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The Repeated Median Intercept Estimator:
Influence Function and Asymptotic Normality
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Given the simple linear regression model Y,=o+ BX,+e; for i=1,..,n, we
consider the repeated median estimator of the intercept «, defined as
d,=med, med, _ (X;¥;,—X;Y)/(X;— X,). We determine the influence function and
prove asymptotic normality for &, when the carriers X; and error terms e; are ran-
dom. The resulting influence function is bounded, and is the same as if the intercept
is estimated by the median of the residuals from a preliminary slope estimator. With
bivariate gaussian data the efficiency becomes 2/n = 63.7%. The asymptotic results
are compared with sensitivity functions and finite-sample efficiencies.  © 1995

Academic Press, Inc.

1. INTRODUCTION

Consider the simple linear regression model
Yi=a+ X +e, i=1,..,n (1.1)

where {Z;,=(X,, Y;)} are the observed vectors and {e,} represent noise.
We assume that the random vectors (X, e;) are i.i.d., and that X, and e, are
mutually independent with continuous distributions G and F for which
F(0)=1=G(0). When X,, .., X,, are all distinct (an event with probability
one), we may define the repeated median estimator of the intercept «,

XY -—-X.7Y.
&, = med med -—————, (1.2)
i g X=X,
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introduced by Siegel (1982). Given two points z,=(x,,y,) and
Z,=1{x,,¥,) with x,#x,, the kernel function A(z,, z,)=(x,¥, —x,}5)/
(x,— x,) gives the intersection between the p-axis and the line through z,
and z,. Siegel showed that 4, has a 50% breakdown point, and is a Fisher
consistent estimator of a (see Cox and Hinkley, 1974, p. 287) when Fis a
symmetric distribution. In this paper we will prove asymptotic normality
(Section 3). The main result, Theorem 3.1, is that

Jnla, —a) =5 NO, (2/(0) ) as o, (1.3)

The asymptotics will be compared with Monte Carlo results in Section 4.

By changing the kernel function in (1.2), we obtain repeated median
estimators of other quantities. For instance, when A(z,,z,)=(y,— y, )/
(x; — x,) we obtain a repeated median estimator of the slope parameter f3,
as introduced by Siegel (1982). Influence function and asymptotic nor-
mality for this estimator were proved by Hdassjer et al. 1994, henceforth
denoted by HRC. The techniques used in this paper are based on those
used in HRC.

In order to simplify expressions we will assume from now on that
a=0=pf, which because of regression equivariance (cf. Rousseeuw and
Leroy, 1987, p. 116) is no restriction.

2. NOTATION AND REGULARITY CONDITIONS

For a fixed z we define
L,(t)=Pgh(z,Z)<1) (2.1)

where K=Gx F is the distribution of the random vector Z, and
Mz, 2,)=(y,x2— y>X,)/(x,—x,} is the kernel function for the intercept
estimator. Put

H(z)=L,'(0.5)=med h(z, Z), (2.2)
Z~K
where
L '(w)y=inf{6; L, (1)>u}

denotes the right continuous inverse of L,. (We use the right continuous
inverse of the distribution function, evaluated at 0.5, as a definition of the
median throughout the paper. The sample median then corresponds to
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inverting the empirical distribution function formed by the sample, which
yields the observation with rank [#/2]+ 1.) Then define

L(ty=P(H(Z)< 1) (2.3)
Because L is symmetric {Lemma A.1),

L'(0.5)=med H(Z)=0. (2.4)

Regarding Z, as fixed, the finite sample counterpart of L, is

1
Ly, ()=—= 3% IWZ,Z)<1), (2.5)
=L
and we also put
HZ,)= L, ,(05)=med W(Z, Z)) (2.6)
A

as an approximation of H(Z;). With this notation,

4,=med H(Z,).

The following regularity conditions on the error distribution F and the
carrier distribution G will be imposed:

(F) F has a bounded, strictly positive, and asymmetric density f,
which is Lipschitz continuous of order # for some 0 < <1, that is,

I/, = sup ) =1l _f("y” < 0.
X#E N |x— y|

(G) The carrier distribution G is symmetric and continuous and
E, | X|'*" < 0. In addition, either |X| is bounded a.s. or

: Eq(XI(X = x))
lim sup = X5 <

We will also use the notation of influence functions. Let T, be a statistic
such that T,,~% T(K) as n — oo, where the asymptotic value T(K) depends
on the distribution K of the i.i.d. observations. Let §, denote the point mass
at z. Then the influence function (Hampel et al., 1986) of T at K,

IF(T, K. 2) = IF(z) = fim L(L=8)K+2d,)

£~ 0+ &
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measures the effect that an additional observation z has on 7,. By means
of a von Mises expansion of the functional 7, we obtain under certain
regularity conditions

T,=T(K) +l Y IF(Z)+o0,(n 7). (2.7)

1-1

Formula (2.7) implies, via the Central Limit Theorem, that
RA(T, — T(K))— N< fIF 2 dK( z)) (2.8)

provided the integral in (2.8) is finite. The asymptotic linearity of the
estimator as expressed in (2.7) can actually be used as an alternative defini-
tion of the influence function.

