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Summary

Recently it has been shown that the repeated median slope estima-
tor converges at the n�1=2 rate, and is asymptotically normal with
a gaussian e�ciency of 40.5%. On the other hand, simulations indi-
cate that its �nite-sample e�ciency converges extremely slowly to the
limiting value. Our goal is to explain this unusual phenomenon by
constructing �nite-sample sensitivity functions, and by investigating
key quantities with numerical analysis methods.
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1. Introduction

Consider the simple linear regression model

yi = �+ �xi + ei for i = 1; : : : ; n; (1.1)

where zi = (xi; yi) are the observations and ei represents noise. We assume
that the (xi; ei) are i.i.d., and that xi and ei are mutually independent with
distributions G and F respectively. Many estimates of the slope parameter
� are based on the pairwise slopes

h(zi; zj) =
yj � yi
xj � xi

where xi 6= xj (1.2)

= 0 where xi = xj:
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For instance, the least squares estimator �̂LS maybe written as a weighted
average,

�̂LS =
X
i<j

wijh(zi; zj)

�X
i<j

wij

with weights wij = (xi � xj)2. Other estimators based on weighted medians
and trimmed means of pairwise slopes have been proposed by Theil (1950),
Adichie (1967), Sen (1968), Jaeckel (1972), and Scholz (1978). Frees (1991)
gives a survey of these estimators.

Another estimator, the repeated median slope (or \RM slope")

�̂n = med
i

med
j;j 6=i

h(zi; zj) (1.3)

was proposed by Siegel (1982). He showed that when all xi are distinct (an

event with probability one if G is continuous), �̂n has a �nite-sample break-
down point "�n = [n=2]=n, i.e. if fewer than [n=2] vectors zi are changed,
the estimate remains bounded. This is the maximal possible value of "�n for
any regression equivariant estimator (Rousseeuw 1984), yielding an asymp-
totic breakdown point of 0.5. (For a slope estimator, regression equivariance
comes down to

�̂n(f(xi; yi + c+ dxi)g) = �̂n(f(xi; yi)g+ d

for any real constants c and d.) Siegel (1982) also showed that �̂n is a Fisher-
consistent estimate of �.

To keep the notation simple, we will assume from now on that � = � =
0 = F�1(12) = G�1(12 ), which is no restriction because of the regression
equivariance. In this case yi = ei and we can denote the distribution of
zi = (xi; yi) by K = G� F .

Recently it was proved (H�ossjer et al, 1994) that the RM slope satis�es

�̂n � � =
1

n

nX
i=1

IF (zi) + op(n
�1=2) (1.4)

where the in
uence function (IF) is given by

IF (z) = IF (x; y) =
sgn(xy)

2f(0)EGjXj : (1.5)

Here f is the density of F . Applying the Central Limit Theorem to (1.4)
yields the asymptotic normality

p
n(�̂n � �) =

1p
n

nX
i=1

IF (zi) + op(1)
d�! N

�
0;

Z
IF (z)2dK(z)

�
(1.6)
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and the asymptotic variance is therefore

Z
IF (x; y)2dK(x; y) =

1

4f2(0)(EGjXj)2 : (1.7)

Note that the in
uence function in (1.4) is de�ned through a �rst order von
Mises expansion (Hampel et al 1986, page 85). We see from (1.5) that this
in
uence function is bounded, again illustrating the robustness of the RM
slope.

The proof of the expansion (1.4) is far from trivial, due to the \nested"
operations in (1.3). Moreover, it turns out that the limit in (1.6) is reached
very slowly because of some unusual remainder terms in (1.4). In the present
paper we will study this phenomenon by means of numerical methods, and
provide some graphical displays to facilitate their interpretation. In Section
2 we see that Monte Carlo e�ciencies of the RM slope approach their limit
very slowly, the di�erence still being large at n = 40; 000. Section 3 recapitu-
lates the derivation of the IF , on which the numerical work will be based. In
Section 4 we compute �nite-sample sensitivity functions, including averaged
and stylized versions which were constructed especially for this bivariate sit-
uation. Section 5 presents an explanation of this strange behavior based on a
numerical investigation of certain quantities which play a crucial role in the
derivation of the in
uence function.

