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a b s t r a c t

Many versions of the effective population size (Ne) exist, and they are important in population genetics in
order to quantify rates of change of various characteristics, such as inbreeding, heterozygosity, or allele
frequencies. Traditionally,Ne was defined for single, isolated populations, but we have recently presented
a mathematical framework for subdivided populations. In this paper we focus on diploid populations
with geographic subdivision, and present new theoretical results. We compare the haploid and diploid
versions of the inbreeding effective size (NeI ) with novel expression for the variance effective size (NeV ),
and conclude that for local populations NeV is often much smaller than both versions of NeI , whenever
they exist. GlobalNeV of themetapopulation, on the other hand, is close to the haploidNeI andmuch larger
than the diploid NeI . We introduce a new effective size, the additive genetic variance effective size NeAV ,
which is of particular interest for long term protection of species. It quantifies the rate at which additive
genetic variance is lost and we show that this effective size is closely related to the haploid version of
NeI . Finally, we introduce a new measure of a population’s deviation from migration–drift equilibrium,
and apply it to quantify the time it takes to reach this equilibrium. Our findings are of importance for
understanding the concept of effective population size in substructured populations and many of the
results have applications in conservation biology.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

There are various concepts of the effective population size
(Ne), which are often quite different from the census size N , and
important for many areas of population and quantitative genetics.
The first version of Ne was introduced by Wright (1931, 1938)
in order to quantify the rate at which the degree of inbreeding
increases over time in a single isolated population due to random
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sampling of alleles from one generation to the next, so called
genetic drift. Caballero (1994),Wang and Caballero (1999),Waples
(2002, 2010) and Charlesworth (2009) provide overviews of the
different types of effective size, and Wang (2005), Palstra and
Ruzzante (2008) and Luikart et al. (2010) present estimators (N̂e)
of Ne from molecular genetic data.

The definition of any notion of effective size requires that ge-
netic drift is quantified in some way, and for this purpose one uses
theWright–Fisher (WF) population (Wright, 1931; Fisher, 1958) as
a yardstick or reference. The WF population is homogeneous and
haploid, with non-overlapping generations and of constant size. A
general diploid, age-structured and geographically subdivided non
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WF population is said to have effective size Ne, if some characteris-
tic that quantifies how the genetic composition changes over time,
is the same as for aWF population of size Ne. Two of themost com-
monly used notions ofNe, the inbreeding effective size (NeI ) and the
variance effective size (NeV ), use the rate of increased inbreeding,
and the variance of allele frequency change, respectively, as quan-
tifiers of genetic drift. The eigenvalue effective size (NeE) focuses on
long term rates at which genetic variants are lost, as quantified by
the largest non-unit eigenvalue of the Markov chain that describes
how allele frequencies change over time.

We have recently developed a general mathematical frame-
work for several types of effective size of structured populations
(Hössjer et al., 2014, 2015), applied it with respect to diploid NeI to
genetic conservation of the Fennoscandianwolf population (Laikre
et al., in press) and implemented parts of the framework into a pub-
lically available software (Olsson et al., under revision). In this pa-
per we provide further theoretical results for a diploid, selection
and mutation free metapopulation with sexual reproduction in-
cluding random selfing. Themetapopulation is geographically sub-
divided into a number of subpopulations. We focus on NeI , NeV and
NeE , and introduce a novel additive genetic variance effective size
(NeAV ) that quantifies how fast the additive genetic variance of a
quantitative trait is lost. We compare the diploid with the haploid
version of NeI , reflecting whether inbreeding is defined for pairs
of genes within individuals or not. Whereas these effective sizes
are very close for a homogeneous population of constant size, for
structured populations they sometimes differ a lot. The purpose of
this paper is to investigate in more detail how different Ne relate
to each other and vary over time for subdivided populations, with
three major novelties.

First, we derive novel and general formulas for the variance
effective size NeV , and compare NeV in detail with NeI . In Hössjer
et al. (2014) we only considered some simplified scenarios under
which NeV is essentially equivalent to the haploid NeI . The
expressions for NeV in this paper are more realistic and closer
to the quantity estimated by the temporal method (Jorde and
Ryman, 2007). The comparison between this novel NeV and NeI
is complicated by (a) the fact that NeI does not always exist
when immigration into a subpopulation from genetically distinct
neighbors causes the amount of inbreeding to decrease, and
(b) that separate treatment is needed for local effective sizes of
subpopulations and the global effective size of themetapopulation.
We conclude that, whenever they exist, the diploid and haploidNeI
are essentially equivalent for local populations, whereas globally
the diploid NeI is smaller than the haploid NeI . On the other hand,
local NeV is often much smaller than the diploid and haploid local
NeI . We also show that globally, NeV is essentially equivalent to
the haploid version of NeI when subpopulations are weighted
proportionally to how many offspring they produce.