In Section 2 of HRC, a general expression for the influence function of
repeated median estimators was given. For the intercept kernel, this
formula simplifies to

1 (1 (1
’F(”zzf(r‘(L/znsg“("’_F (E>_°‘_M_G @))

sgn( y). (2.9)

1
2f(0)

A detailed derivation was given in Héssjer et al. (1992). In Section 3 we will
prove that (2.7) holds for the function given in (2.9).

3. ASYMPTOTIC NORMALITY
The main result of the paper is the following.

THEOREM 3.1.  Let 4, be the estimator of x defined in (1.2). Under the
regularity conditions (F) and (G), it holds that

Z IKZ)+0,(1) % NO, (2/(0)) %)  as n—x

\/;I—l

nd,=—
(3.1)

where IF(-) is defined by expression (2.9).

Theorem 3.1 will be proved through a series of lemmas. The technique of
the proof is similar to the one used in HRC. We will introduce two
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statistics o, and «,, which approximate &,. Let y and t be positive numbers
such that y + 1 < §, and define the sequence of constants

e,=(logn)2+rp=112, (3.2)
b,=¢ & (3.3)

and q,, which satisfies
1—G(a,)=e "2, (3.4)

Next, we subdivide R? into the regions
Ay={z=(x,p); |H(z)| <¢,, |x| 2 a,, |y <b,}, (3.5)
A, ={z;|H(z)| <e,} — A, (3.6)
A;={z;05—p'e, <L, (6,)<05,|x|<dory>1}
u{z;05<L,(—¢,)<05+ ps,, |x|<dory< —1}, (3.7)
and

As={z;|H(2)| >¢,} — A4, (3.8)

where p’ is a positive constant (whose value will be chosen in Lemma 3.3),
and & >0 is chosen so that 0.5 < G(d)<0.75. Then introduce

1 n
— Y IF(Z). (3.9)

i=1

E=

The approximations of &, are now defined as

%, =med (H(Z,) + &) (3.10)

and

ay=med ((Z,¢ 4,) A(Z)+ (Z,e A)NHZ)+£E).  (3.11)

The basic idea of the proof is that taking the median of all H(Z,) is
asymptotically equivalent to taking the median of all H(Z;)+ ¢ When
Z,cA,, HZ)+¢ is close to H(Z,); when Z,e A,, both H(Z,) + ¢ and
H(Z,) are too far away to interfere with the corresponding medians; and
finally, the number of observations falling into 4, or 4, is asymptotically
negligible.

We first show that «, has the same asymptotic behaviour as claimed
for &,,.
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LEMMA 3.1. Let o, and IF(-) be as defined in (3.10) and (2.9). Then

L
T

Proof. Since o, = £ + med, H(Z,) it suffices to show that

%y = IF(Z,)+ 0,(1).

med H(Z,)=o,(n '7?). (3.12)

But (3.12) is a consequence of Lemma B.2, which corresponds to the fact
that /(0) = oo, with /(-)= L’(-) the density of H(Z). This makes the median
of all H(Z,) superefficient. The proof of (3.12) is the same as the proof of
Lemma 3.1 in HRC. ||

LEMMA 3.2. Ler a, and a5 be as defined in (3.10)—-(3.11). Then
a,—a;=0,(n 7).

Proof. We expand the median H(Z,) defined in (2.6) in terms of
influence functions,

H(Z)=H(Z) +“,,i Y IFZ.Z)+R 2 HZ)+S+R,
fiEi
with
sgn(h(z,, z,)— H(z,))
2111(H(zl))

IF(z,, 2,) =

and /,(-)=L.(-). Then introduce the random variables

S = max |S,— £, (3.13)
Zie Ay

R =max |R), (3.14)
Z;c Ay

and the discrete random variable
N=\li;Z,e A, U A5} (3.15)
By the definition of o, and a, we then have

fo,—a | S+ R+max(H 14147~ Hinzy4 100

H([112]+l|—H|[1L2]+1 N))s (3]6)
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where Hy,, .., H,, denote the ordered H(Z,). It follows from (A.4) and
(A.5) in Appendix A, as in (HRC, Lemma 3.2), that

(L+1n)/2
R=o0, ((~——l°§ ") ) (3.17)

when 0<n < 0.5 (which we can assume w.lo.g.). We will also prove below
that

S=o0,(n"""). (3.18)
According to Lemma B.3-B.4 we have N ~ Bin(n, p,,) where
pa=K{4;} + K{4;} =o((logn)** n~"7),
and hence
N=o,((log n)**n'?). (3.19)

It follows from (3.19) and Lemma B.2, in the same way as in the proof of
Lemma 3.5 in HRC, that

— 12 )

(3.20)

max(H([n/‘2]+ L+N) ™ H([n,r’2]+ 1) H([n/2]+ 1) H([n,/2]+l—N)) = Op("

The lemma now follows from (3.16)-(3.18) and (3.20). In order to prove
(3.18), we observe that

