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Asymptotics of LR tests at Boundary of
Parameter Space Under Non-Identifiability

Ola Hossjer

Abstract

In this paper we provide a general theory for likelihood ratio tests,
when, under the null hypothesis, i) a g-dimensional subset of the pa-
rameter is non-identifiable and ii) a p-dimensional subset of the pa-
rameter is at the boundary of the parameter space. The asymptotic
null distribution of twice the log likelihood ratio statistic is the supre-
mum of a so called y?-process Y : T — RP, where the index set
T C R? corresponds to the unidentifiable parameter. The limit distri-
bution involves a Gaussian process Z : T — RP with standard normal
marginals, so that, for each ¢t € T, Y (¢) is the squared norm of the
projection of Z(t) onto a (possibly ¢t-varying) cone in RP. This cone is
derived from the local shape of the boundary region around the null
parameter in ii). The marginal distribution of Y (¢) is x?, i.e. a mixture
of x?-distributions with p—r, ..., p degrees of freedoms, where 7 is the
number of boundary conditions imposed in ii).

We illustrate the theory with several examples, including LR-tests
for components of normal mixtures and LR-tests for the presence of
disease genes along a chromosome in genetic linkage analysis (MOD
scores and MLS scores). The examples involve a wide range of different
X2-processes, with varying dimensionality (g, p,r).

KEY WORDS: Asymptotic distribution, boundary of parameter space,
likelihood ratio tests, linkage analysis, non-identifiability, normal mix-
tures, )ZQ—process.



1 Introduction

Consider a probability space (€2, F, P) and J independent sequences {X;}°;
of independent and identically distributed random variables (2 — AX;. Let
fj(x;0) be the common density of all {X;}7°, with respect to a measure y;
on (X;, B(X;)), where B(X;) is the Borel o-algebra on X; and § € © C R7™P
an unknown parameter. We are interested in testing

H()Z 96@0,
Hi: 60¢6, (1)

for some subset O, of the parameter space © based on subsample sizes n;
and total sample size n = ny +...+n;. To this end, define the log likelihood

function
J nj

1 (0) = DD _log fi(wi;0), (2)

j=1i=1

where zj; is the observed value of X;;, and the log likelihood ratio statistic

Ap =2 (sup 1,(0) — sup ln(9)> : (3)
G D
The null hypothesis Hj is rejected when )\, exceeds a given threshold. For
standard scenarios, it is well known that ), converges in distribution to a
x*(p)-distribution, where p is the difference in dimensions between © and
©. This requires certain smoothness assumptions on [, and that the true
parameter 6y € O is an inner point of the parameter space, see e.g. Cramér
(1946), Chernoff (1954) and Serfling (1980).

When 6, is a boundary point of ©, standard asymptotic fails. The asymptotic
distribution of )\, then depends on the exact form of © in local neighborhoods
of 6. If local neighborhood are cone shaped, the asymptotic distribution of
A, is a finite mixture of y2-distributions of various degrees of freedoms, see
for instance Chernoff (1954), Self and Liang (1987), Shapiro (1988), Sen and
Silvapulle (2002, 2005) and references therein. Such mixtures are frequently
referred to as having a x? distribution.

Another complication arises when 6 is non-identifiable under the null hypoth-
esis, i.e.

£i(::0) = fjo(-) for all € 6, (4)

and some null densities fjo, 7 = 1,...,J. Assuming only the first ¢ com-
ponents of 6 are non-identifiable in (4), we write § = (¢,€), where t € T =
[T117T12] X ... X [qu,qu] C R? and f € E(t) = {g, (t,g) S @} C RP. In



particular, © = T x = when =(¢) = = for all t. We formulate the hypothesis
testing problem (1) as
HO : 5 = 607
)
Hi: €46, ®)

for some &y € Nyer=(t), so that ©g = T x {&}. In view of (4), we thus require
that the null hypothesis is simple.

Davies (1977) approximates the asymptotic distribution of A\, when g =p =1
by the supremum of a Gaussian process, which is truncated or not depending
on whether &, is a boundary point of =. The former case happens when
testing the number of components in a mixture distribution with unknown
mean, see e.g. Bickel and Chernoff (1993), Lemdani and Pons (1999), Chen
and Chen (2001), Garel (2001), Delmas (2003), Liu and Shao (2004) and
Azais et al. (2004)

The purpose of this paper is to consider the asymptotic distribution of )\,
for a general class of models, where 6, is both non-identifiable and at the
boundary of the parameter space for general ¢ and p. We prove that under
H, the asymptotic distribution of \,, is the supremum of a so called y?-process
Y over T, i.e.

An =5 A =supY (). (6)

teT

The process Y is constructed so that the marginal distribution of Y (¢) is y*
for each t € T.

The asymptotic dimensionality of the testing problem can be summarized by
the triplet

(g,p,7),

where ¢ and p are the number of unidentifiable and identifiable parameters
under Hy, as described above, and 7 is the number of boundary restrictions
imposed on the identifiable parameters. It turns out that Y (¢) for each t € T
is a mixture of r + 1 distinct y2-distributions with p — r,...,p degrees of
freedom.

If a,(c) = Po,( M\
¢ € R and a(c)
implies that

> ¢) is the significance level of the LR-test with threshold

= Py, (A > ¢) the corresponding asymptotic quantity, (6)
an(c) — a(c) asn — oo

at all continuity points ¢ of the distribution function F of \.

The paper is organized as follows: In Section 2 we define the y2-process
Y and outline the main ideas behind (6), the proof of which is given, in
two versions, in Sections 3-4. In Sections 5-6 we illustrate the theory with
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LR-tests for i) the number of components of a normal mixture and ii) the
presence of a disease gene along a chromosome using genetic linkage analysis.
In the latter case we derive the limit distribution of MOD scores (Risch, 1984,
Clerget-Darpoux et al., 1986) and MLS scores (Risch, 1990). A discussion of
the results is given in Section 7 and proofs and technical results are gathered
in the appendix.

Throughout the paper, we let, for any positive integer s, | - | denote the
Euclidean norm in R®. || - || the supremum norm of functions T — R®, and
IA|l1 = X4 |Aki| the Ly norm of s x s matrices A = (Ay).

2 Quadratic Approximation and y*-Process

We will assume that each f;(z;6) is smooth in & but not necessarily in t.
Define the 1 x p vector-valued score function

dlog f;(;0)

Yj(;0) = o
put ¢;(z;t) = ¢;(z;t, &) and introduce the p x p-matrix
L(t,t') = Epy (v (Xj50) 45 (Xj051)) (7)

where 97 is the conjugate of 1) and 6, € ©,. Notice that (7) is well defined,
since, in view of (4), we need not specify ;. We assume that [;(¢,t") exists
for all ¢,¢' € T. When ¢t =/, I;(t) = I;(¢,t) is the Fisher information matrix
of the j*® subsample for ¢ at § = (¢,&,). For the whole sample, define

M“

(nj/n)l; (8)

7j=1
As n — oo, we assume that the subsample sizes converge to fixed proportions
nj/n — m;, 9)

where 7y, ..., 7 are non-negative numbers summing to one. It follows from
(9) that I,(t,t") — I(t,t'), where

) = Z;ijj(t’ ). (10)

Asymptotically, the Fisher information of £ per observation for the combined
sample is I(t) = I(t,t) at (¢t,&). Assuming that I(¢) is non-singular for all
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t € T (this assumption will be relaxed in Section 4), let A(¢) be a square root
of I(t), i.e. any p X p matrix satisfying

I(t) = A(H)TA(t). (11)
It will be convenient to reparametrize & and put

ln(ta 5) = ln(ta 50 + n_1/26A<t)_T>

Ant) = n2(E() — &)AG)T, (12)
where A(t)~T is the conjugate of A(¢)~!. Then
An = sup Y, (1), (13)
teT
where
Ya(t) = sup 2(In(t,6) = U(t,&)) = sup 2(In(t,0) — [.(,0)) . (14)
§EE(1) S€AL(t)

We view Y, = {Y,(¢t);t € T} as a random variable on (D(T), B(D(T))).
D(T) is the space of functions T — R defined as the closure, with respect to
supremum norm on T, of all simple functions that are constant on sub-cubes
[a1,b1) X ...[aq,b,). This is the natural generalization of cadlag functions
when ¢ = 1 in that each y € D(T) has limits at ¢ along the 29 — 1 quadrants
'below’ t and is continuous at ¢ along the quadrant 'above’ t for each ¢ € T.
We endow D(T) with the Skorohood topology (Bickel and Wichura, 1971) in
the definition of B(D(T)).

