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Abstract

We reformulate the conditions of Blanke and Bosq (1997) for achieving the (log T )=T -rate of convergence of the kernel
density estimator for a smooth process and give under slightly stronger assumptions the exact asymptotic form of the
variance giving an expression for the asymptotic optimal bandwidth. Conditions for the full T−1 and discrete-time rates
are also considered. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

For a kernel density estimator of a discrete-time stationary ergodic process, Xi; i ∈ {1; : : : ; n}, the optimal
rate of convergence of the mean-squared error to zero is typically n−2m=(2m+1) if the density f has m continuous
derivatives (see Wahba, 1975). The interest in kernel density estimation given a continuous-time sample, Xt ;
t ∈ [0; T ], started with the paper of Castellana and Leadbetter (1986) where they gave conditions under
which the faster T−1-rate of convergence could be achieved. Given a di�erentiable process however this
result is usually not possible and we will get the (log T )=T -rate as examined by Blanke and Bosq (1997).
The improvement from discrete time is perhaps not surprising since in continuous time the observation of
complete sample paths gives us a chance to actually observe the event {X� = u} for some � ∈ [0; T ], this
allows us to construct unbiased estimators in the form of occupation-time densities (OTD) and local times,
see e.g. Geman and Horowitz (1960) and Kutoyants (1996), which is not possible in discrete time. We will
show that the existence of an OTD is closely related to achieving a faster rate than in discrete time, also the
slower rate for di�erentiable processes is due to the OTD having an in�nite variance. We will reformulate
the conditions for achieving the di�erent rates and under slightly stronger assumptions give the exact form of
the asymptotic variance, a result which is important when selecting the optimal bandwidth parameter. Another
di�erence from discrete time is that the possibility to localize our estimators to {�;X� = u} makes smoothing
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unnecessary and the convergence rate will not depend on m above as long as the density is H�older continuous.
Finally we will give example of a non-parametric class of processes for which the kernel estimator is not rate
optimal.

2. The kernel density estimator

The kernel density estimator for a stationary process observed over an interval [0; T ] is de�ned as:

fh(u) =
1
T

∫ T

0
Kh(Xt − u) dt; (2.1)

where Kh(·)= h−1K(·=h) for a kernel function K integrating to 1 scaled with a bandwidth h. We will further
assume K to be compactly supported and bounded. Properties of this estimator have been examined by e.g.
Castellana and Leadbetter (1986), Bosq (1996), Blanke and Bosq (1997) and in the case of an ergodic
di�usion in Kutoyants (1996), di�erentiable processes are considered in Blanke and Bosq (1997) and Sk�old
(1996) but so far an explicit expression for the asymptotic variance has to our knowledge not appeared in
literature, this is important e.g. when developing methods for automatic bandwidth selection. Castellana and
Leadbetter (1986) derived the following form for the asymptotic variance of fh:

lim
T→∞
h→0

T Var(fh(u)) = lim
T→∞
h→0

2
∫ T

0
(1− �=T )�h(�; u) d�= 2

∫ ∞

0
(fX0 ; X�(u; u)− f2(u)) d�;

where

�h(�; u) =
∫ ∫

Kh(s− u)Kh(v− u)(fX0 ; X�(s; v)− f(s)f(v)) ds dv→ fX0 ; X�(u; u)− f2(u);

as h→ 0. For processes which behave locally as Brownian motion the right-hand side is usually �nite since
fX0 ; X�(u; u) = O(�

−1=2) for small �, given a di�erentiable process however fX0 ; X�(u; u) = O(�
−1), as will be

apparent in the proof of Theorem 2.1, and the integral will diverge.

Theorem 2.1. Let Xt be an ergodic stationary stochastic process with marginal density function f continuous
in a neighborhood of u. De�ne Y� = (X� − X0)=� and Y0:=X ′

0. Then if
1. limh→0

∫∞
� |�h(�; u)| d�¡∞ for all �¿ 0.