IFZ) 1
s—e= -2 1 v pz,z)-IRZ))
n—1 n— ey,
Hence
_ 1
Lo s 21
S<3m =Ty 7o) T max, 14(Z)] (321)
where
1Z,e A KZ,e4,)
azy="2EA) v gz, z) iRz o M) v oy
n—1 %% n—1 ;5%

With Z, fixed, 4(Z,)=0 when Z,;¢ A, and if Z,e 4}, all Y, j#i are iid.
with zero mean. Now suppose that » > n,, where »n, is the same number as
in Lemma A.2. Then

P(IY, <M)=1, (3.22)
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where

| I o
M=2f(0)+2inf,“1 (H) 70 <™

and the last inequality follows from (A4). Now introduce the regions
B,={z';h(z,2')> H(z)} and B={z; y>0}. Then, if Z,c 4,

1Yl < KZ,e B, 4B)

1(0)

1 1
"2 \(m f(0)> sen(h(Z,, Zf)—H(Z,-))l,

and hence

2 ! 1 Ly
Y2 Z)<—— Prlle By AB)+ | = —
E(Y; | ')<f(())2 (Ze By, )+2(]z (H(Z))) f(0)>

2
<jio Pr(Ze By AB)+2[4

In order to estimate Py (Ze B, AB) for ze 4,, the symmetry allows us to
assume that z = (x, y) lies in the first quadrant (Lemma A.1), so that x > 4, and
0< y<bh, Let X' —q,,(x") denote the line through (0, 1) and z. We then have

l2,(H(Z;))— f(0))%. (3.23)

B, ABS {z:X >x} U {21 X <X, 0K ) Sy, (x)
WAz X KX, Gy, (X)) Y <0} 2 B,uB,uB;. (324)
First,
K{B,} €1—Gl(a,)<e '&"", (3.25)

According to (B.3), H(z) < y for any z in the first quadrant. This implies
that the line g,,,,, has nonnegative slope. Hence,

K{B,} <P (OSY<b,)<If]e (3.26)
Since H(z)>0 according to LemmaA.l, the line ¢, , has slope

< y/x<b,/a,<b,for large enough n (if M > 1), and the intersection of g, ,
and the x-axis has negative x-coordinate. Therefore, for large enough n,

K{B\) < Pe(X<0. —b,X<Y<0)<[  If], b, 1| dGlx)

<Ifl . Eq1X| b,=0(e (28", (3.27)
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Formulas (3.24)-(3.27) imply that
Px(Z e B, AB)=0(e~ o8 (3.28)

for Z,e A,. Our next objective is to estimate the last term of (3.23). For
ease of notation, put ¢, ,(-)=4q(-). Then, according to (A.7),

= 46(x') - £10)

(‘x,_” - 1) dG(x")
X

’

LH@)—-10)=[" flgtx)

=/ |

— oo

[x" — x|

+[7 g = fO) E=Td6() £ i+ L. (329)

The symmetry of G implies that

1=20) [ (5-1)do
© \X
and hence we obtain from (G) that for some positive constant C >0,

1,1 <2/(0)

E_G(A/If_j/_%_x)_)g C(1 —G(x))

< C(1—G(a,)) = O(e~ o), (3.30)

Next, by the Lipschitz continuity of f,

’

LI <0, [ gty - 1} dG(x')

!

=t | |ty + =T e
— X X
<t (1@ Y -1 asee)

<111, (= (&FH%GYEG('X'" )E(“D)

< O(e"+ b") = Ofe "loe""), (3.31)

where the second to last inequality follows since Eg | X|' " < o0 and x = a,
is lower bounded away from 0. Since 0 < # < 0.5 can be assumed w.l.o.g., it
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now follows from (3.29)-(3.31) that the last term in (3.23) can be bounded
from above according to

sup 3 (,(H(z)) — £(0))* = O(e *mle™). (3.32)

ze A

1
204
Collecting the results, we see from (3.23), (3.28), and (3.32) that

sup E(Y2[Z,) £ 62=0(e 2oe), (3.33)

Zie 4y

where we choose 6, >0 in (3.33). As in the proof of (HRC, Lemma 3.2), we
may now use (3.33) and an exponential inequality for sums of i.i.d. random
variables due to Bernstein to show that

— d,logn s
5=0, (—-—~l§ > =0,(n 7).

n

This implies (3.18) and completes the proof of the lemma. |

LEmMMA 3.3. Let 4, and a, be as defined in (1.2) and (3.11). Then
G, —a,=0,(n"'?) (3.34)

Proof. Let 0<p <1 and subdivide 4, into 4] and 4, according to
whether H(z)>¢, or H(z) < —e¢,. Then

P(“Z;éd‘n)gP”aZ‘ 2(1 _p)gn)+P(|é| Zpgn)

+P( miﬂ. ]’}(Z,)S(] _p)sn)

Z;e Ay

+P<max ﬁ(Z,)}—(l—p)&n) (3.35)