In Section 3, the major step in showing (6) is to establish
Y, =Y (15)

on (D(T),B(D(T))), where Y = {Y'(t); t € T} is a y*-process, to be defined
below. Then (6) follows by a simple application of the Continuous Mapping
Theorem (Billingsley, 1968, Theorem 5.1).

In order to define Y, we first need an asymptotic approximation of Y,,. Let

§=0 j=1i=1

Zn(t)

be the score vector with respect to ¢ at (¢,0). We assume that Z, =
{Z,(t); t € T} is a random element of (DP(T), B(D?(T))). Here DP(T) is



the space of functions T — RP that have limits from below and are continu-
ous from above, defined as when p = 1. Likewise, the Skorohood topology of
DP(T) is define analogously as when p = 1. The covariance function of Z,, is

pn(t, 1)) = Cov(Zn(t), Zu(t)) = A(t) TL(t, 1) A() . (17)

A Taylor expansion of /,, with respect to  at § = 0 yields
- - 1 .
L(t,0) = 1,(t,0) + Z,(t)0" — 5|5|2 + R,(t,6), (18)

fort € T and § € A, (t), with R, (t,) a remainder term that is small as n —
oo. For each ¢, (18) is the usual asymptotic expansion of the log likelihood
used to derive the asymptotic distribution of the LR-test, see e.g. Serfling
(1980). Hence, (18) can be viewed as a process analogue when considering
several ¢ simultaneously. Inserting (18) into (14) we obtain

Ya(t) = sup (2Zu(t)6" — |0 + 2Rn(t,6)) (19)
SEAL(L)

forallt € T.

Now (19) gives some ideas on how to define the limit process Y. We need to
I) show that R, is asymptotically negligible, IT) replace Z,, by a limit process
Z and III) replace A, (t) by a limit region A(t).

To deal with II), we assume that
Zn £ Z asn — oo (20)

on (DP(T),B(D?(T))), where Z = {Z(t), t € T} is a Gaussian process with
covariance function

p(t,t) = A(t) " I(t,1)A(t) (21)

and A(t) satisfies (11). Notice that p(¢,t') is the limit of (17) because of (9).
Since p(t,t) = Id, the identity matrix of order p, the marginal distribution
of Z(t) is p-dimensional standard normal for all ¢t € T.

To deal with III), we assume that =(t) is shaped as a cone bounded by
hyperplanes locally around &. In more detail, let V(¢) be a r x p matrix
with linearly independent row vectors vy(t),...,v.(t), 0 < r < p. Define

C(V(t) ={£ €RP; v(t)er >0,i=1,...,7}



as a cone in R? bounded by the r hyperplanes through the origin that are

perpendicular to vy (t),...,v,(t). Let d be the distance metric between sets,
defined in the appendix, and assume that
lim supd (77( — {&}), C(V(1))) = 0. (22)
70+ geT
Define
At) = C(V() AWM =CU®)), (23)

where U(t) = V(t)A(t)~!. It is proved in the appendix that (12) and (22),
under some regularity conditions, lead to
lim supd(A,(t), A(t)) = 0. (24)
00 e

Going back to (19), we define Y (t) by replacing R, (t,-), Z,(t) and A, (t) by
0, Z(t) and A(t). This yields

Y(t) = supseaq (22(t)67 — 62
= |Z(t)]> = |Z(t) — PawyZ(t)? (25)
= [PawZ(t)P,

where Pprz = argmingea |z — y| is the projection of z € R? onto A C RP.
The last equality of (25) follows since A(t) is a cone in R?, see e.g. Self and
Liang (1987), Shapiro (1988) and Sen and Silvapulle (2002, 2005). In words,
Y'(t) is defined as the squared Euclidean norm of the projection of Z(t) onto
a (possible t-varying) cone in R? bounded by r hyperplanes.

Since A(t) is a cone bounded by hyperplanes for each ¢, it follows that the
marginal distribution of the y2-process Y is a mixture of y2-variables,

Y(r) € 3wt (). (26)

for some non-negative weights {w;(t)}’_, summing to one. In more detail
w;(t) is the probability that the projection Pay)Z(t) belongs to a face of
A(t) with dimension i, see Sen and Silvapulle (2002) and references therein.

When r = 0 we have A(t) = RP, so that w,(t) = 1 in (26), and Y is a
pure x?(p)-process. When r = 1, A(t) is a half-plane and Y (¢) is a 0.5 : 0.5-
mixture of y2-distributions with p—1 and p degrees of freedom, i.e. w,_1(t) =
wy(t) = 0.5. When r = 2, Y(¢) is a mixture of three types of y?-distributions,
with weights w,_2(t) = 0.5 — w,(t), wy,—1 = 0.5 and

wp(t) = cos™ (—ur (t)ua(t)”" /Jur ()| luz(t)]) /27, (27)
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where wu;(t) and uq(t) are the two row vectors of U(t). In case r = p = 2, we
can rewrite (27) in the more explicit form

wg(t) = COS_l(—Blg (t)/\/ Bll(t)BQQ (t))/Q?T, (28)

where B(t) = (Bu(t)2._, = V()QIH)QTV ()T and

o (03)

This is a generalization of Self and Liang (1987), who derived (28) when
V (t) = Ids, the identity matrix of order 2.

3 Asymptotic Distribution - Non-Singular Case

We will assume the following regularity conditions:

i. Let én(t) = argmaxecz(y) ln(t,§). The estimators {én(t);t € T} are
uniformly consistent, i.e.

lim P, (sup . (8)] > 6) =0
for any € > 0.

ii. The functionst — log f;(z;t,&),t — log f;(x;t) = log Supgez(p fi (73, §)
belong to D(T) and ¢ — ;(z;t) belongs to DP(T) for all j =1,...,J
and x € X] C X, where Py, (&]) = 1.

iii. For all t € T and j = 1,...,J, it holds that Ep v¢,;(X;1;t) = 0. Put
Gilast) = (07 1ngj($;t,ﬁ)/afkafz)i,lﬂ’g:go- Then Eg,(¢;(Xj15t)) =
—]J(t) and

sup I1,(t) — I(t)||, = 0,(1) under Hy, (29)
te

with ,(t) = — 327, ) G(Xist) /n.

iv. (t,t') — I(t,t') is continuous on T x T and ¢ — A(t) is continuous on
T with respect to the topology introduced by || - ||;. The function p
in (21) is the covariance function of a well defined Gaussian process
Z € DP(T), which is continuous with probability one.

v. Let Kmin(t) be the smallest eigenvalue of I(¢). Then

Fmin = inf Kmin () > 0.
teT



vi. For some ¢ > 0 and each j =1,...,J, there exists a B(X;)-measurable
function M; : X; — R with Ep M;(X) < oo such that

P fi(z;0)
I < M
Sl | " oge | =M
where k = (k1,...,k,), each k; is a non-negative integer, |k| = >0_; k;,

Ogk = ogi .. 0k, O, = {(t,€); t € T,E € E(t) and |€ — &| < e}

vii. The matrix-valued function ¢t — V() is continuous on T.