2. There is a constant fX0 ; X ′
0
(u; 0) such that lim�→0sup(x;y;�)∈B�×[0;�)|fX0 ;Y�(x; y)−fX0 ; X ′

0
(u; 0)|=0 where B�=

{(x; y); (x − u)2 + y2¡�2}.
we have that

Var(fh(u)) = 2fX0 ; X ′
0
(u; 0)log(h−1)T−1 + o(log(h−1)T−1); (2.2)

as h→ 0 and T → ∞.

Proof. We have, assuming a uniform kernel Kh(·) = (2h)−11{|·|¡h}, where 1A is the indicator of the set A,
that �h(�; u) = (2h)−2(P(|X0 − u|¡h; |X� − u|¡h)− P2(|X0 − u|¡h)) and

T Var(fh(u)) =
1
4h2

∫ T

0

∫ T

0
Cov(1{|Xt−u|¡h}; 1{|Xs−u|¡h}) dt ds

=
1
2h2

∫ T

0
(1− �=T )Cov(1{|X0−u|¡h}; 1{|X�−u|¡h}) d�

= 2
∫ T

0
(1− �=T )�h(�; u) d�:
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To study this integral we divide it into three segments:∫ 
h

0
(1− �=T )�h(�; u) d�+

∫ �


h
(1− �=T )�h(�; u) d�+

∫ T

�
(1− �=T )�h(�; u) d�; (2.3)

where we have introduced monotonous functions �=�(h) and 
=
(h) such that limh→0 �(h)=0, limh→0 �(h)=h=
∞ and limh→0

∫∞
�(h) |�h(�; u)| d�=log (h−1) = 0 which is possible by assumption 1, further we select 
(h)

such that 
(h)h¡�(h), limh→0 
(h) = ∞ and limh→0 
(h)=log (h−1) = 0. The �rst integral is bounded by

f(u) = o(log (h−1)) since

|(1− �=T )�h(�)|6 1
4h2

P(|X0 − u|¡h)6h−1(1=2 + �′)f(u)6h−1f(u)

for h su�ciently small, some �′¿ 0 and f(x) continuous when |x− u|¡h. For the second integral we have
with O(1) meaning that the term is bounded as T → ∞ that∫ �


h
(1− �=T )�h(�; u) d�= 1

4h2

∫ �


h
(1− �=T )P(|X0 − u|¡h; |�Y� + (X0 − u)|¡h) d�+O(1)

=
1
4h2

∫ �


h
(1− �=T )

∫ ∫
|s−u|¡h

|�v′+(s−u)|¡h
fX0 ;Y�(s; v

′) ds dv′ d�+O(1)

=
1
4h2

∫ �


h
�−1

∫ ∫
|s−u|¡h

|v+(s−u)|¡h
fX0 ;Y�(s; v=�) ds dv d�+O(1)

=
∫ �


h
�−1(fX0 ; X ′

0
(u; 0) + R�(h)) d�+O(1)

=fX0 ; X ′
0
(u; 0)(log (�)− log (
h)) + o(log (h−1));

since in the area of integration v=�62h=�62=
 and with �h = max{h; 2=
; �} → 0 as h → 0 we have by
assumption 2 that∫ �


h
�−1R�(h) d�6

∫ �


h
�−1 d� sup

(x;y;�)∈B�h×[0;�h)
|fX0 ;Y�(x; y)− fX0 ; X ′

0
(u; 0)|= o(log (h−1)):

The third integral is o(log (h−1)) by the assumptions on �(h) and the theorem follows.
For a general compactly supported kernel function the proof is only notationally more complicated, note

that the size of the support does not matter since a rescaling h′ = ah only a�ects (2.2) with a factor of
O(T−1).

Remark 2.1. Assumption 1, to ensure the variance is not a�ected by long-range dependence, is true under
more standard integrability of mixing-coe�cients conditions, see e.g. Bosq (1996). It can be easily seen from
the proof that the somewhat weaker

∫∞
� |�h(�; u)| d�= o(log (h−1)) as h→ 0 is su�cient.

Theorem 2.2. Assume f is continuous and bounded; if further
1. limh→0

∫ ∫∞
� |�h(�; u)| d� du¡∞

2. There is a constant fX ′
0
(0) such that lim�→0 sup(y;�)∈(−�;�)×[0;�)|fY�(y)− fX ′

0
(0)|= 0.