Zie Ay

We know from Lemmas 3.1, 3.2 that «, =O0,(n '), and by the definition
of £ we also have ¢ =0, (n""?). Hence, the first two terms on the RHS of
(3.35) tend to zero as n— oc. Since the last two terms are treated in the
same way, we confine ourselves to study the third one. Following the proof
of Lemma 3.6 in HRC, it follows that the third term goes to zero, if we
show that

inf L7105 p',)>(1-p)e,. (3.36)

ze Ay



REPEATED MEDIAN INTERCEPT 55

If ze A7, then |H(z)| > ¢, and either

L,(e,)<05—p'c, (3.37)
or

x| =6 and 0<y<l (3.38)

If (3.37) holds, L, '(0.5—p'e,)=¢,>(1 —p)e,, so it remains to consider
those ze A, for which (3.38) holds. For any such z with x>0 (the case
x <0 is treated similarly) we have

[x" — x|

0
L(e) = L((1=p)e) 2 pe, lim 1,(0)pe,f | dG(x')
(l<—'£)£in Yk X
> pfIG(8)—0.5)¢,, (3.39)

where f is a lower bound for fon [ -2, 2]. The second to last inequality
in (3.39) follows from (A.7) and the fact that the line g, ,(-) through z
and (0, H(z)) satisfies |g,,, ,(x")| € [—2,2] when x" e [ —x, 0]. If we now
choose p’ so that 0 <p’' <f(G(6)—0.5)p, it follows from (3.39) that

L,((1-p)e,) <05~ p's, (3.40)
since L(e,)<0.5. This proves (3.36), and the remainder of the proof is
completely analogous to the proof of Lemma 3.6 in HRC. |

Theorem 3.1 now follows from Lemmas 3.1-3.3, Slutsky’s Lemma, and
the Central Limit Theorem.

4, EMPIRICAL RESULTS

4.1, Sensitivity Functions

The influence function of the RM intercept is given by formula (2.9).
Without loss of generality we have assumed that « =0=§, meaning that
the uncontaminated data are i.i.d. according to K= G x F, where G is called
the carrier distribution and F is the error distribution. If both G and F
equal the standard Gaussian distribution @, we obtain

[F(x, y)=\/§sgn(y) 4.1)

which is plotted in Fig. 1. The IF is a step function which takes on only
two values, and is therefore bounded.
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FiG. 1. Influence function IF(x, y) of the repeated median intercept.

For estimators operating on univariate data, Tukey (1970) proposed the
sensitivity curve as a finite-sample approximation to the IF. However, the
contamination now occurs in a point (x, y) with two coordinates. There-
fore, Tukey's definition needs to be extended. Let us start with a sample
{Z,,..,Z,} of the bivariate distribution K= x ®. Then the sensitivity
function is defined in each z=(x, y) by

SF,(z;d, Z)=n(d, (Z,,.. Z,, 2}~ 4, (Z,, .., ZL,)). (4.2)

Note that (4.2) depends not only on z but also on the intercept estimator 4
as well as on the original sample Z= {Z,, .., Z,}. Also note that z is not
restricted to the observations, but that it can be any point.

However, plotting such sensitivity functions was quite disappointing,
because they were very “jumpy.” This is because SF, is based on a finite
sample {Z,,..,Z,} from K = @ x &, which often provides a poor
approximation to K. Such a random sample may be quite asymmetric, the
median of the X; may be nonzero, etc. One way to repair these “wiggles”
in SF, is to average the sensitivity over many samples, as proposed by
Rousseeuw and Leroy (1987, p. 193). This yields the averaged sensitivity
Jfunction given by

ASF ,(x, y) = average SF, (x, v; &, Z"), (4.3)

j=1..m
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where the ZY' (for j=1, .., m) are iid. samples generated from K. The
vertical size of the 1rregular1t1es in the ASF will decrease roughly as 1 /\/_
when m is increased, forcing a tradeoff between smoothness and computation
time. (To improve the alignment of the SF, in (4.3), one can prestandardize
each ZV by replacing all X, by X;—med, X, and all Y, by ¥,—med, Y,.)

',, ...
"'

il
IIIII%'" Ui

\
0" "' ."
""

ll, lm
i

'f % ‘."’
" ” "' ',. \“'s“‘ ss‘—

0
""""III” ‘\ "z.&./ :“. 2
0\ ' :

\\ '.

\' :’o‘.

; ””llll""l”"‘

l”' 'h '0»

- —0
’ o

Fi1G. 2. (a)Averaged sensitivity function ASF,(x,y) of RM intercept for n=20 and
m =1000; (b) ASF ,(x, ¥) for =100 and m = 200.
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Figure 2 shows two ASF, surfaces, one for #» =20 and one for n = 100. At
first sight, they look quite different from the asymptotic IF in Fig. 1. Still,
they have positive values for y >0, negative values for y <0, and their
upper and lower bounds are of the same order of magnitude as the IF. The
main distinction is that the ASF, depend on x, whereas the IF does not.
For small | x|, we note that ASF  (x, y)~1IF(x, y). For larger |x|, the value
of ASF,(x, v) is closer to zero because the relative effect of (x, y) on the
intercept becomes smaller. We see that the ASF, is slowly stretched out
along the x-axis when n increases. This is how ASF, (x, y) tends to 1F(x, y)
when n— =c.