Theorem 1 (Weak convergence of LR-process.) Consider the log like-
lihood function (2), assume the non-identifiability condition (4) holds, as well
as (9), (20), (22) and i-vii. Then (15) and (6) follow. 0

Remark 1 The consistency condition i can be removed if we weaken the
interpretation of &, (t) to be a local maximum of I,,(¢, -) such that the sequence
{&,(t); t € T} is uniformly consistent with respect to ¢ as n — oco. It is
implicit from the proof of Theorem 1 that such a sequence exists. a

Remark 2 Conditions ii and iv guarantee that Z, € DP(T) and ii that
Y, € D(T). A sufficient set of conditions for log f;(x;-) € D(T) to hold is
that Z(¢) = = is compact, that t — log f;(x;t,&) € D(T) for each £ € = and
SUPgez get [V (731, €)| < 0o. Then there exists a dense sequence &1,&y, ... in
=, so that

log fj(m;t) = lim max log f;(x;¢t,&),

m—00 1<k<m
is the limit (in m) of a Cauchy sequence with respect to supremum norm on
D(T). Completeness of D(T) with respect to the weaker Skorohood metric
proves log f;(x;-) € D(T). O

Remark 3 By Prohorov’s Theorem (Billingsley, 1968, Chapter 1.6), in order
to prove (20) we need to establish convergence of finite-dimensional distri-
butions of {Z,} and tightness. Convergence of finite-dimensional distribu-
tions follows immediately from (9) and the Lindeberg-Feller Central Limit
Theorem. A sufficient condition for tightness is given by Theorem 15.6 of
Billingsley (1968) when ¢ = p = 1 and Theorem 3 of Bickel and Wichura
(1971) for general g and p = 1. The latter result translates to p > 1 as well.

O



Remark 4 For (29), we use the bound
() = 1(®)]l1 < Z ny /)| Lo () = 1;(0)] + Z [n;/n = |l (30)

where I,,;(t) = — 17, ((Xji;t, &) /n;. The second term of (30) tends to zero
uniformly for ¢ € T according to (9) and |;(¢)| is uniformly bounded in ¢
because of v. To handle the first term, we need show that sup,cy |1, (t) —
I;1u(t)] = 0,(1) each foreach j =1,...,Jand 1 <k, < p. This is a uniform
law of large numbers result, see e.g. Bickel and Millar (1992) for regularity
conditions. O

4 Asymptotic Distribution - Singular Case

We will now generalize Theorem 1 and allow for singular Fisher information.
To this end, define

T, = {t € T; I(t) is singular}. (31)

It turns out that (15) typically fails when T, # (), although the weaker
requirement (6) does not. In order to derive (6), we will assume that T,
contains at most a finite number of points. The major technical difficulty is
that the reparametrization (12) is only valid for ¢t € T, = T \ T, the set of
non-singular points. Still, it is more convenient to work with the transformed
parameter 0 instead of £ when T, # (). Define

fila;t,8) = fila;t, & + 0AR)™T) (32)
for all t € T, so that
J ny
8) =33 log fi(Xjit,n=136).

j=1i=1

Then i-vii are changed to:

i'. Let 6,(t) = arg maxsen, ¢ In(t, ). Then

lim P, <sup 16, ()| > \/ﬁe> =0

for each ¢ > 0.

10



ii’. Foreach j = 1,...,J the following holds: The functions ¢t — log f;(z;, &),
t — log fj(x;t) belong to D(T) for all z € X} C X);, where Py, (&) = 1.
The function sz : Tys — RP, defined by @j (z;t) = ¥(z;t)A(t) ™, can
be uniquely extended to T so that ¢; € DP(T) for all z € &].

iii". For all t € T,s and j = 1,...,J, it holds that Ep 1;(X;1;t) = 0. Put
Gla;t) = (0%log f(x:t,6)/06,05)) Then Ey,(C(Xj1:t)) =
—A@)TL(t)A(t)7!, and

p

sup ||Td,(t) — Id||y = 0,(1) under Hy,

tETTLS
with Id, (t) = — S0 S, G (Xji t) /n.
iv'. The conditions on I(-,-) and A(-) in iv hold. In addition, the function
p: Ty x Tps — Rin (21) can be extended to a continuous function

T x T — R which is the covariance function of a Gaussian process
Z € DP(T) that is continuous with probability one.

v'. The number of singularity points T, is positive but finite.

vi'. For some € > 0 and each j = 1,...,J, there exists a B(X;)-measurable
function M, : X; — R with Ep,M;(X) < oo such that

max sup
k;lk|=3 (¢,5)eT.

Bzt 6 ~

where £ = (ky,...,k,) and Y. = {(t,9),t € T, |0] < cand§ €
A1)}

vit'. 771Z(t) — {&}) is a non-decreasing function of 7 > 0 for each ¢ € T,,
t — V/(t) is continuous on T, and

lim supd (r~(2(t) — {&}), C(V()) =0

T—=0+ ¢eT,

for each ¢ > 0, where T. = {t € T; infyer, [t — /| > ¢}. A(t), defined
by (23) for t € T,, can be uniquely extended to a continuous function
on T.

Theorem 2 Consider the log likelihood function (2), assume the non-identifia-
bility condition (4) holds, as well as (9), (20) and i-vii'. Then (6) follows.
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Remark 5 Condition ii’ guarantees that Y,, € D(T) and Z,, € DP(T). Since
iv’ implies that Z € D,(T) is well defined and continuous with probability
one, it follows from vii’ that Y € D(T) is also continuous with probability
one. O

Remark 6 A sufficient condition in vii’ for 7 — 771(Z(¢) — {&}) to be
non-decreasing is that =(t) is convex. It guarantees that A,(¢) is a non-
decreasing sequence of sets, converging to A(t) as n — oo for all ¢t ¢ T,;.
This will simplify the proof of Theorem 2. O

5 Examples

In the examples to follow, we write A(t) = A, A(t) = Aand V(t) =V
whenever these quantities are independent of ¢t € T.

Example 1 (Identifiability under Hy.) When O = {6y}, we put ¢ = 0,
T = {0}, & = 6p and A = Y(0) = Y. The 'process’ Y is then a y*-distributed
random variable. O

Example 2 (Polar coordinates.) Assume J = 1 and that f(z;7) is para-
metrized by a two-dimensional Cartesian parameter vector n = (n;,72). We
wish to test Hy : 7 = 1o against H; : ) # 19, and assume that 7y is an inner
point of the parameter space. This is a special case of Example 1 with » = 0,
so that A\, N x%(2) as n — oo. However, by switching to polar coordinates
we may formulate this as ¢ = p = 1, using

1 = 1o + &(cos(t), sin(t)),

fort € T=[0,27], £ € 2 =[0,00) and & = {0}. Let I be the 2 x 2 Fisher
information matrix for i at n = 7, and I(n) the log likelihood function for
n. Then I(t) = u(t)Iu(t)?, with u(t) = (cos(t),sin(t)), so that T, = 0 if I is
non-singular. Let W,, = 9l,(n) /877‘77:170 (nI)~'/? be the score vector. Then
Zn(t) = u(g(t))WT where g : [0,27] — [0, 27] is a transformed angle, defined
by u(g(t)) = u(t)fl/Q/\/m. Letting n — oo, W, —= W = (W;,W};) €
N5(0,1d), where Id is the identity matrix of order 2. Hence the limiting
distribution of Z,, is the process



a time transformed sinusoidal Gaussian random process with covariance func-
tion

p(t,t') = cos(g(t) — g(t)).
We have r = 1 and A = [0, 00), so that

Y (t) = max(Z(t),0)* = max(W; cos(g(t)) + Wirsin(g(t)),0)%.
Since ¢ is a bijection on [0, 27],

A= sup Y(t) = Wi+ WFh e x*(2)

0<t<2r

in accordance with standard LR theory. O

In the previous example, non-identifiablity under H, was a consequence of
using polar coordinates. It could simply be removed by switching to Carte-
sian coordinates. We now give three examples with Gaussian mixtures, J = 1
and X = R, where no such trick is available.