2. Monte Carlo results

In order to study the behavior of the RM slope estimator empirically, we will
have to compute it very often. As indicated by Siegel (1982, page 242) the
repeated median slope can be computed in O(n2) time. This is achieved by
a brute force algorithm for (1.3) which computes the inner median for each i,
and then computes the outer median once. Very recently, faster algorithms
for the RM slope have been obtained. In our computations we used the
algorithm described in (Rousseeuw, Netanyahu and Mount 1993), which runs
in expected time O(n log2 n) and requires only O(n) storage. This algorithm
makes use of dualization and mergesort, and yields the exact result. Its speed
allowed us to perform simulations for n up to 40; 000 whereas with the brute
force algorithm we could not go beyond n = 3; 000.

From (1.6) it follows that the asymptotic variance of the RM slope estima-
tor is given by the expected square of its IF . Therefore, when both G and F
equal the standard gaussian distribution we obtain the asymptotic variance
�2=4 � 2:467 and the corresponding asymptotic e�ciency 4=�2 � 40:5%:

In order to check whether this asymptotic variance provides a good ap-
proximation to the variance of the RM slope at �nite samples, we carried out
a Monte Carlo experiment. For each n in Table 1 we generated m = 10; 000

samples of size n, and computed the corresponding slope estimates �̂
(k)
n for
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Table 1: Simulation results of the repeated median slope estimator, applied
to bivariate gaussian data

n-fold Finite-sample

n Bias variance e�ciency

10 -0.0035 2.615 38.2%
20 0.0009 1.880 53.2%
40 -0.0006 1.670 59.9%
60 0.0015 1.666 60.0%
100 -0.0004 1.628 61.4%
200 0.0007 1.627 61.5%
300 -0.0002 1.655 60.4%
500 0.0009 1.644 60.8%
800 0.0010 1.620 61.7%
1000 0.0004 1.673 59.8%
2000 0.0005 1.825 54.8%
3000 -0.0002 1.801 55.5%
5000 -0.0012 1.816 55.1%
10000 0.0006 1.747 57.2%
20000 -0.0002 1.848 54.1%
40000 -0.0003 1.861 53.7%

1 0.0000 2.467 40.5%

k = 1; : : : ;m. Table 1 lists the bias given by

average
k=1;:::;m

�̂(k)n

which is very small, as well as the n-fold variance

n variance
k=1;:::;m

�̂(k)n

which should converge (as n tends to 1) to 2.467. The last column of Table
1 gives the corresponding �nite-sample e�ciency (in the sense of the informa-
tion inequality). The gaussian variables in the simulation were generated by
means of the Box-Muller transform and the congruential generator of Cheney
and Kincaid (1985, page 335). The n-fold variances in the table have a stan-
dard error of approximately 0.025, and that of the �nite-sample e�ciencies
is slightly less than 1%.

In addition to computing the average estimated value and the n-fold

variance for each n, we also made gaussian Q-Q plots of the set f�̂(k)n ; k =
1; : : : ;mg of estimated slopes. From these it does appear that the sampling

distribution of the estimator �̂n is approximately gaussian.
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The �rst three lines of Table 1 con�rm the Monte Carlo results of Siegel
(1982, page 243) and Johnstone and Velleman (1985, page 1051), who found
that for n � 40 the �nite-sample e�ciencies are increasing with n. In the
next lines of the table, we see that the e�ciencies stay around 60%-61% for
n up to about 1000, after which they slowly decrease. For n around 40,000
we obtain 54%.

In conclusion, the RM slope estimator performs better at �nite samples
than would be expected from its asymptotic behavior. In this respect it out-
performs the Brown-Mood estimator, which has the same IF as the RM and
hence also the same asymptotic e�ciency of 40.5%, but the �nite-sample e�-
ciency of which remains around 40% (see Table 3 of Johnstone and Velleman
1985).

3. In
uence functions

In this section we will sketch the derivation of (1.4) given in H�ossjer et al
(1994), where this expansion was used for obtaining the in
uence function
of the RM slope and proving its asymptotic normality. In the next sections
we will then investigate the main steps of this construction by means of
numerical methods.