4.2. Monte Carlo Variances

Theorem 3.1 confirms that the asymptotic variance of the RM intercept
estimator is given by the expected square of its [F. Therefore, when both
G and F are standard gaussian we obtain the asymptotic variance
7/2 ~ 1.571 and the corresponding efficiency 2/n = 63.7%.

In order to check whether this asymptotic variance provides a good
approximation to the variability at finite samples, we carried out a Monte
Carlo experiment. For each » in Table I we generated m = 1000 samples of
size n, and computed the corresponding intercepts 4’ for k=1, .., m.
Table I lists the bias given by

average g (4.4)
TABLE I

Simulation Results of Two Intercept Estimators,
Applied to Bivariate Gaussian Data

Repeated median intercept Hierarchical intercept
n Bias  #-Fold variance Bias  n-Fold variance
10 —0.003 2.108 —0.008 1.788
20 0.005 1.783 0.003 1.704
40 —0.006 1.564 —0.006 1.523
60 0.003 1.590 —0.001 1.607
80 0.002 1.542 0.001 1.539
100 0.002 1.616 0.002 1.636
200 —0.001 1.537 —0.001 1.591
300 0.001 1.601 0.001 1.625
500 0.000 1.515 0.000 1.584
1000 0.000 1.544 —-0.001 1.610

o4 0.000 1.571 0.000 1.571
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as well as the n-fold variance

n vkarilance a® (4.5)
which should converge (as # tends to o0) to 1.571. (The second part of the
table concerns another estimator, which will be discussed in Section 4.4.)

The Gaussian variables in the simulation were obtained by means of the
Box—Muller transform and the congruential generator of Cheney and
Kincaid (1985, p. 335). The calculations were carried out on a workstation
running under Unix. The n-fold variances in the table have a standard
error of approximately 0.025. We also made Gaussian 0—-Q plots of the set
{a%) k=1,..,m} of estimated intercepts, to confirm that the sampling
distribution of &¢'*) is approximately Gaussian.

In Table I we see that the RM intercept is indeed unbiased. Also, the
asymptotics provide a good approximation to the Monte Carlo variances for
n=40. (For n=10 and » =20 the RM intercept is somewhat less efficient.)
At first glance, the fast convergence of the n-fold variance to the asymptotic
variance appears to be at odds with the slow convergence of the ASF, to the
IF, because the asymptotic variance equals E [TF2]. However, the difference
between ASF, (x, y) and IF(x, y) is at its smallest for (x, y) close to (0, 0),
which corresponds to the region where K = @ x @ has most of its mass. This
is exactly the opposite of the situation for the RM slope, whose ASF,, (see
Rousseeuw et al., 1995) most resembles its IF at points (x, y) far away from
(0, 0), in regions where K has little mass. Therefore the n-fold variance of
the RM slope converges much more slowly to its asymptotic variance.

4.3. The Function H

The function H defined in Section 2 plays an essential role throughout
the paper. For each point z= (x, y) the real value H(z) is given by (2.2).
Although H is a deterministic function, no simple expression is available.
We can approximate H(z) by

H,,,(z):kmled h(z, Z¥) (4.6)
where the points Z'*) (for k=1, .., m) are generated according to K. We
used m = 6000 to obtain good accuracy.

Fig. 3 gives an idea of the shape of H around the origin. By definition,
H satisfies the symmetry properties H(x, y)=H(—x,y)=—H(x, —y)=
— H(—x, — y) and it takes on positive values for y > 0 and negative values
for y < 0. Note that H is an unbounded function, which attains large values
when |x| is small and | y| is large. From the definition of H it immediately
follows that H(x, 0)=0 for all x, and that H(0, y)= y for all y. Figure 3b
displays several contours, given by H(x, y) =1t for some positive and some
negative values of . When ¢ tends to zero, the contour becomes the x-axis.
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D.0

Fic. 3. (a)Plot of H(x,y); (b)contour curves of H(x,y); (c)function H, for ¢=1;
(d) empirical distribution function of H, based on 2500 points.

It is interesting to note the similarity between the function A in Fig. 3a
and sensitivity functions of the intercept estimator. If we consider truncated
(and standardized) versions of H given by

1
H {x, )*)z;min{s, max{H(x,y), —¢}}
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Fi1G. 3. Continued.

for any ¢ >0, the resulting surface looks like H near the x-axis, but is cut
at the contours of levels ¢ and —s. Figure 3¢ shows the function H, with
¢=1, which looks quite similar to the averaged sensitivity functions in
Fig. 2. In particular, note the steep part which occurs at the origin along
the y-axis. The ASF, with large » correspond to functions H, with small ¢,
which converge (for ¢ tending to zero) to the discontinuous function
sign(y) in the expression of IF(x, y). For more details, see Appendix B.
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We can also study the distribution of H(Z) for Z ~ K. For this we
generated 2500 observations Z; according to K=® x @ and computed
H(Z,) for each of them, yielding {(Z,, H(Z,));j=1, .., 2500}. From these
values we can construct the empirical cdf of A shown in Fig. 3d. It provides
an approximation to the theoretical cdf (2.3) denoted by L. From
Lemma B.2 it follows that L has a vertical tangent in zero.