Example 3 (Mixture distributions with ¢ = p = 1.) Assume
Xi € (1-&N(0,1) +EN(1,1) (33)

with T = [-T,T] for some T" > 0 and = = [0,1]. If { = {0}, it follows
that r = p =1, A = [0, 00), the score vector is 1 (z;t) = exp(tz — t?/2) — 1,
I(t,t') = exp(tt’) — 1, T, = {0} and
1 n
exp(tX; —t2/2) — 1
\/n(exp(t2) -1) ; ( )

if t #0 and Z,(0) = X", X;/+/n. The covariance function of Z, and Z is

plt ') = (exp(tt’) — 1) /+/(exp(t2) — 1)(exp((t)2) — 1)

and Y(t) = max(Z(t),0)?, as in the previous example. Weak convergence
An —= X has been established by Chen and Chen (2001, Theorem 2). O

Zy, (t) =

Example 4 (Mixture distributions with ¢ = 2,p = 1.) We generalize Ex-
ample 3 so that the mean and variance of the second component in (33) are
unknown, i.e.

X, € (1 =&N(0,1) +EN(ty, ta),

13



with t = (t1,t2) and T = [T}, T1] X [Ty, Toe] for some 77 > 0 and 0 < Ty, <
Ty <2. Inthiscase ¢ =2, p=r=1, A=1[0,00), Ts = {(0,1)} and

1 1 1 t t2

Hence
A = sup max(0, Z(t))?,

teT

where the covariance function p of Z is deduced from (7) and (21) on T, x T,
and then extended to all of T x T. Notice the restriction ¢, < 2, which is
needed in order for I(t) to be finite. O

Example 5 (Mixture distributions with ¢ = 1,p = 2.) A second gener-
alization of Example 3 is

Xi € (1 =&)N(&,1) +&N(t, 1),

with T = [-T,T], £ = (&,&) and = = [T, T] x [0,0.5]. The restriction
¢, < 0.5 is imposed for identifiability, since 6 = (¢,£1, &) and 0 = (&,t,1—&)
give the same model. The null hypotheses is defined by £, = (0,0). The score
vector is

U(x;t) = (z,exp(te — t7/2) — 1),

I(t,t) = ( 715 ett’t/_ 1 ) (34)

and Ty = {0}. We use a Cholesky decomposition of /(t), i.e. choose an upper
triangular A(t) in (11), defined through its inverse

_ 1 —t/Ut
Ayt =
o=y ). (59
with 02 = ¢ — 1 — 2. From (16) it follows that Z,(t) = (Zn1(t), Zna(t)),
where

Zm(t) = X Xi/vn,
Zna(t) i1 (exp(tX; —7/2) = 1 = tX;)/(v/noy), t#0,
Znp(0) = XI (XE—1)/vV2n.

[\
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The covariance function of Z,, and Z is found by inserting (34) and (35) into

p(t, 1) = ( (1) ottf/(?ftat’) > |

where o,y = e — 1 — tt/. Hence Z(t) = (Zy, Z,(t)), where Z, € N(0,1)
and Z, is a real-valued Gaussian process, independent of Z;, with covariance

(21), giving

function oy /(oy0y).

We have r = 1, V = (01) and C(V) is the upper half plane. Hence U(t) =
(01)A(t)™' = (01)/o;. This yields A = {(d1,83); 2 > 0}, the upper half
plane for all ¢t € T. Tt follows that Y () = |PAZ(t)|* = Z + max(Z(t)?,0)
and hence
N =Z7+ sup max(Zy(t)?,0).
—T<t<T

Weak convergence A, —£, ) has been proved by Chen and Chen (2002,
Theorem 3). O

6 Linkage Analysis and MOD Scores

It has been noticed that some test statistics arising in genetic linkage analysis
can be formulated as the supremum of a one-dimensional Gaussian or x?(1)-
process along an interval, see e.g. Lander and Botstein (1989) and Feingold
et al. (1993). Asymptotically, such processes correspond to the supremum of
a ’-process when either (¢,p,r) = (1,1,1) and A(t) = [0, ), or (¢,p,r) =
(1,1,0). Dupuis and Siegmund (1995) define another test statistic, which
asymptotically is the the supremum of a x?(2)-process along an interval (i.e.

((Lpa T) = (17 2, 0))

In this section, we show that LR-tests in linkage analysis, usually referred to
as MOD scores, fit into our framework. We start with a brief summary of
genetic linkage analysis, see Sham (1998) for more details. The objective is
to test whether a disease susceptibility gene 7 is present along a chromosome
[0,T] of (genetic map) length T, formally written as

Hy: 71 ¢10,7],

H :7el0,T). (36)

At our disposal we have n families. For each family, disease related quan-
tities, so called phenotypes, and DNA marker data, is registered. To begin
with, we assume that all n families have the same pedigree structure P with
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no inbreeding, such that each k£ € P has both or none of his/her parents in
P. In the former case k is a nonfounder and in the latter case k is a founder.
The phenotype vector & = (&, k € P) is also identical for all n families.
During meiosis, i.e. production of germ cells, a child receives genetic mate-
rial from a parent, inherited from the grandfather or grandmother. There
are two meioses (one from each parent) of each nonfounder, giving a total of
m meioses in the pedigree, where m /2 is the number of nonfounders. Trans-
mission of genetic material at position (locus) s for a given pedigree can be
described by means of a binary inheritance vector v(s) = (v1($),...,vm(S)),
where v;(s) is zero or one depending on whether grandpaternal or grandma-
ternal DNA was transmitted at s during the /** meiosis. Assuming complete
marker data, we register DNA transmission

r={v(s); 0<s<T}

along the whole chromosome. Let X denote the set of all such x with a most
a finite number of discontinuities. A discontinuity of v;(-) at s corresponds
to a crossover, i.e. switching between grandpaternal to grandmaternal DNA
transmission at s.

We assume Mendelian inheritance and Haldane’s map function, which implies
that {v;(s); 0 < s < T}*, are independent and stationary Markov processes
on {0,1}. The intensities of jumping from 0 to 1 and from 1 to 0 are both 1
(measuring distance in Morgans).

Under H;, we assume that ® gives some information about v(7) and that x
and & are conditionally independent given v(7). The conditional distribution
of the inheritance process given phenotypes is then

f(@;0) = f(2:0,P, @) = Fy(x|®) = Py (v(7)|®) P(z[o(7)),  (37)

where 6 = (7,p,7), p contains frequencies of all possible alleles (= expres-
sions of the gene) at 7, and v contains penetrance parameters. Notice that
P(z|v(1)) = exp(—mT) is a constant that can be dropped. In the sequel, we
refer to (P, ) as the pedigree type.

Using Bayes’ rule, we find that

P, (v(r)|®) = 2m1]3%1((q;|;(7))

where the proportionality constant involves p and ~y, but not v(7).

Let F' be the number of founders in the pedigree and N = F'+m/2 the total
number of individuals. To expand (38) further, let G = (G, ..., Gy) denote

o By (®fo(7)), (38)

16



the set of genotypes of all pedigree members at 7, where Gj. = (ag,_1, aox)
contains two alleles of k£ at locus 7, one inherited from the father (ag_1)
and one inherited from the mother (as;). We consider a biallelic disease
gene, i.e. a; € {0,1}, with P(1) = p and P(0) = q = 1 —p. Let a =
(ay,...,asr) contain the 2F founder alleles (assuming the F' founders are
numbered as 1,..., F). Since G = G(a,v) is obtained by spreading founder
alleles according to v = v(7) to all nonfounders and ® depends on v only
through G, we find, by conditioning on «a, that

Por(@0) = 5, By(a)P,(®]G(a0))
= 5, pll2r P (]G (a, 0)), (39)

where |a| = Y2 a; is the number of 1-alleles among the 2f founder alleles.

In principle, our framework includes the possibility of discrete or continuous
phenotypes, as well as polygenic and shared environmental effects. For sim-
plicity however, we will most of the time assume a monogenic disease with
binary phenotypes, conditionally independent given disease genotypes, i.e.