As in Section 1, we assume that (1.1) holds with � = � = 0 = F�1(12) =
G�1(12): Therefore, the observations z1; : : : ; zn are i.i.d. with common dis-
tribution K = G � F . Denote the \inner" median in (1.3) by T1 and the
\outer" median by T2. For each z we put H(z) = T1(Lz) where

Lz(t) = PK(h(z;Z) � t) (3.1)

Then T (K) = T2(L), where

L(t) = PK(H(Z) � t) (3.2)

is the functional corresponding to the RM slope.
We obtained

IF (z) = IF2
�
H(z)

�
+ EK

�
IF 02

�
H(Z)

�
IF1(Z; z)

�
(3.3)

with

IF1(z1; z2) = IF (h(z1; z2); T1; Lz1) =
sgn

�
h(z1; z2)�H(z1)

�
2lz1

�
H(z1)

�
and

IF2(x) = IF (x; T2; L) =
sgn(x� T (K))

2l(T (K))
;

where lz = L0z and l = L0. Unfortunately, this IF2 is not di�erentiable
at T (K), making it di�cult to deal with (3.3). Therefore, we temporarily
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replace T2 by an M -estimator T "2 of Huber type, based on the function

 "(x) =

�
sgn(x); jxj > "
x="; jxj � ";

(3.4)

and then we let " ! 0+. Putting T"(K) = T "2 (L), Formula (3.3) for the
in
uence function becomes

IF "(z) =
" "

�
H(z)� T"(K)

�
Lf[T"(K) � "; T"(K) + "]g + EK"

sgn
�
h(Z; z)�H(Z)

�
2lZ
�
H(Z)

� ; (3.5)

where K" denotes the conditional distribution of Z � K, given that H(Z) 2
[T"(K) � "; T"(K) + "]. If now " ! 0+ implies that T"(K) ! T (K) as

well as (Lf[T"(K) � "; T"(K) +"]g)=" ! 2l(T (K)) and K"
d�! K0 for some

distribution K0, it follows that

IF "(z)! IF (z) =
sgn

�
H(z)� T (K)

�
2l(T (K))

+EK0

sgn
�
h(Z; z)�H(Z)

�
2lZ
�
H(Z)

� : (3.6)

This expression can be simpli�ed because in H�ossjer et al (1994) it is
found that T (K) = 0, and also that

sgn(H(z)) = sgn(xy) and l(0) =1: (3.7)

Therefore, the �rst term in (3.6) vanishes. It has also been proved that K0

equals the Dirac measure at (0; 0), because the set A" = fz; H(z) � "g looks
roughly like

fz; 2j(G(x)� 0:5)(F (y)� 0:5)j � f(y)EGjX � xj"g
and in particular, around the origin, like

fz; 2g(0)jxyj � EGjXj"g:
This implies that, given any d > 0 and 
d = [�d; d]� [�d; d],

P
�

d \ fz; jH(z)j � "g� � " log(

1

"
); as "! 0+; (3.8)

while
P
�

c
d \ fz; jH(z)j � "g� = O("); as "! 0 + : (3.9)

If now either the error distribution F or the carrier distribution G is symmet-
ric, it is not hard to see that L is also a symmetric distribution, and therefore
T"(K) = 0. Hence, in this case K" is the conditional distribution of Z � K
on the set A" = fz; jH(z)j � "g, and so by (3.8){(3.9) it converges weakly to
�0 as "! 0+. Summarizing, the in
uence function in (3.6) becomes

IF (z) =
sgn

�
h(0; z)

�
2l0(0)

=
sgn(xy)

2f(0)EGjXj (3.10)

con�rming (1.5). Note that the fact that K0 is a one point distribution has
simpli�ed the expression for the in
uence function a lot.
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4. Sensitivity functions

In Section 3 the in
uence function of the RM slope was obtained in the case
where the data are i.i.d. according toK = G�F , which amounts to assuming
that the true parameters � and � in (1.1) are zero. If both G and F equal
the standard gaussian distribution �, (3.10) becomes

IF (x; y) =
�

2
sgn(xy): (4.1)

This IF has a positive constant value in quadrants 1 and 3 and takes on
the opposite value in quadrants 2 and 4, as shown in Figure 1a. Therefore
IF (x; y) is bounded in both x and y, unlike the least absolute deviations
method.