4.4. The Hierarchical Intercept
Apart from the repeated median intercept (1.2) we have studied until

now, Siegel (1982) also proposed another estimator of the intercept. For

this we start by computing the RM slope

Y

i

§,=med med ! (4.7)
PoLAEA Ay
and then we estimate « by
a,=med (Y,—f,X) (4.8)

which ensures that the median of the final residuals will be zero. Because
this is a two-stage procedure, we call &, the hierarchical intercept. An
obvious advantage of %, is its computational economy: assuming that we
already have f£,, it can be computed in just O(n) time. If we use the
O(n log n)-time algorithm for f, proposed by Mount and Netanyahu
(1991), then the additional computation of &, does not increase the order
of complexity.

The hierarchical intercept has the same influence function (4.1) as the
RM intercept, and also the same asymptotic variance. This follows from
results of Jureckova (1971), where it is proved that it is asymptotically
equivalent to compute the sign test statistic either from Y, — /f,, X, or from
Y,— BX, when f, is a consistent estimator of the true parameter . There-
fore, the asymptotic behavior of &, is that of the univariate median applied
to observations drawn from F(v) = F(v —a).

Figure 4 shows averaged sensitivity functions of &, for two values of n.
We see immediately that they are much closer to I1F(x, y) than the ASF,
of d, are. The main difference is that the ASF, of %, do not go to zero for
increasing |x|, provided |y|/|x| is large enough. This is because contamina-
tion at (x, y) can only have a bounded effect on the RM slope, which has
a bounded IF as well. Outside a wedge-shaped region |y|<c, |x|, the
contamination (x, y) therefore has its maximal influence on &,, which is a
positive or negative constant because of the median in (4.8). Inside the
region |y| <c, |x| the effect of (x, y) on the initial slope f, causes the
gradual transition between the positive and the negative constant in
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the ASF, of &,. When » increases, the wedge becomes more narrow (that
is, ¢, — 0) and the ASF, converges to the IF.

In Table I we see that the n-fold Monte Carlo variances of &, are quite
stable, and that they are rather close to the asymptotic variance 1.571. This
is in accordance with the relatively fast convergence of the ASF, to the IF,
at least in the central region around (0, 0) where K= & x & has nearly all
its mass, which explains why the Monte Carlo variances converge almost
as fast as in the case of a truly univariate median.

In the same simulation, we also constructed Q—Q plots of &, to confirm
that its distribution is approximately Gaussian. We also computed empiri-
cal correlations between the three estimators &,, f,, and &,. As was to be
expected, the correlation between the intercept estimators &, and 4,
becomes very large, whereas the correlations between each of the intercept
estimators and f3, tend to zero.

APPENDIX A

Lemma A.l1. The function H(z) defined in (2.2) (see Fig. 3a) satisfies
H(x,y)=H(-x,y)=—H(x, — ), (A.1)

and the distribution corresponding to L(-) defined in (2.3) is symmetric.

Proof. Let A, (x, y)=(x, —y) denote the operator that mirrors points
through the x-axis and 4,(x,y)=(—x, y) the corresponding operator
for the y-axis. Then, by the symmetry of G and the relation
h(A.(z,), 4,(2,))=h(z,, Z,), it follows that

H(A,(z))= H(z). (A2)
Similarly, the symmetry of F and h(A,(z,), A.(z;))= —h(z,, z,) imply that
H(A,(z))= —H(z). (A.3)

This proves (A.1). The symmetry of L follows from (A.3) and the symmetry
of F. |

LEMMa A.2. Define the interval 1,=[05—¢,0.5+¢]. Then, for some
0<e<0.5, there exists a positive integer ny, and numbers | and L, such that

inf I(L, "(u))=1>0 (A4)

uel;
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and

sup [, (1) —=1,(1)l
H#EnD |rl—t2|”

<L<w (A.5)

hold for all ze A whenever n = n,. Here A, is defined in (3.5), L, in (2.1),
and |,=L.