Second, the haploid and diploid NeI , and certain versions of
NeV , will approach NeE when the metapopulation converges to
migration–drift equilibrium. The relation between the inbreeding
and variance effective sizes therefore depends crucially on how
far away from this equilibrium the population is. We derive new
mathematical results in order to quantify a population’s distance to
migration–drift equilibrium, and the time it takes to reach itwithin
a given tolerance level. Since this time is inversely proportional
to the rate of migration between subpopulations, the equilibrium
limit is of practical interest only for populations that are either
close to it or have an appreciable amount of gene flow between
their subpopulations.

Third, the time to migration–drift equilibrium depends on the
current amount of inbreeding within individuals and coancestry
between them. These are quantified by inbreeding and coancestry
coefficients (Wright, 1922; Cotterman, 1940; Malécot, 1948), and
we derive new improved upper bounds for the coancestry coeffi-
cients between individuals, given a certain amount of inbreeding.
One of the most important applications of Ne is conservation
biology (Traill et al., 2010; Allendorf et al., 2013). Our systemization
of effective sizes sheds further light on the 50/500 rule, according
to which an effective size of 50 (500) is required for short (long)
term protection of species (Franklin, 1980). The first part of this
rule is based on the assumption that rate of inbreeding is the most
important concept for short periods because of its relevance for
predicting the future impact of accumulated deleteriousmutations
and inbreeding depression (Lynch et al., 1995; Frankham, 2005).
This is quantified by the diploid version of NeI when inbreeding
increases over time. This diploid inbreeding effective size has been
used as a yardstick to compare other notions of effective size with
(Harris and Allendorf, 1989).

The second part of the 50/500 rule is based on the assumption
that the rate at which additive genetic variance of a quantitative
trait is lost is the quantity of primary importance for conserva-
tion over longer periods of time (Franklin, 1980; Lande and Bar-
rowclough, 1987; Allendorf and Ryman, 2002; Jamieson and Al-
lendorf, 2012). The figure 500 relies on some assumptions on how
genetic drift is balanced by new mutations, and although these
assumptions have been discussed (Lynch and Lande, 1998), it is
in any case important to assess how genetic drift impacts addi-
tive genetic variance. It has been largely unclear which Ne the 500
rule applies to, and e.g. Harmon and Braude (2010) have suggested
that the variance effective size NeV is the quantity of interest. Our
results, however, imply that the haploid version of NeI is more
relevant since it is essentially equivalent to the quantityNeAV intro-
duced here that measures the rate at which additive genetic vari-
ation is lost.

The paper is organized as follows: We start by defining the
Wright–Fisher model in Section 2, and a geographically structured
population in Section 3. Thenwe introduce variousmeasures of in-
breeding and subpopulation differentiation in Section 4. These are
used in Sections 5 and 6 in order to define and compare a number of
different notions of effective size. Section 7 treats migration–drift
equilibrium, and in Section 8 we discuss extensions and conse-
quences of our work. Longer mathematical derivations are gath-
ered in Appendices A–E. A list of themost commonly used notation
can be found in Table 1.

2. Wright–Fisher model

A detailed description of the Wright–Fisher model is helpful in
order to define subdivided populations in Section 3 and the various
notions of effective size in Section 5. The WF population consists
of 2N gene copies, is homogeneous, haploid, of constant size,
and with non-overlapping generations. Although the WF model
is haploid, it may be conceptualized as a diploid population with
N individuals in each generation, which we refer to as the census
size.Wewill display a number of formulas for theWFmodel below
that can be deduced, for instance, from results in Crow and Kimura
(1970) or Ewens (2004), and throughout the paper it is assumed
that generations t = · · · , −1, 0, 1, . . . are non-overlapping, with
t < 0 representing the past, t = 0 the present and t > 0 the
future.

For the simplest version of the WF model it is assumed that
the gene exists in two versions (alleles), a and A, none of which
mutates or has a selective advantage. Let pt be the frequency of
allele A in generation t , i.e. the fraction of gene copies that have this
allele. Reproduction from a parental generation t to an offspring
generation t + 1 is defined by randomly drawing the offspring’s
gene copies from the parental generation, with replacement. Since
there are no mutations and no selection, this implies that the
conditional distribution of the frequency of A in the offspring
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Table 1
Notation for selected quantities.

Symbol Definition

t Generation number for a population with non-overlapping generations, where t = 0 is the present generation.
T Number of generations back to founder generation.
N Total census size.
Ne Effective population size.
s Number of subpopulations.
i, j, k, l Subpopulation number.
Ni Local census size of subpopulation i.
Nei Local effective size of subpopulation i in isolation.
Mtki Observed forward migration rate from subpopulation k to subpopulation i between generations t and t + 1.
Mki Forward migration rate from subpopulation k to subpopulation i in one generation.
M Overall forward migration rate.
Bik Backward migration rate from subpopulation i to subpopulation k in one generation.
wi Weight assigned to subpopulation i.
γi Reproductive weight of subpopulation i.
τ Length of time interval of genetic drift.
NeV Variance effective size.
NeI,dipl Diploid version of inbreeding effective size.
NeI,hapl Haploid version of inbreeding effective size.
NeAV Additive genetic variance effective size.
NeE Eigenvalue effective size.
NeXi Local effective size of type X (= I, V ) for subpopulation i in generation t .
NeXT Global (total) effective size of type X (= I, V ) in generation t .
pti Frequency of allele A in subpopulation i and generation t .
pt Subpopulation weighted frequency of allele A in generation t .
p Frequency of allele A in all subpopulations of the founder generation.
P Transition matrix for the Markov chain of allele frequencies.
f inbrti Inbreeding coefficient of individuals of subpopulation i in generation t .
f inbrt Subpopulation weighted inbreeding coefficient in generation t .
f cotij Coancestry coefficient of individuals of subpopulations i and j in generation t .

