily. Assume w.l.o.g. We will let denote a
positive constant, whose value may change from line to line.
Let Then

(A10)

The first term of (A10) is decomposed as

(A11)

Notice that

We will use the estimates

for

derived in [23]. The first term of (A11) may be estimated
according to

(A12)

where we made use of Lemma 3.1 as well as of Lemma III.1
below. Consider now the second term of (A11). Notice that

and

(A13)

because of Lemma III.1. Now and
imply

and

(A14)

because of Lemma III.1. Therefore,

where we used (A6) in the last step. Integration with respect
to gives

(A15)

because of ic). Consider now the first term of (A13). Hölder’s
inequality implies

(A16)

(A17)

because of ic). Combination of
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and (A14) implies

Application of the relation
(which follows from Ḧolder’s inequality) yields

Integrate with respect to and apply ic).

Combine this with (A17) to obtain

(A18)

The theorem now follows from (A10)–(A13), (A15), and
(A18).

Lemma III.1: Let

Then there exist constants and such that

Proof: Let and as defined in ie).
Then notice that

When , the lemma then follows from ie). When
, we will prove that suffices,

with as defined in ie).

and

(It follows from vb), vd), and ve) that and )
Put Write

For sufficiently small

and

where we used the fact that is nonincreasing for
in the last inequality. Combining the last three estimates, we
see that we can choose the value ofmentioned above.
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