Note that the in
uence function in (4.1) is an asymptotic concept, whereas
we saw in Section 2 that the �nite-sample variability of the RM slope its quite
di�erent from its asymptotic limit. In order this examine this discrepancy,
we would like to have an empirical version of the IF . For location estimators
based on univariate data, Tukey (1970) introduced the sensitivity curve as a
�nite-sample approximation to the in
uence function. However, the in
uence
function of a slope estimator depends on two arguments x and y, and hence
becomes a surface in three-dimensional space. We therefore have to extend
Tukey's de�nition accordingly. Let us start with a sample fz1; : : : ; zng of the
bivariate distribution K = ���. Then the sensitivity function is de�ned in
each z = (x; y) by

SFn(z) = n(�̂n+1(z1; : : : ; zn; z)� �̂n(z1; : : : ; zn)): (4.2)

Note that SFn(z) also depends on which slope estimator we are using, as
well as on the original sample Z = fz1; : : : ; zng. Therefore, a more complete
notation would be SFn(z;T;Z): Also note that z is not restricted to the
observations, but that it can be any point in IR2. In fact, when making a
plot of SFn(z) we will let z range over a rectangular grid.

Figure 1b shows such a sensitivity function SFn with n = 20: Note that
the constant parts (both positive and negative) are clearly visible, but that
the transitions between them do not occur exactly on the x-axis and the
y-axis, and that in the intermediate region SFn looks somewhat "jumpy".
This is due to the fact that SFn is based on a �nite sample fz1; : : : ; zng from
K = ���, which may provide a poor approximation to K. Such a random
sample may be quite asymmetric, the median of the xi may be nonzero, etc.
One way to repair these "wiggles" in SFn is to average the sensitivity over
di�erent samples, as was proposed in the univariate situation by Rousseeuw
and Leroy (1987, page 193). This yields the averaged sensitivity function

given by
ASFn(x; y) = average

j=1;:::;m
SFn(x; y;T;Z

(j)) (4.3)
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Figure 1: (a) In
uence function of RM slope estimator; (b) Sensitivity func-
tion for n = 20; (c) Permutation-stylized SF for n = 60; (d) Averaged
permutation-stylized SF for n = 20:
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where the Z(j) (for j = 1; : : : ;m) are i.i.d. samples generated from K. The
vertical size of the irregularities in the ASF will decrease roughly as 1=

p
m

when m (the number of replications) is increased. However, this approach
needs rather large amounts of computation time compared to the univariate
situation. (One way to improve the resulting ASF is to prestandardize each
Z(j) by replacing all xi by xi �medkxk and all yi by yi �medkyk:)

In the case of univariate data, another approach is to work with a "stylized
sample"

xsi = ��1(
i

n+ 1
) for i = 1; : : : ; n

as proposed by Andrews et al (1972). Compared to random samples, a styl-
ized sample gives a better approximation to the population distribution (for
instance, it inherits the symmetry and the zero median of �). It also o�ers
the advantage of being unique, so no averaging is needed. Unfortunately,
there is no straightforward way to de�ne stylized samples in the bivariate
case. (It seems hard to preserve some form of spherical symmetry in combi-
nation with the right marginal distributions.) One way out would be to use
"semi-stylized" data sets in which the xi are stylized and the yi are randomly
generated (or vice versa). Instead, we propose to construct "permutation-
stylized" data sets which are de�ned as

Z(�) = f(xsi ; xs�(i)); i = 1; : : : ; ng (4.4)

where � is a random permutation on f1; : : : ; ng. This has the advantage that
the marginal distribution of y is also stylized (and hence symmetric with
zero median). De�nition (4.4) treats both variables in the same way, because
interchanging x and y merely corresponds to using the inverse permutation
��1. Figure 1c shows a permutation-stylized sensitivity function (PSF), ob-
tained by inserting a data set of the form Z(�) with n = 60 in (4.2). We
clearly recognize the horizontal parts of this surface, but in the boundary
regions there are some irregularities which depend on the particular choice
of �.