Pv((mG) = H P’Y(q)k‘Gk>: (40)

k=1

where @, € {0, 1,7}, 1="affected’, 0="unaffected’ and ?="unknown’. Writing
v = (Y0,71,72), where ~; is the probability of that an individual with j 1-
alleles is affected, we can write each term of (40) as

D=1 _
Py(®]Gr) =76, (1= )=, (41)
where |G| = agg_1 + ag.
With P and I' the set of allowable values p and v we have
©=[0,T] xPxT. (42)

Since, for our genetic model, p is a probability and 7 is a vector of three
probabilities, we put P = [0,1] and ' = [0,1]>. In order to define ©,, we
notice that the null density fo(z) = 27" exp(—mT) is obtained by replacing
P, (v(7)|®) with the uniform distribution 2= in (37). Hence we put

©y = {0€0; P, (v(r)|®)=2""forall v(r) € {0,1}"}
= [0,7] x Uper ({P} x To(p)) -

Given p, I'o(p) is the set of penetrance vectors for which the disease gene
cannot be detected. If no more than one k£ € P has known phenotype, there

(43)
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is not enough information to detect the disease gene for any genetic model
(p,7). This leads to a degenerate testing problem, since I'o(p) = I' for all
p € P and consequently ©y = ©. To avoid such problems, we assume that
the pedigree type (P, ®) is such that

Lo(p) ={7; 7o =71 =} forall p € P. (44)

In general, I'y(p) is always at least as large as (44), since it is never possible
to detect the disease gene when all three penetrance probabilities are equal.
However, for some pedigree types (e.g. unilineal affected pairs, see below)
I'o(p) may be strictly larger than (44).

Motivated by (44), it is convenient to reparametrize the penetrance param-
eters. To this end, for each fixed p, introduce the scalar product (z,y) =
Q®Toyo + 2qpx1y1 + p2aays on R3, define the three orthonormal unit vectors
eo = (1,1,1), e1 = (=2p,q — p,2q)/v/2pq and e; = (¢! —1,-1,p~ ' —1).
Then write

v = Keg+ €161 + 965. (45)

One notices that K = FE(®y) is the prevalence of the disease and the ge-
netic variance Var(E(®;|G})) = €} + &3 is split into additive and dominance
components €2 and 3.

Formulas (43) and (45) suggest ¢ = 3, with
t=(r,p, K). (46)

However, ¢ = (£1,¢9) yields a singular estimation problem® [(¢) = 0 for all
t €T =10,T] x [0,1]2. To alleviate this, put

€= (&,&) = (¢2,¢3), where £,e5 > 0, (47)

and
E(t) ={¢ €[0,00) x [0,00); v(& K,p) €T}, (48)

where (& K,p) = Keg + /&6y + /Eea. Hence p = r = 2, and the null
parameter corresponds to {, = (0,0) according to (43)-(44).

Notice that the restriction 1,5 > 0 reduces ©. It is made just for conve-
nience and does not affect the asymptotic distribution of \,,. The reason is
that all penetrance vectors Key 4 €1e; &+ €965 essentially give the same like-
lihood when ¢; and ¢, are small (i.e. § close to ©y), see McPeek (1999) and
Hossjer (2003,2005a) for details.

I This is in contrast to Section 4, where I(t) was singular only at a finite number of
points.
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It can be deduced from Héssjer (2005a), that the likelihood score function is
P(x;t) = S(u(r); K), (49)
where S = (51, S2) has components

S1(v) = Yicpacn wilBDyp/2 = Cy,

50
Sy(v) = Zl§k<l§NWk:l1{IBDM:2}_CQa (50)

IBDy,(v) is the number of founder alleles shared identical-by-descent by k and
[ and C; is a centering constant assuring that Ey(S;(v)) =273, S;(v) = 0.
The weight wy, for each pair (k,!) of individuals is defined as

P P(P|G) /06 0V (KKK
P(®) 7

Wkl =

In particular, for binary phenotypes without polygenic and shared environ-
mental effects, it follows from (40) and (41) that

K2, if op =&, =1,
s — (—K—;((;; K)L, lff%; 1&;@[:0 0 or =08 =1, )
0, otherwise.
Inserting (49) into (7) and (10), we obtain
I(t,1) = Eo(S(u(r); K)TS(u(r'); K")) (52)

= Yo S0 K)TS(v; K )P(u(1) = v,0(7') = v'),
with ¢ as in (46), ¢ = (7', p’, K’) and the sum ranges of all v,v’ € {0,1}™.

Suppose now that I(¢) is non-singular for all . This typically requires that
(44) holds. In addition, we require that ¢ < p, K < 1 — ¢ for some ¢ > 0.
This is in order to make the transformation v — (K, &) and the weights wy,
in (51) well defined. Then Z is also well defined with covariance function p
obtained from (11), (21) and (52). We notice in particular that p(¢,t") does
not depend on p and p’. From (22), (47) and (48) follows V' = Id, the identity
matrix of order 2, so that A(t) = C(A(t)™") does not depend on p either.
Hence from the definition of Y in (25) we deduce? Y (¢t) = Y (7, K), so Y can
be viewed as a process on [0, 7] X [¢,1 — €] with marginal distribution

Y (7, K) € (0.5 — wy(7, K))x*(0) + 0.5x%(1) + wa (7, K)x*(2), (53)

When 1 is the disease allele and 0 the normal allele, one may restrict Z(¢) in (48)
by putting T' = {v; 70 < 71 < 72}. It may be shown that this results in a region A(¢)
depending on p, so that Y (¢) = Y (7, K) no longer holds.

19



where wy (7, K) = cos™* ([12(t)/1/111(t)]22(t)) /27 is deduced from (28). The

asymptotic LR-statistic is
A=supY(r, K), (54)

K
where the supremum ranges over 7, K € [0,T] X [e,1 — €].

Since I(t) is non-singular for all ¢ € T, we would like to apply Theorem 1. A
technical difficulty, due to the reparametrization ¢ — &, is that log f(z;t, &)
is not twice differentiable with respect to &, so that iii and vi are violated.
They are used for deriving an asymptotically quadratic expansion of the log
likelihood in the proof of Theorem 1. However, it is possible to show that
this expansion still holds:

Theorem 3 (Quadratic log likelihood expansion for linkage.) The log-
arithm of the linkage likelihood function (2), with J =1 and f,(x;0) = f(x;0)
as in (87), admits a quadratic expansion (A.5), with Z, defined with score
function (49), 1(t) = I(t,t) as in (52), A(t) given by (11) and R, asymptot-
ically negligible.

Example 6 (MOD scores with only affecteds.) The covariance function
p(t,t'), as well as the cone A(t) simplifies considerably when there are no un-
affecteds in ®, since then

S(v) = K_2(SpairS(U) - EO(SpairS)v Sg-prS(U) - E0<Sg-pr8))a (55)

where Spairs = Ype; IBDy;/2 (Whittemore and Halpern, 1994), Sy =
>k<t Limpu=2y (McPeek, 1999) and the sums ranges over all pairs (k,[) of
affecteds. Using that {v(s);0 < s < T'} is a stationary Markov process and
that K2 only enters as a multiplicative constant in (55), we obtain

p(t 1) = p(r' =) (56)

from (52) and (21). That is, Z(t) = Z(7) can be viewed as a stationary
Gaussian process on [0, 7). It is shown in the appendix that

pls) = > rrexp(~21]s)). (57)
=1
where K1, ..., Kk, are 2 X 2-matrices. This corresponds to a stationary diffu-

sion process on [0, 7.
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In view of (52) and (55), we may choose a square oot A(t) = K 2B of I(t)
such that B is a constant, independent of ¢. This implies A(t) = A = C(B™!)
and Y (t) = Y(7). Hence we can view Y as a stationary process along [0, 7|
with marginal distribution (53) and x?(2)-weight

wy = cos™! (112(15) /,/Jlla)zm(t)) Jor. (58)

The asymptotic distribution of the LR-statistic is

A= sup Y(7). (59)

0<7<T
Figure 1 shows a number of pedigree types with affecteds. The associated
I(t), we, A and k; are given in Tables 1-2. In particular, for affected sibling
pedigrees (pedigree types 1-4), the two components of Z are independent
Ornstein-Uhlenbeck processes. O

An affected unilineal pair (k,1) is a pedigree type such that & and [ are both
affected, all other pedigree members have unknown phenotype and, moreover,
(k,1) is unilineal, i.e. can share no more than one allele IBD. Examples are
affected first cousins and uncle-nephew pairs, but not affected sib pairs. For
affected unilineal pairs, it turns out that 7(¢) singular. In this case another
parametrization 0 = (¢, &) is needed, with T C R* and =Z(¢) C R. Tt turns
out that the limit process Z satisfies Z(t) = Z(7), so that (59) holds, with
p=r=1, A(t) = [0,00) and Y (7) a 0.5:0.5 mixture of x?(0) and x?(1).
Formally, this corresponds to wy = 0.