3. f2(u)¡g(u), where g is an integrable function monotonous when |u|¿M for some constant M ¡∞.
then ∫

Var(fh(u)) du= 2fX ′
0
(0)log (h−1)T−1 + o(log (h−1)T−1); (2.4)
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as h→ 0 and T → ∞.

Proof. For �xed h¿ 0, fh and thus also its variance is bounded and we can change order of integration;

T
∫
Var(fh(u)) du= 2

∫ T

0

∫
(1− �=T )�h(�; u) du d�;

and decompose the outer integral into three terms as in (2.3). The �rst is bounded by 
(h) = o(log h−1) by
the inequality∣∣∣∣

∫
(1− �=T )�h(�; u) du

∣∣∣∣6 1
4h2

∫
E(1{|X0−u|¡h}) du=

1
2h
:

The bound of the third follows from assumption 1 as in Theorem 2.1 and for the second we have that

I2 := 2
∫ �


h
(1− �=T )

∫
�h(�; u) du d�

=
1
2h2

∫ �


h
(1− �=T )

∫
Cov(1{|X0−u|¡h}1{|X�−u|¡h}) du d�

=
1
2h2

∫ �


h
E
(∫

1{|X0−u|¡h}1{|X�−u|¡h} du
)
− 1
2h2

∫
P2(|X0 − u|¡h) du d�+O(1):

Assumption 3 now gives us a bound for the last term above since

1
2h2

∫
P2(|X0 − u|¡h) du= 2

∫
f2(su) du62

∫
g(u) du+ 4M sup(f2);

where |su − u|¡ 2h. Continuing with the �rst we have that

I2 =
1
2h2

∫ �


h
E(1{|Y�|¡2h=�}(2h− �|Y�|)) d�+O(1)

=
fX ′

0
(0)

2h2

∫ �


h

∫ 2h=�

−2h=�
(2h− �|s|) ds d�+

∫ �


h
R�(h) d�+O(1)

=fX ′
0
(0)(4− 2)log (h−1) + o(log (h−1));

by using assumption 2 as in the proof of Theorem 2.1.

Example 2.1. For a zero mean unit variance Gaussian process Xt satisfying assumption 1 we have since Y�
is also zero mean Gaussian with E(Y 2� ) = (2− 2r�)�−2 where r� = E(X0 X�) is the covariance function of the
process that

fY�(s) = C�(1− r�)−1=2 exp(−(s�)2=(4− 4r�)):

which satis�es assumptions 2 and 3 of Theorem 2.2 provided 0¡ lim�→0(1 − r�)�−2 = Var(X ′
0)¡∞. For

assumption 1, assume there is d¡ 1 and �¿ 0 such that r(�)¡d when �¿� and write �r for the standard
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bivariate normal density with correlation r. By the mean-value theorem∫
|�h(�; u)| du=

∫ ∣∣∣∣
∫ ∫

Kh(s− u)Kh(t − u)(�r(�) − (s; t)�0(s; t)) ds dt
∣∣∣∣ du

= r(�)
∫ ∣∣∣∣ ddr �r(su; tu)|r=s(�)

∣∣∣∣ du
= r(�)D(h; �);

where |su − u|6h, |tu − u|6h and 06s(�)6r(�). Now limh→0D(h; �) is bounded for �¿� by standard
properties of the bivariate normal density and a su�cient additional condition is

∫∞
0 |r(�)| d�¡∞.

Corollary 2.1. Under the conditions in the theorem above using a positive symmetric kernel K with com-
pact support and if f is twice continuously di�erentiable; the bandwidth minimizing the expression for the
asymptotic integrated mean-square error (AIMSE) is given by

h(T ) = (CT )−� with �= 1=4 and

C =
(∫

x2K(x) dx
)2 ∫

f′′(u)2 du=(2fX ′
0
(0)); (2.5)

which gives the rate of convergence:

limT→∞ T (log T )−1
∫ ∞

−∞
E(fh(T )(u)− f(u))2 du= 2�fX ′

0
(0): (2.6)

Moreover (2:6) is true for all �¿ 1
4 independently of the choice of C¿ 0.