As a �nal step, the e�ect of the permutation can be averaged out by
computing

APSFn(x; y) = average
�

SFn(x; y;T;Z(�)) (4.5)

where � ranges over a collection of random permutations. This approach
seems to give somewhat better results (for the same amount of computation
time) than the ASF of (4.3). Figure 1d shows this averaged permutation-
stylized SF for n = 20 and m = 1; 000. It provides a fairly close approx-
imation to the theoretical in
uence function given in Figure 1a. Note that
there is a rather smooth transition between the constant parts of the APSF
in Figure 1d, which is caused by averaging many rough jumps occurring in
the same region.
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A way to explain the high �nite-sample e�ciencies in Section 2 is by
looking at the sensitivity functions above. Whereas the (asymptotic) in
u-
ence function is discontinuous on the x-axis and the y-axis (causing the low
asymptotic e�ciency of 40.5%), the �nite-sample SF 's make a more gradual
transition between the positive and negative horizontal parts. (It could be
argued that a less pronounced version of this e�ect exists for the univariate
median, whose small-sample SF 's look like those of a trimmed mean.) This
e�ect seems to wear o� slowly when n increases substantially, in which case
the SF 's of the RM estimator begin to look more and more like its IF .

As the asymptotic variance equals EK[IF
2], it is natural to investigate

whether the expected value of SF 2
n provides a good approximation to the

n-fold Monte Carlo variance. In the univariate case, Rousseeuw and Leroy
(1987, page 189) approximated EK [SF 2

n ] by means of Vn = avekSFn(z(k))2,
where the points z(k) (for k = 1; : : : ;m) were generated according to K.
In the bivariate situation this does not appear to be su�ciently accurate,
so we used numerical integration (the composed Simpson rule) instead. As
was to be expected, the result based on SFn was quite variable due to the
dependence on z1; : : : ; zn in (4.2). Replacing SFn by ASFn (for m = 1000)
was already somewhat better, but we could only consider small n due to the
large amount of computation time needed. By far the closest approximation
was obtained by computing EK [APSF 2

n] for the same value of m. Therefore,
the smooth shape of APSFn does help to explain the �nite-sample e�ciency
of the RM slope estimator.

5. The function H and related quantities

In the proof of (1.4) given in (H�ossjer et al 1994) and summarized in Sec-
tion 3 above, certain remainder terms tend to zero at a very slow rate. As
a consequence, unusually large samples are needed before the �nite-sample
e�ciency comes close to its asymptotic limit of 40.5%. In this section, we
will investigate the underlying cause (the slow convergence of K" to K0) in
a numerical way.

Throughout, an important role is played by the function H de�ned in the
beginning of Section 3. For each point z = (x; y) in IR2, the value H(z) is
given by

H(z) = L�1z (0:5) = med
Z�K

h(z;Z): (5.1)

The function H arises naturally when we write down the RM functional at
the model distribution K = � ��, because

T (K) = med
Z�K

med
Z0�K

h(Z;Z0) = med
Z�K

H(Z) (5.2)

(note that T (K) = � = 0 by assumption).
Although H is a deterministic function, no simple expression is available.
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Table 2: Values of H(x; y) for x and y ranging between 0.0 and 5.0

x

y 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.00 0.23 0.30 0.28 0.24 0.20 0.17 0.14 0.12 0.11 0.10