Example 7 (Affected sib pairs and MLS scores.) It is interesting to note
that for affected sib pairs (pedigree type 1 in Figure 1), there is another more
compact parametrization § = (¢,&) that leads to an equivalent formulation
of the MOD score, referred to as the MLS score. The reason is that p and
the three penetrance parameters are confounded, and can be replaced by two
parameters. Put

t=r, 5 = (207 zl)v (60)

where z; is the probability that the ASP shares i alleles IBD at 7. The
condensed vector ¢ in (60) can be written as an explicit function of K, &2
and €3, see Suarez et al. (1978). We get

f(;0) = Pe(IBD(#)|®) P(v(t)[IBD(¢)) P(x]v(t)), (61)
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where IBD(t) is the number of alleles shared IBD by the affected sib pair at
t,
Pg(IBD|(I)> _ ZéIBD:O}ZfIBDzl}(l — 20 — Zl){IBDzz}7

and P(u(t)|IBD(t)) = 1/8 if IBD(t) = 1 and 1/4 if IBD(t) = 0 or 2. More-
over, & = (0.25,0.5) and

E={& 20>0,2 <0.5 and 229 < 2} (62)

is the possible triangle (Holmans, 1993). The parametrization (60) is more
convenient than (47) in the sense that Theorem 1 can be applied directly. On
the other hand, (60) cannot be extended to more general pedigree structures.

To verify that the MLS score calculation of {x;}}"; and A agree with the
MOD score calculation for sib pairs in Tables 1-2, we first differentiate the
logarithm of (61) at & and find that

Y(wst) = (4 - Laep=0y — 4 - 1aep(=21,2 - 1igp(t)=0y — 4+ 1{IBD(t):2})
-8 4
- ( 0 —8 > (Spairs(v(t)) - EO(Spairs)7 Sg—prs(v(t)) - EO(Sg—prs))
= S(v(t)).
(63)

Hence, applying (52), with S as in (63), we obtain

I(t)z(i g) (64)

If A is chosen as the upper triangular square root of I(t), it follows that the
coefficients x; agree with those in Table 2 for affected sib pairs. From (22)

and (62) we find that
-2 1
V= ( o > . (65)

Inserting (64) and (65) into (23) and (28), and normalizing the rows of U
(where A = C(U)) to have unit length, we arrive at

7 — ( —0.5774 0.8165

0  —1.0000 ) , wz = 0.0980,

which is equivalent to the affected sib pair entry of Table 1. O
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Throughout the section we have considered a single type of pedigree and
phenotype vector. More generally, we may assume J > 1 family types
(P1,®4),...,(Py,®,), with n; families of type j and

fi(z;0) = f(x;0,P;, ;).

Example 8 (MOD score with affected sib pairs and first cousins.)
Put J = 2 with asymptotic proportions m; = 7 of affected sib pairs and
w9 = 1 — 7 of affected first cousins. Then

I(t) = Kk ( 0.125m + 0.0469(1 — 7)  0.1257 )

0.1257 0.18757

The x*(2)-weight (58) of the marginal distribution of Y is plotted as a func-
tion of 7 in Figure 2. It is surprising that wy — 0.25 as @ — 0+, whereas
m = 0 corresponds to the degenerate case described above with ws = 0. This
discontinuity of the limit distribution at m = 0 suggests that very large sam-
ple sizes are needed when 7 is positive but small in order for £()\,) to be
close to its asymptotic distribution (59). O

7 Discussion

In this paper, we have provided a general framework for LR-tests when part
of the parameter vector under the null hypothesis is non-identifiable and
another part is at the boundary of the parameter space. Under appropriate
regularity conditions, the limit distribution of twice the log likelihood ratio
statistic was found to equal the supremum of a y2-process. The theory was
illustrated with several examples (all having p = 1 or 2), including testing of
normal mixtures and tests for presence of a disease gene in linkage analysis.

Examples with p > 2 are mixtures of normals with more than two components
and genetic linkage analysis for models involving two disease genes, where 7 =
(11, T2) contains the locations of the two genes, p = (py, p,) the two disease
allele frequencies and 7 contains nine penetrance parameters (assuming a
binary phenotype).

We have assumed a simple null hypothesis (4). A possible extension is to
assume 0 = (t,£,n) € RUPTS) with

HO: 62607
Hy: §# &
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as before, n an s-dimensional nuisance parameter and the non-identifiability
condition (4) changed to

f](t7€0777> = fj(t/7£07n) for all tutl € T? n

and j = 1,...,J. In this case O is s-dimensional. We conjecture that our
framework can be extended naturally if 7 is an inner point and &, a boundary
point of ©g. What changes is mainly the definition of I(¢,¢') in (10), which
affects the covariance function (21) of Z € D?(T) as well as the form (23) of
the cone A(t). The modified I(t,t") will involve the covariance structure of
the score functions with respect to & and n. A more complicated extension
is when both 7 and ¢ are boundary points of O, see Self and Liang (1987)
for examples when ¢ = 0.

Hypothesis testing for change-point problems is very similar to our setting.
When J = 1, the basic difference is that a triangular array of random vari-
ables {X,;;i=1,...,n,n =1,2,3,...} is used with 6 = (¢,¢), T = [0, 7],
hypothesis test (5) and model

o f@&), i< [tn)T),
fxm—{ f(z:€), i > [tn/T], (66)

see e.g. Siegmund (1985). Hence ¢ is the change-point and & and ¢ the
parameter of data before and after the change-point. Non-identifiability (4)
follows immediately from (66) and £, may or may not be on the boundary
of =. The dimension p of = may be 1, 2, 3 or larger and hence a broad class
of y?-process are of interest for change-point problems. Typically, the limit
process Z is not differentiable but of diffusion type, as in Section 6.

Appendix

Distance metric between sets. Given any two sets A, A’ C RP and
K > 0, define

dr (A, A) :max< sup |z — Paz|, sup |z—PA2]>

2€ANB(0,K) 2€A'NB(0,K)
and -
d(A,A') =Y 27  min(dk (A, A'),1). (A1)
K=1

Then d defines a metric between sets and (22) is equivalent to Chernoff
regularity (Chernoff, 1954). This is equivalent to C'(V') being equal to the

24



ordinary and derivable tangent cone of = at &, see Geyer (1994), Theorem
2.1 and Shapiro (2000) for definitions.

Lemma 1 Given v and (22), (24) follows. Moreover, for any K > 0,

lim  sup ||z — Pa,@z — |z = Pawz| = 0. (A.2)

P70 4eT, |2|<K

Proof. To prove (24), it suffices to establish
lim sup dg (A, (t), A(t)) =0, (A.3)

=0 teT

for any K > 0. Suppose 2’ € A,(t) and z € A(t), with |2/],|z| < K. Let
C(t)=C(V(t)) and C,(t) = (E— &) /7. Then 2/ = ¢/ A(t)" and z = yA(t)7,

with y' € Cy, 7 (t), y € C(t) and |y|,|y'| < K/\/Kmin(t). Moreover, if fmax(t)
is the largest eigenvalue of I(t),

12—z = (' =) IOy — y) < Emax(t)]y' — y]*.