Proof. The bias of fh(u) is found by standard Taylor-expansion arguments to equal

E(fh(u))− f(u) = E(Kh(X0 − u))− f(u)

=
∫
K(x)f(u− xh) dx − f(u)

= h2f′′(u)
∫
x2K(x) dx=2 + o(h2);

since
∫
xK(x) dx=0 for a symmetric kernel K . By writing the mean-square error as the sum of variance and

squared bias and neglecting the lower order terms we get

AIMSE(h) = h4
(∫

x2K(x) dx
)2 ∫

f′′(u)2 du=4 + 2log (h−1)T−1fX ′
0
(0); (2.7)

which is minimized by h = (CT )−� as in (2.5). If further �¿ 1
4 , the bias will be of O(T

−1) = o((log T )=T )
and thus asymptotically negligible compared to the variance which is asymptotically independent of C.

Remark 2.2. Note that since the bias with an uniform kernel equals (2h)−1
∫ u+h
u−h (f(t)−f(u)) dt it is su�cient

for f to be H�older-continuous in a neighborhood of u, i.e. |f(u)− f(u+ h)|¡C|h|�, �¿ 0 for su�ciently
small |h|, together with the assumptions of Theorem 2.2 to achieve the (log T )=T -rate, though with possibly
larger �.
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3. Rates

In the following section we will assume f to be continuous in a neighborhood of u, h = T−�, � ∈ (0; 1)
and assumption 1 of Theorem 2.1 to hold.

Theorem 3.1. Assume there is an open neighborhood 
 of (u; 0), �¿ 0 and a constant M ¡∞ such that
(s; v; �) 7→ fX0 ;Y�(s; v)¡M in 
 × [0; �), then

lim sup
T→∞

T (log T )−1Var(fT−�(u))¡∞: (3.1)

If fX0 ;Y� is also bounded from below this is the exact rate; i.e. if 0¡m¡fX0 ;Y�(s; v) in 
 × [0; �);
lim inf
T→∞

T (log T )−1Var(fT−�(u))¿ 0: (3.2)

If on the other hand there exists �¿ 0 such that fX0 ;Y�(s; v)6M (�
�+|s−u|�+v���) when (s; v; �) ∈ 
×[0; �)

for some M ¡∞; then
lim sup
T→∞

T Var(fT−�(u))¡∞: (3.3)

Let �t = �({s ∈ [t; t + 1];Xs = Xt}) where � is the Lebesgue measure. If there is �¿ 0 and �¿ 0 such that
x 7→ P(�0¿�|X0 = x)¿� when |x− u|¡� (the process can spend positive length of time at level x); we get
the discrete-time rate:

lim inf
T→∞

T 1−�Var(fT−�(u))¿ 0: (3.4)

Proof. (3.1)–(3.3) are easy consequences of the proof of Theorem 2.1, we show (3.1) which follows from
the inequality

lim sup
T→∞

T (log T )−1Var(fT−�(u))6 lim
T→∞

2M (log T )−1
∫ �

T−�
�−1 d�= 2M�¡∞:

For (3.4) we have

T Var(fT−�(u)) = 2
∫ 1

0
(1− �=T )�T−�(�; u) d�+ 2

∫ T

1
(1− �=T )�T−�(�; u) d�;

where the last term is bounded as T → ∞ by assumption 1 of Theorem 2.1. For the �rst we have

4
∫ 1

0
(1− �=T )�T−�(�; u) d� = T 2�E

(∫ 1

0
(1− �=T )1{|X0−u|¡T−�}1{|X�−u|¡T−�} d�

)

−T 2�
∫ 1

0
(1− �=T )E2(1{|X0−u|¡T−�}) d�

¿ T 2�(1− 1=T )E(�01{|X0−u|¡T−�}) + O(1)

¿ T 2�
∫ u+T−�

u−T−�
E(�0|X0 = x)f(x) dx +O(1)

¿ T��2f(u) + O(1)

if T−� ¡ � is su�ciently small.
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Fig. 1. The processes of examples 3.2 and 3.3.