1.0 0.00 0.51 0.62 0.57 0.48 0.40 0.33 0.29 0.25 0.22 0.20

1.5 0.00 0.86 0.97 0.86 0.72 0.59 0.50 0.43 0.37 0.33 0.30

2.0 0.00 1.25 1.33 1.16 0.96 0.79 0.67 0.57 0.50 0.44 0.40

2.5 0.00 1.65 1.70 1.47 1.21 0.99 0.83 0.71 0.62 0.56 0.50

3.0 0.00 2.04 2.06 1.77 1.45 1.19 1.00 0.86 0.75 0.67 0.60

3.5 0.00 2.43 2.43 2.07 1.69 1.39 1.16 1.00 0.87 0.78 0.70

4.0 0.00 2.81 2.79 2.38 1.94 1.59 1.33 1.14 1.00 0.89 0.80

4.5 0.00 3.18 3.15 2.68 2.18 1.79 1.50 1.29 1.12 1.00 0.90

5.0 0.00 3.56 3.51 2.98 2.43 1.99 1.66 1.43 1.25 1.11 1.00

We can estimate H(z) by

Hm(z) = med
k=1;:::;m

h(z; z(k)) (5.3)

where the points z(k) (for k = 1; : : : ;m) are generated according to K. We
also have implemented an iterative algorithm which needs considerable com-
putation time, but can calculate H(z) with arbitrarily high precision. The
basic idea is to solve Lz(t) = 1=2 by means of Newton-Raphson, starting
from t0 = Hm(z), and making use of numerical integration in the expressions

Lz(t) =

Z x

�1

(1�F (y+ t(x0�x)))dG(x0)+
Z 1

x

F (y+ t(x0�x))dG(x0) (5.4)

and

@Lz(t)=@t = lz(t) =

Z 1

�1

jx0 � xjf(y + t(x0 � x))dG(x0): (5.5)

By comparing the �nal solution to the starting value, we found that Hm(z)
is a reasonably good approximation to H(z) provided m is fairly large (we
used m = 3000).

Table 2 gives some values of H, obtained with the numerical algorithm,
for x and y ranging between 0 and 5. Only values for the �rst quadrant are
listed, because H(x; y) = H(�x;�y) = �H(�x; y) = �H(x;�y). Note that
H is an unbounded function, which attains large values when x is small (but
not zero) and y is large. (Indeed, from such a point (x; y) the median slope
to the bivariate gaussian data can be very steep! Observations in that region
would be very harmful, if the outer estimator in (5.2) were not robust.) We
can also verify that H(x; y) is increasing in y when x > 0 is held �xed. (Note
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that H(x; y) equals the median of the doubly noncentral Cauchy distribution
with noncentrality parameters � = �y and � = �x.)

Figure 2a gives an idea of the shape of H around the origin. Figure
2b displays some contours (obtained numerically), given by H(x; y) = " for
various values of ". The plot resembles a spider web. We see that each contour
of H has the y-axis as an asymptote, but not the x-axis. Indeed, letting x
tend to in�nity yields a skewed asymptote with slope ". (This slope follows
from the interpretation of H.) When " tends to zero, the skewed asymptote
tends to the x-axis. For small ", the minimum of the contour curves occurs
at x0 = 1:109:

It is interesting to note the similarity between the function H in Figure
2a and sensitivity functions of the RM estimator. Indeed, if we consider
truncated (and standardized) versions of H given by

H"(x; y) =
1

"
minf";maxfH(x; y);�"gg

the resulting surface looks like H near the x-axis and y-axis, but is 
attened
beyond the contours of levels " and �" in Figure 2b. For moderately large
" this resembles the sensitivity function for n = 20 shown in Figure 2c. In
particular, note that the change of sign is gradual at the x-axis and steep at
the y-axis. The PSF for n = 40 (Figure 2d) looks like H" for a smaller ",
whereas n = 60 (Figure 1c) corresponds to a still smaller ". Letting n tend to
in�nity corresponds to letting " tend to zero, which leads to the discontinuous
function sign(xy) in the expression of IF (x; y).