Since t — I(t) continuous (cf. iv) it follows that ¢ — Kkyax(t) is continuous as
well and S0 Kmax = SUPser Fmax(t) < 00 by the compactness of T. Hence

Sup dic (2 (), A1) < o S0P iy (Co (1), CD).

which in conjunction with (22) implies (A.3).

To prove (A.2), introduce d,x = sup,cp dx (A, (1), A(t)). Then, given any
z € B(0,K) and t € T we have |z — Px, 2| < K and |z — Pagyz| < K since
0€ A,(t) and 0 € A(t). Hence

12 = Pa,wal” = |2 = Paw2P| < 2K ||z = Pa,w?l — |2 = Paw?|| < 2Kdux,

(A.4)
where in the last step we used the definitions of Pa,)2z and Pa¢z. Since
lim,, o dox = 0 according to (24) and the upper bound in (A.4) does not
involve z or t, (A.2) follows. O

Proof of Theorem 1. The quadratic expansion of [,, is

(t.€) = Lu(t.&) + VnZu(H)A(t) (€ — &)T (A.5)
~B(€ — &)I(E)(€ — &) + Ra(t,€), |

where R,(t,€) = R, (t,/n(& — &)A#)T). Tt follows from Taylor expansion
of 1,(t,-), iii and vi that

[Balt, )] < S1(€ = &) (n(t) = L) = &)T| + KnMJe = &', (A6)
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with M, = 27, 3317, M;(X;;)/n, for some constant K > 0 and (¢,&) € O,
when ¢ > 0 is small enough. Let M = Y7, m;Ey, (M;(X;1)). Applying (29),
(9), iii, vi and the Law of Large Numbers we get

[Ra(t, )] < 0p(n)[€ = &of* + Kn(M + 0,(1))[€ — &l (A7)

uniformly for all (¢,&) € ©.. Using (20) and the Continuous Mapping Theo-
rem, we find that

L
1Zall = [14]] (A-8)

as 0 — oo, where [|Z, | = supycy | Zu(t)] and | Z]] = sup,cr | Z(2)]. Hence, if
2K Me < Kpin/4, it follows from (A.5), (A.7), (A.8) and v that

NKmin

ln(,€) = la(t, &0) < 2v/MFmax|Z[€ — &o| = — 1€ — &ol?
uniformly for (¢,&) € O., with probability tending to one. This and i implies
sup [€a(t) — ol = Op(n™"/?). (A.9)
teT
Fix K > 0 and define
Trn=1{(0),teTdec A,(t) and || < K}. (A.10)

Put also 8, (t) = /n(&a(t) — &)A(t)T and |6, = sup,ep [0, (t)]. Then (A.9)
implies that P(|d,| < K) can be made arbitrarily close to one (uniformly in
n) provided K is chosen large enough.

Define Y;, = {Y,,(t); t € T}, where Y,,(t) is obtained by ignoring the remainder
term in (19), i.e.

Va(t) = supsea, o (2Za(t)67 —|6]%)

= |Z.(0)|? = |Z.(t) — PAn(t)Zn(t)|2. (A.11)

Let 4, (t) be the argmax of (A.11). It is easy to see that || Z,|| < K/2 implies
10, = sup,er |00 ()| < K. Assume ||0, |, [|0,]| < K. (According to (A.8) and
the discussion below (A.10), this event has an arbitrarily small probability,
uniformly in n, provided K is chosen large enough.). It follows that

1Y, = Y| = iIGI’JIT) V(1) =Y, (t)| <2 sup |R.(t,0) =o0,(1), (A.12)

(t76)€TK,n

where the last identity follows from (A.7), v and R,(t,6) = Ru(t,& +
n~125A(t)~T). Define Y,,(t) by replacing A, (t) with A(t) in (A.11) i.e.

Yo(t) = |Za(O) = |Z0(t) = PawZa(t)]> = |Paw Za(1).
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In the last equality, we used that A(t) is a cone. It follows from (A.8) and
(A.2) that o
1Yn — Yol = 0,(1). (A.13)

Define the mapping g : D?(T) — D(T) through g(Z)(t) = |PawZ(t)|* if
Z ={Z(t); t € T}. The fact that g(Z) € D(T) follows from continuity of
A(t) and V(t) (see iv and vii). For any z,z2 € RP and a convex cone A
bounded by hyperplanes we have

|PAZQ — PA21| S |Z2 — 21|. (A14)
Since PA0 = 0, this implies |Paz| < |z|. Hence

lg(Z2) = 9(Z)| = supser [[Paw Z2(t)]” = [Pa@ Z1(1)P]
< supep(|Z1 (1) + [ Za(t) )| Pay Z2(t)] = [Pap Z1(1)]]
<

20l + 122D Z2 = 2l

so that ¢ is continuous with respect to supremum norm. A slight modification
of the argument proves that g is continuous with respect to the Skorohood
topology as well. Since Y, = ¢(Z,) and Y = g(Z), (20) and the Continuous
Mapping Theorem imply

Y, 55 Y as n — oo. (A.15)

Equations (A.12), (A.13) and (A.15) and Slutsky’s Theorem prove (15). An-
other application of the Continuous Mapping Theorem (with g : D(T) — R,

9(y) = supyer y(t), An = g(¥,) and A = g(Y')) proves (6). O

Proof of Theorem 2. Since T is finite and Y,, € D(T) according to Remark
5, it follows that

An = sup Y, (%). (A.16)

t€Ths

As in Theorem 1, the main idea of the proof is to use a locally quadratic
expansion Y,,(t). In view of (A.16), it suffices to consider such an expansion
for t € T,,. Hence we can use (18), which is only defined for ¢ € T,;. Define
M, = ¥/ 32 Mj(Xj;)/n. Then, by iii’ and vi’, the remainder term in
(18) satisfies

Bt 8)] < ;|6(I/&n(t) —1d)sT| + K V2N, |5 (A17)

for some constant K > 0, uniformly on

T in={(t,0); t € Tps,d € Ay(t) and || < ey/n},
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provided ¢ > 0 is small enough. Let M = > 7;Egy(M;(X;1)). Then
(A.17), (9), ii, vi’ and the Law of Large Numbers imply

|[Ra(t,0)] < 0p(1)]6]* + Kn™'2(M + 0,(1)) 0]’

uniformly for all (t,6) € Y. /.. As in the proof of Theorem 1 we use (A.8)
to conclude that

1
uniformly for all (t,e) € Y. s ,, with probability tending to one. Together

with i’ this proves A
sup 16.(1)] = 0,(1)

teTns
Then we argue as in the proof of Theorem 1 to deduce (A.12), which in turn
implies

An — A = 0,(1), (A.18)
where \, = supyer, . Y (t). We will prove below that

A= A = 0,(1), (A.19)

where \, = sup,cq Y, (t). Since Z,,Z € DP(T) according to Remark 5, we
can use (20) and the Continuous Mapping Theorem to establish (A.15), as
in the proof of Theorem 1. Another application of the Continuous Mapping
Theorem implies

A =55 . (A.20)
Combining (A.18), (A.19), (A.20) and Slutsky’s Lemma we obtain (6).
Hence it remains to prove (A.19). Assume without loss of generality that
T, = {0} and that 0 is an inner point of T. Put A, = sup,cp.Y,(t) and
Aen = SUD;er. Y, (t), with T, as in vii’ and ¢ small enough for the ball around

0 with radius € to be a subset of T. It follows from vii’ that A, (t) / A(¢) is
an increasing function of n (see also Remark 6). Hence

S0 3
> >

n < A,
en < An. (4.21)

IA A

En
En

VANVAN

0
0
It follows from iv that ¢ — () is continuous and hence that miner. Kmin () >
0. This and vii’ implies (cf. (A.2) and its proof)

lim  sup ‘|z — Pa, 2> — |2 — PA(t)z|2’ =0 (A.22)

OO 4eT, |2|<K
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for all e, K > 0. Proceeding as in the proof of (A.13) in Theorem 1, (A.22)
leads to

Aen — Aen = 0,(1). (A.23)
By (20) and the Continuous Mapping Theorem, it follows that

Xen — An =5 A — A (A.24)

as n — 0o, where \. = sup,cr_Y (). The modulus of the right-hand side of
(A.24) is upper bounded by

supyy i< Y (¢) = Y (t)]

2supyy . |Y () — Y(0)]

25Uy <. || Paw (Z()* = [Paw Z(0)?|
+25upy <. || Pa (Z(0)? — | Pa@y Z(0)?