Remark 3.1. The condition P(�0¿�|X0 = x)¿� for the discrete-time rate should be compared with Geman
and Horowitz’s su�cient condition P(X ′

0 = 0)= 0 for the existence of an OTD provided f exists. Thus when
the sample paths satisfy �(t;X ′

t =0)¿ 0⇒ ∃x; �(t;Xt=x)¿ 0 with positive probability and there is no OTD,
we cannot improve the discrete-time rate.

Example 3.1. Processes where the full T−1-rate is achieved includes e.g. processes which behave locally as
Brownian motion since for standard Brownian motion we have

fX1 ;(X1+�−X1)=�(s; v) = C�
1=2 exp(−(s2 + �v2)=2)6C�1=2;

which satis�es the conditions of (3.3) with M = C and � = 1
2 .

Example 3.2. A second example to show that the sample paths need not be very “irregular” to achieve the
full T−1-rate are processes where the absolute derivative is bounded from below by some constant �¿ 0
when Xt is close to u, e.g. the saw-tooth process obtained from a stationary point process �i on the real line
with interarrival times �i+1 − �i ¿ 1 and independent by

Xt =min(t − �i; �i+1 − t)(−1)i+Z ;

t ∈ [�i; �i+1); where P(Z =0)=P(Z =1)= 1
2 (see Fig. 1). Here the conditions of (3.3) are satis�ed for u=0

since fX0 ;Y�(s; v) = 0 when (s; v; �) ∈ (−0:25; 0:25)× (−1; 1)× [0; 0:25).

Example 3.3. The discrete-time case can be seen as a special case of (3.4) by viewing a discrete sample,
{Xi; i = 1; : : : ; n}, as a piecewise constant process (see Fig. 1 and Theorem 4.3 in Bosq, 1996):

fh(u) =
1
n

n∑
1

Kh(Xi − u)

=
1
n

∫ n−1

0
Kh(Xdt+�e − u) dt +OP(n−1);

where � ∈ Unif (0; 1) is a random shift of time to make the process stationary. Clearly the conditions of (3.4)
are satis�ed since P(�0¿�|X0 = x) = P(1− �¿�)¿� if 0¡�¡ 1

2 .
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4. Beating the rate

If Xt is a di�erentiable process and NT (u) the number of level-crossings of u, t ∈ [0; T ], we have under
general smoothness conditions (Geman and Horowitz, 1960) the occupation-time density

�T (u) = 2T lim
h→0

fh(u) =
NT (u)∑
i=1

|X ′
�i |−1; (4.1)

where �i, i=1; : : : ; NT (u) are the times of level-crossings of u. This is, scaled by (2T )−1, an unbiased estimator
of the density but in practise not very useful since it will often have an in�nite variance and has a singularity
at every level u where a crossing of zero of the derivative is observed (a local extrema). Closely related to
this is Rice’s formula for the mean number of level crossings in the unit interval,

2f(u) = E(N1(u))=E(|X ′
0 ||X0 = u) = E(N1(u))E(|X ′

�1 |−1); (4.2)

see e.g. Marcus (1977), Geman and Horowitz (1960) and in a kernel estimation context Sk�old (1996).
To motivate why �T (u) has an in�nite variance, note that the crossing-derivatives |X ′

�i | will have density
gu(x) = CxfX0 ; X ′

0
(u; x) due to a length-bias phenomena (the process spends more time close to u if the

crossing derivative is close to zero) and if fX0 ; X ′
0
(u; 0)¿ 0 the inverse second moment will not exist. This is

why fX0 ; X ′
0
(u; 0) appears in main term of the asymptotic variance in (2.2). Note that if NT (u) is well behaved,

i.e. it is close to TE(N1(u)) for large T , we can construct a new (log T )=T -estimator by using the truncated
crossing derivatives |X ′

�i |1{|X ′
�i
|¿T−�} in (4.1).

Now as indicated the slower rate of convergence (log T )=T comes from the di�culty in estimating E(|X ′
�1 |−1).