The above reasoning illustrates the importance of the sets

A" = f(x; y); jH(x; y)j � "g

which play a crucial role in the derivation of the in
uence function in Section
3. Combining (3.8) and (3.9), we obtain

KfA"g � " log
1

"
for "! 0 + : (5.6)

This implies that l(0) =1 which makes the �rst term of the in
uence func-
tion (3.6) vanish. In order to illustrate (5.6), we generated 2500 points zj
according to K = � � � and computed H(zj) for each of them, using the
abovementioned numerical algorithm for H. The construction of this data
base

f(zj ;H(zj)); j = 1; : : : ; 2500g (5.7)

required substantial computation time. We then considered 20 values of ",
equispaced between 0.005 and 0.100, and approximated KfA"g in each case
by the fraction of points in (5.7) satisfying jH(zj)j � ": Figure 3 plots these
estimated probabilities versus �" log ": We see that the points are close to a
straight line through the origin (with slope � 1), con�rming (5.6).
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Figure 2: (a) Plot ofH(x; y); (b) Contour curves ofH(x; y); (c) Permutation-
stylized sensitivity function for n = 20; (d) for n = 40.
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Figure 3: Plot of (estimated) KfA"g versus �" log ":

Note that the same computational e�ort allows us to obtain an idea of the
distribution of H(Z), the cdf of which was denoted as L in Section 3. Figure
4 gives the empirical cdf of H, computed from the 2500 values in (5.7). The
graph of L2500 is very smooth, and its tangent at zero does become vertical,
in accordance with the fact that the density of L satis�es l(0) =1:

The second key property of A", also following from (3.8) and (3.9), is that

KfA" n
dg=KfA"g � �1= log " for "! 0+ (5.8)

where 
d is the square [�d; d]� [�d; d] for d > 0: This implies that all the
mass of A" moves into 
d when " tends to zero, which greatly simpli�es
the second term of the in
uence function (3.6). In order to illustrate (5.8),
we chose d = 0:5 (hence, Kf
dg � 0:14). For " we took values such that
�1= log " is roughly equispaced between 0.2 and 0.6. Then we estimated the
left member of (5.8) by counting the number of points zj of (5.7) falling
into the appropriate regions. The result is plotted in Figure 5, which o�ers
some support for (5.8) but looks rather incomplete because we would prefer
to include some smaller values of �1= log ". However, for smaller values of
" the estimate of (5.8) becomes highly variable, because very few points zj
belong to A". For instance, for �1= log " = 0:1 we �nd " � 0:000045 hence
KfA"g � �" log " � 0:00045, which means that by generating 2500 points
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Figure 4: Empirical distribution function of H, based on 2500 points.

Figure 5: Plot of KfA" n
dg=KfA"g versus �1= log ":
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from K we obtain (on average) only one point in A". By using more re�ned
techniques (e.g., importance sampling) we could come closer to " = 0, but
not very much.

This slow rate of �1= log " in (5.8) also has practical consequences. For
instance, if we assume that the proportionality factor at d = 0:5 is above 1
(which is not unreasonable when looking at Figure 5), we �nd that KfA" n

dg=KfA"g < 0:05 only when �1= log " < 0:05, hence " < 2:06 � 10�9.
In the proof of the asymptotic normality, certain remainder terms become
negligible for n > 1="2 which yields n > 2:3 � 1017. Therefore, Figure 5
gives some insight in the excruciatingly slow convergence of the estimator's
�nite-sample e�ciency to its asymptotic limit.

In Section 3, the conditional distribution of Z � K on the set A" was
denoted by K". The expression of the in
uence function hinges on the fact
that K" converges weakly to the point mass in (0,0), which is proved from
(5.8). Therefore, we should be able to see that when " becomes smaller, the
distribution K" becomes more and more concentrated around (0,0). Let us
look at the marginal distributions of K". Figure 6a shows the x-marginal
density, which has been obtained by numerical methods, for " = 0:2 and
" = 0:1: We see that the second density has a smaller dispersion, but also
that the relative factor is less than 2 which re
ects the slow convergence.
Similarly, Figure 6b shows the y-marginal density for the same ".

Another way to investigate this convergence is to estimate the scale of the
marginal distributions. For values of " between 0.01 and 0.6, we selected the
points of (5.7) belonging to A" and then computed the interquartile range
of their x-coordinates. Plotting these scale estimates versus " yielded Figure
7a. As in Figure 5, the "wiggles" at small " were due to the small number
of points in A". The scale estimates in Figure 7a decrease at a slow rate,
whereas the scale estimates of the y-marginal distribution (shown in Figure
7b) converge more quickly.
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