4| Z||wz () + 4] Z|| supjyi<. dzo) (A (L), A0)),

‘)‘s _)“

IAIA A

(A.25)

where wz(e) = supy<. |Z(t) — Z(0)|. In the last inequality of (A.25) we used
(A.14) for the first term and the same estimate as in the last step of (A.4)
for the second term. Combining (A.21)-(A.25), we find that

oo P(J A — Al > €) < Timyse P(|An — Acn| > €)
< Ty oo P([ A = Acn| > €/2) 4+ Ty oe P([Aen — Aen| > €/2)
< P(JAe— A > €/4)+0 (A.26)
< P(||Z]] = K) + P(wz(e) > €/(32K))
+P (supp<. dic (A(t), A(0)) > ¢/(32K))

According to iv’ and vii’, given any e > 0, the right-hand side of (A.26) can
be made arbitrarily small by first choosing K large and then ¢ small. This
proves (A.19) and hence also Theorem 2. O

Proof of Theorem 3. With a slight abuse of notation, let [, (¢, £) denote the
log likelihood with parametrization ¢ as in (46) and € = (£1,£9). Following
Rotnitzky et al. (2000), we perform a Taylor expansion of I, up to order 4,

6k

Lte)=1E0) + l,(lk)(t,O)E—i—Rn(t;e), (A.27)

ks 1< k| <4

where 0 = (0,0), I®)(t,e) = OFl,(t,e)/0e*, k = (k1,ks) and eF = &b,
Then

n

1 (t,0) = > vn( Xy t),

i=1
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where

Grlwst) = Ok log f(x;t,€) _ % log Pp77(v(7')|q>)‘
Oek Oe

In the last step of (A.28) we used (37), with v as in (45). Introduce the abbre-

viated notation P(v) = P, ,(v|®)|__, = 2™ and P¥)(v) = 8’“Pp77(v\q>)/8€k‘670

Using results from Haéssjer (2005a), we find, by repeated differentiation w.r.t.

e, that

(A.28)

Yio(wst) = 0,

Vo1 (w;t) 0,

Uao(z;t) = PP (o(1))/P(u(r)) = 251 (v(T)),
¢11(5U3t) = 0,

Yoz (3 t) PO (u(1))/P(v(1)) = 25(v (7)),
¢40<LE; t) —3[11( t) + 7’40(&3,t)

Yoa(x5t) = —la(t,t) +rea(z;t),

Yoa(w;t) = —3laa(t,t) + roa(z;t),

with S = (S}, S2) defined in (49), I(t,t) = Eo(ST(v)S(v)) and E(ri(X;t)) =
0 for k£ = (4,0), (2,2) and (0,4). Moreover, E(¢(X;t)) = 0 when |k| = 3
and k = (3,1),(1,3). Substituting £ = (&1,&) = (£1,€3) back into (A.27),
we find that

Lo(t,€) = 1,(t,0) + <Z¢ Xt ) )] €T - ggl(t)gT FRL(4E),  (A.29)

where ¢(x;t) = (V1o(z;t),Yo1(x;t))/2 agrees with (49),

R.(t,6) = Sierl™(t, O)% + Xkerr %’T i1 e(Xist) + Ru(t,€) (A.30)
= 0,([€[¥*n'?) + Ro(t,¢), '

I = {ks k| = 3ork = (3,1),(1,3)} and 1T = {(4,0),(2,2),(0,4)}. From
(16) and the fact that £ = (0,0) we deduce that (A.5) and (A.29) are
identical.

In (A.30) we notice that o,((|¢]>/?n'/2) is small in comparison to /nZ, (t) A(t)¢"
and R, (t,¢) can be made small uniformly w.r.t. all (¢, ) in a small neighbor-
hood of T x {(0,0)} by imposing a regularity condition for all I*)(¢, <) with
|k| = 5, analogous to Condition vi of Section 3. This implies that R, (t,¢) is
asymptotically negligible.

O

Derivation of (57). We generalize Theorem 2 of Hossjer (2005b) from one-
to two-dimensional score functions. We introduce the space A of mappings
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{0,1} — R, so that both components of S = (51,S52) are elements of A.
Endow A with the scalar product

< Sl, SQ >=2"" ZSl(w)Sg(w),

Given any w € {0,1}™, let Sy, (u) = (—=1)"*, where w - u = Y], wyuy is the
vector dot product of w and w. Then {S,,} is an orthonormal basis on .4 and
S can be expanded as

S = Z RS(U))SU,,

where Rg(w) = (Rg, (w), Rg,(w)) and Rg, (w) =< Sk, S, >. Notice that
Rs(0) = 0 since both S; and S, are standardized to have mean zero, under
the null hypothesis of no linkage, i.e. Ey(Sk) =< Sk, So >= 0. It follows from
(52) and the proof of Theorem 2 in Héssjer (2005b) that

1t,¢) = 5 RE(w) Rs(w) exp(—2Juw]lr’ — ), (A.31)
w#0
where |w| = >, w; is the number of one-components of w. Combining (56)

and (A.31) we arrive at (57), with

Ry = A<t)_TZw;|w|=lR?S:(w)RSOU)A(t)_l
= B, we RS, (w)Rs,(w)B~1.

where SU = K2S = (Spairs — Eo(spairs), Sg-prs — EU(Sg_prs)) and B = KQA(t)
are both independent of . O
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Figure 1: Pedigree types (P;,®;) used in Tables 1-2. For j = 1,2,3,4,
P, consists of two parents with unknown phenotypes and k£ + 1 affected
offspring. (In particular, (P, ®;) is an affected sib pair.) Ps (upper), Ps
(middle) and P7 (lower) are shown above with individual numbers. Males and
females correspond to squares and circles, affected individuals have black and
unaffected ones have white symbols. Individuals with unknown phenotypes
have question marks.
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Figure 2: Plot of x?(2)-weight w, as function of the proportion 7 of affected
sib pairs for a mixture of affected sib and first cousin pairs.
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’Pedigree type‘ I(t) ‘ Wy ‘
a5 (0 0] (O 5 Lo
oy i (1 o) (T )
(1 o) (T )
R Al G
o [ (2 ) (v
(22 (v
R I

Table 1: Values of Fisher information matrix /(¢), boundary region A =
C(U) and x*(2)-
upper triangular square root A(t) of I(¢) is used for calculating U.

weight wy (see (53)) for the pedigree types of Figure 1. The
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R2

R3

“ (o) (o0 (00
00 00 00
. (0 0) (0.8137 0.1976) ( 0.1765 —0.1872)
00 0.1976 0.0821 —0.1872  0.1985
6 ( 0.1914 —0.1375) (0.5455 0.3265) ( 0.2161 —0.1552)
—0.1375  0.0988 0.3265 0.2601 —0.1552  0.1115
. ( 0.1356 —0.1246> (0.7034 0.2725) ( 0.1525 —0.1401>
—0.1246 0.1144 0.2725 0.1352 —0.1401  0.1287
J Rq Rs KRe
4 (0 0) (0 0) (0 0)
0 1 00 00
5 ( 0.0098 —0.0104) (0 0) (o 0)
—0.0104 0.7194 00 00
6 ( 0.0425 —0.0306> ( 0.0043 —0.0031) ( 0.0002 —0.0002)
—0.0306  0.5273 —0.0031  0.0022 —0.0002  0.0001
. ( 0.0085 —().0078> (0 0) (0 0)
—0.0078  0.6217 00 00

Table 2: Matrices k; = (Kiuv)s -1 in (57) for the pedigree types (P;, ®;) of
Figure 1. The upper triangular square root A(t) of I(¢) is used.
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