Proof. Since the set A, decreases with n, we only have to establish the
lemma for n=n, (which will be chosen below). For any z=(x, y), x#0,
let

describe the line through (0, #) and z as x’ varies. Then
L(D=Pe(Y<q, (X, X<x)+Pe(Y>q,(X),X>x). (A6)
Differentiating (A.6) w.r.t. ¢ yields

|x"— x|

| x|

Since G is continuous, we can find an ¢>0 and 0<{<1 such that
G(a)<1 and G({a)>0.5. Now choose n, so large that 4, < {z; |x| =gq,
|yl <1}. Consider a fixed ze A,. By symmetry (cf. Lemma A.1) we may
also assume that z lies in the first quadrant, so that x>aeand 0< y < 1. We
first show that for any ue [, and 1= L, '(u),

=" flg.. =2 a6, (A7)

lg, ,(x") <2 whenever 0<x'<a. (A.8)
Let
f= inf f(y)>0. (A9)
- wilvl <2

Together with (A.7), (A.8) will imply that

z)>fj ' X G )>fJ C) =0 46(x)

=(l—§)f(G(Ca)—0.5)é_l>0, (A.10)
which proves (A4). Actually, (A.8) will follow if we show that

L, (05+6)<2 (A.11)

683/52/1-6
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and
L;7'(05—¢&)= —2. (A.12)
But from (A.7),
L,(2)=2(L,2)-L,()+L,(y)

2], (0:2.() = 4,,(x) dG(x)

+ F(x)G(y)+ (1 =Fx))(1 = G(y) =2 f(1 = {)G(La)—0.5) + 0.5,

Hence, with e <f(1-{)(G({a)—0.5), (A.11) follows. Inequality (A.12) is
proved in a way similar to that for (A.11), and this completes the proof of (A.4).
The relation (A.5) is a consequence of (A.7) and the Lipschitz continuity

of f,
1
1, (1) =1, (1) Sm’f Iflq, (X)) =g, (X)X —x] dG(x')

<y
<]
Sl B IX ="

T

14,0208 =g, , ()" 18 = x] dG(x')

lt,— "< L ity —1,]",

where the last inequality holds uniformly in z whenever x> q, for some
finite L which depends on 5. |
APPENDIX B

In this appendix we will consider the region
A, ={z;|H(z)| <&} (B.1)

shown in Fig. 3b. We start with the following crucial lemma.

LemMma B.l.  There exist positive constants C, < C, such that for small
enough ¢,

|:_ C.e Ce :I
I =G(lx])" 1= G(|x])

In

{riyI<(x,p)ed,}

in

[ C,e C,e

_ , . (B2
l—G(IxI)I—G(l-Y’)] B2
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Proof. 1In view of Lemma A.1 we only consider the first quadrant, that
is, x>0, 0< y< 1. Let § be a number such that 0.5 < G(J) <0.75. We will
treat the cases 0 < x < and x = ¢ separately. In the former case, it suffices
to show that

[0, Ciels {y;0<y<1,(x,¥)e4,} [0, Cre] (B.3)

for some positive constants C; and (5, since the variation of
log (1/(1 —G(|x]})) on [0, 4] can be absorbed into the constants C, and
C, in (B.3). Since f is strictly positive on [ —1, 1], it follows that for any
>y

L,()>L,(»)=G(x) F(y}+ (1 - Gx))N(1 - F(y))

=0.5+2(G(x) — 0.5)(F(y) — 0.5) > 0.5,

and this implies that H(x, y) < y. Hence, we may choose C; =1 in (B.3). As
for C%, we intend to show that for large enough D >0, and small enough
e>0,

Py (h((x, De), Z)<¢e)<0.5 when O<x <9, (B.4)

so that we can put C,=D in (B.3). Let B;, i=1, .., 4, be the intersection
of the ith quadrant and {z’; A(z, z’) < ¢}. Then (B.4) follows for large ¢ and
D, since Py (B,)<0.25, Py(B,)< Fe)—0.5, and

Po(ByU By~ G(x)—05<G(6)—05<025 as D-— o0,

We now treat the case x> . According to (A.6) and the symmetry of F
and G,

Y y Y_ vy
= ‘ —S—)X > P —2—,
L,(0) P‘(X . <r)+ K(X xX>x>
Y y y_Y vy
= —<=]|=Pi| —=<=-<=, X
PK(X<X> "( x X x >x>
=0.5-2Py(ZeR)), (B.5)
where
Qz={z’z(r’,yf’);0<L,<X,x'>x}
x' T x

Consequently, for any z in the first quadrant,

zed, < L,(6)205< L (e)— L,(0)>2P(ZeQ,). (B.6)
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In order to apply (B.6) we need upper and lower bounds of L,(¢)—

and P,(Ze ), respectively. We obtain from (A.6) that
L,(e)—L,(0)=Pxlg,,(X)<Y<gq,,X), X<x)
+ Pylg, (X)SY<q,,(X), X>x)

Sb‘llf”y, EG|X_x|’
X

and moreover (remember 0 < y < 1),

JU=Gx))y<P(ZeQ,)

o IS, Eq(X—x),

X

<A (1= G(x))

¥,

with f defined in (A.9). It remains to give a lower bound for L, (¢) —

From (A.7) we obtain

Lie)=LO=f [ 1g,,(x') =gy, (x) Hg, ,(x),
140, (¥')] <2) dG(¥'),
Since 0 < y <1, it follows that for any |x'| < |x|,

31X
190, (x)| =——<1<2

and, for any ¢ <0.5,

g, (x) =le+ e+ |y—el<2,

(y—e¢) x"
X

Hence, from (B.9)-(B.11),

L,(e)- L,(O);fff X' — x| dG(x')
X V¢

=-§EG(|X~XI H1X] < x)).