If however the mean derivative is independent of the level; E(|X ′
0 ||X0 = u) = E(|X ′

0 |), which e.g. is the case
for Gaussian processes, we can use the estimator given by

f̂(u) = NT (u)

/(
2
∫ T

0
|X ′
t | dt + 2

)
; (4.3)

which under general conditions in this class of processes achieves the full T−1-rate and thus beating the
(log T )=T -rate of the kernel estimator.

Theorem 4.1. Assume that Xt is a stationary mean-square di�erentiable process, write ST=NT (u)−E(NT (u))+
2(TE|X ′

0 |−
∫ T
0 |X ′

t | dt)f(u) and S ′T =
∫ T
0 min(1; |X ′

t |) dt−TE(min(1; |X ′
t |)), then if there is M ¡∞ and �¿ 0

such that with p= 1 + �=2 and q= (2 + �)=�
1. E(N1(u)) = 2f(u)E|X ′

0 | (Rice’s formula when X0 and X ′
0 independent);

2. lim supT→∞ E|T−1=2ST |2p¡M;
3. lim supT→∞ E|T−1=2S ′T |4q ¡M;
we have

lim sup
T→∞

TE(f̂(u)− f(u))2¡∞:

Proof. Write Î T =
∫ T
0 |X ′

t | dt=T and Ĩ T =
∫ T
0 min(1; |X ′

t |) dt=T . Under assumption 1, ST = NT (u) − 2T ÎTf(u)
and using that (a+ b)262a2 + 2b2 and H�older’s inequality we have

TE(f̂(u)− f(u))2 = TE
[
NT (u)=T − 2Î Tf(u) + 2f(u)=T

2Î T + 2=T

]2
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6 2E
(
T−1=2ST
2Î T + 2=T

)2
+ 2f2(u)T−1E(2Î T + 2=T )−2

6 2(E|T−1=2ST |2p)1=p(E(2Î T + 2=T )−2q)1=q + 2f2(u)T−1E(2Î T + 2=T )−2;

and by assumption 2 it remains to show that E(Î T +1=T )−2q and thus also E(Î T +1=T )−2 is bounded. Now,
by Markov’s inequality for z¡E(Ĩ T )=2 and assumption 3 we have for T large enough that

FĨT (z)6 P(|Ĩ T − E(Ĩ T )|¿E(Ĩ T )− z)

6
E|Ĩ T − E(Ĩ T )|4q
|E(Ĩ T )− z|4q

=
E|T−1=2S ′T |4q
T 2q|E(Ĩ T )− z|4q

6M (E(Ĩ T )=2)−4qT−2q;

and further that

E(Î T + 1=T )−2q6 E(Ĩ T + 1=T )−2q

=
∫ ∞

0
(z + 1=T )−2qfĨT (z) dz

= 2q
∫ ∞

0
(z + 1=T )−2q−1FĨT (z) dz

6M (E(Ĩ T )=2)−4qT−2q2q
∫ E(Ĩ T )=2

0
(z + 1=T )−2q−1 dz + 2q

∫ ∞

E(Ĩ T )=2
z−2q−1 dz

¡M ′¡∞
for all T large enough.

Remark 4.1. Assumption 1 is satis�ed for processes for which Rice’s formula is valid (see e.g. Marcus, 1977)
and X0 and X ′

0 are independent, e.g. mean-square di�erentiable Gaussian processes. Assumptions 2 and 3 are
satis�ed if the stationary zero-mean sequences � i = Si − Si−1 and �i = S ′i − S ′i−1, respectively are ’-mixing
with

∑
’1=2i ¡∞ and E|� 1|2+� ¡∞ (Yokoyama, 1980), E|�1|4q is bounded for any q¿ 0 since |�1|61.

Remark 4.2. f̂ can be generalized by introducing a function �(T ) = o(T 1=2) ↑ ∞ as T → ∞ and using
f̂ �(u)=NT (u)=(2

∫ T
0 |X ′

t | dt+ �(T )), allowing us to relax the moment conditions in assumption 3 of Theorem
4.1 at the price of a possibly increased (but still O(T−1=2)) bias.
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