L,(0)

(B.7)

(B.8)

L,(0).

(B.10)

(B.11)

(B.12)
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We now obtain from (B.6)-(B.8)

{(1;0<y<1,(x,y)ed,}c [0, 17 Eq 1 X — x| W]

2f(1—-G(x))
el o Mlx (EslX] €
_[O, 3/ ( 3 +1> ] —G(x)]' (B.13)
Similarly, (B.6), (B.8), and (B.12) imply that
{1,0<y<L, (v, p)e4,}
D[ JeEg(1X — x| I X| < x))/x ]
L2011 A =G(x)+2 (1l Eg(X—x), /x
Ce

for some constant C>0. The last step in (B.14) follows since
E;(|X—x| I(|X]| <x))/x can be lower bounded by the same positive
constant for all x>=J and, secondly, E (X —x),/x<C'(1 —G(x)) for
some C’>0 because of (G). The case x=d is now proved because of
(B.13)-(B.14). |

LEMMA B.2. Let A, be the set defined in (B.1). Then there exist positive
constants Cy < C, such that for small enough ¢ >0,

1 1
C3slog;<K{As}<C4£logE. (B.15)

Proof. By symmetry we have (cf. Lemma A.1) that K{4,} =4K{4,,},
where A4,, is the intersection of A, and the first quadrant. It therefore
suffices to consider A4,, instead of 4,. With C, the constant in (B.2), define
x.(b) as any solution of

G

L= Glx, (b)) ==~ (B.16)

Then, by Lemma B.1, for small enough £> 0,

xe(1) C
K{Acl}<_[0 1 28 4G(x')+ 0.5P (X > x,(1))

—G(x')
+ P (ZeA,, Y>1)

1
=C,elog (EET;) +05C,e+ Pe(ZeAd,,Y>1) (B.17)
2
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and

() C &
K{Ael}>f0 1 :

N 1

It remains to bound the last term in (B.17). We use (B.6) for this. When
x>0 and y> 1, a lower bound for K{£,} is

K{Q,} = (1 — G(x))(F(1)—0.5). (B.19)

Let 0 be defined as in the proof of Lemma B.1. Then {B.6), (B.7), and
(B.19) imply that

PZed, Y>1,X>3)<P, <X> 5;2(1 — G(X))(F(1)—0.5)

< ISl Eq 1 X—xle

- )sPG((l ~G(X))

1A (1 + Ee X

SZ(F(l)—o.S) S >6>=O(e). (B.20)

Finally, from (B.4),
PZeAd,, Y>1,0<X<I)SP(0SY<De, 0<X<0)=0(¢). (B21)

The lemma now follows from (B.17)-(B.18) and (B.20)-(B.21). |

LeEMMA B.3. The set A, defined in (3.6) satisfies
K{A,} =0((logn)'**n "*y=o((logn)**n '72). (B.22)

Proof. As in the proof of Lemma B.2, it suffices to consider A,,, the
intersection between A, and the first quadrant. We decompose A4,, into
three components,

A=Ay, VA, ud = {2,0<x<a,, y>0 |Hz) <e,}
ulz;x20,b,<y<1, |H(z)| <¢,}

viz; x>0, y>1, |H(z)| <¢,}, (B.23)

and we will estimate the probability of each set separately. Suppose # is so
large that a, < x, (1) (cf. (B.16)), that is, 1 — G(a,) > C,¢,, where C, is the
same constant as in (B.2). This is possible in view of (3.2) and (3.4). It then
follows from Lemma B.1 that
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an (Che 1
K{A | ———dG(x"Y=C,¢,1 —
{A211} fo 1—G(x) (x) 26, 108 (2(1—G(a,,))>
=O((logn)’**n"17), (B.24)

We now turn to A,,,. Then from Lemma B.1 and (B.16),

W) Cae
K{dn}<| 2 dG(x)

b 1 —G(X")

1 —G(xﬁn(bn))>

=C,e, 10g< 1 —G(x,, (1))

1 ,
=C,e, logb—=0((log n)? =12, (B.25)

Finally,
K{A2l3}=0(8n) (B.26)

is a consequence of (B.20), (B.21). Formula (B.22) now follows from
(B.24)-(B.26). |

LEMMA B4. Let A, be as defined in (3.7). Then
K{A:} =0(e,). (B.27)

Proof. By symmetry it suffices to consider 45, the intersection of 4,
and the first quadrant. Then

Ay S{znL,(6)>05—p',, 0<x<3,y>0}

ui{z; L,(6,)>05—p%,, x>6,y>1} & Ay, A4;,.

Using a completely analogous argument to that in connection with (B.4)
(which corresponds to p’=0), we may choose a D >0 such that for large
enough n, 4,,,<[0,8]x[0, D¢,], and hence K{A;, }=0(g,). The fact
that K{A4,,,} = O(e,) follows in the same way as (B.20) (which corresponds
to p'=0). |
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