f hinbrtij Haploid inbreeding coefficient of a gene pair from subpopulations i and j in generation t .

f hinbrt Subpopulation weighted haploid inbreeding coefficient in generation t .
ftij Standardized covariance of allele frequency change in subpopulations i and j from founder generation up to generation t .
f vart Standardized variance of subpopulation weighted allele frequency change up to generation t .
Aij,kl Matrix entry of linear recursion of standardized covariances of allele frequency change.
GST ,t Coefficient of gene differentiation in generation t .
gST ,t Predicted coefficient of gene differentiation in generation t .
Vt Variance of quantitative phenotype in generation t .
VAt Additive genetic variance of quantitative phenotype in generation t .
vAt Expected additive genetic variance of quantitative phenotype in generation t .
generation, given the frequency of A in the parental generation, is
a standardized binomial;

pt+1|pt ∼
Bin(2N, pt)

2N
. (1)

Eq. (1) has several consequences. It is first of all easy to see that
allele frequencies have no systematic drift, so that E(pt+τ |pt) = pt
for any positive integer τ . It can also be shown that the variance of
allele frequency change over τ generations satisfies

Var(pt+τ − pt |pt)
pt(1 − pt)

=
E

(pt+τ − pt)2|pt


pt(1 − pt)

= 1 −


1 −

1
2N

τ

. (2)

Wewill use a version of (2) that is easier to generalize to subdivided
populations. To this end,we assume that the population starts from
a founder population T generations before the present (t = −T ).
Since the right hand side of (2) is independent of pt , it follows that

Var(pt+τ − pt)
E [pt(1 − pt)]

= 1 −


1 −

1
2N

τ

, (3)

where variance and expectation in (3) are taken with respect
to allele frequency variation from the founder population up to
generation t > −T .

Next we introduce the inbreeding coefficient f hinbrt of genera-
tion t . This is the probability that two randomly chosen distinct
gene copies of generation t are identical by descent (ibd), i.e. orig-
inate from the same gene copy of the founder generation. The
subscript hinbr refers to the fact that this a haploid inbreeding co-
efficient, since the two gene copies are drawn without taking in-
dividual origin into account. These haploid inbreeding coefficients
satisfy a recursion

f hinbrt+τ =


1 −


1 −

1
2N

τ
· 1 +


1 −

1
2N

τ

· f hinbrt , (4)

over τ generations. This follows from the fact that 1 −

[1 − 1/(2N)]τ is the probability that a gene copy pair from
generation t + τ has the same ancestral gene copy of generation t .
If so, they are ibd with certainty, and if not, their ibd probability is
f hinbrt .

In order to model the long term rate at which genetic variants
are lost, we notice that (1) describes a Markov chain with state
space

X =


0,

1
2N

, . . . ,
2N − 1
2N

, 1


and transition matrix P = (Pxy; x, y ∈ X), whose elements have
the form

Pxy = P(pt+1 = y|pt = x) =


2N
2Ny


x2Ny(1 − x)2N(1−y).

A genetic variant is lost when one allele (A or a) takes over the
whole population. This corresponds to the two absorbing states
x = 0 and x = 1. From this it follows that P has two of its
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eigenvalues equal to 1. The multiplicative rate at which genetic
variants are lost is determined by the third largest eigenvalue

λ3(P) = 1 −
1
2N

(5)

of P , so that the larger the population is the closer to 1 is this rate,
and the longer time it takes for one allele to become fixed.

3. A geographically subdivided population

In this section we specify the demographics and reproduction
model of amonoecious and diploid populationwith s ≥ 2homoge-
neous subpopulations that represent geographic substructure. The
local census sizes Ni and the number of breeding individuals Nei of
all subpopulations i = 1, . . . , s are the same for all generations, so
that N =


i Ni is the time invariant census size. We interpret Nei

as a local effective size of i if this subpopulation would be isolated
from all other subpopulations. Therefore the two indices of Nei re-
fer to effective e and subpopulation number i (note that the latter
is not the same as inbreeding I).

It is assumed that there is some exchange of migrants between
subpopulations from each generation t and the next generation
t+1. Themigration pattern varies randomly over time, as specified
by a square forward migration matrix Mt = (Mtki) of order s. For
each pair k, i of subpopulations, Mtki refers to the average number
of offspring of all individuals in k of generation t that migrate to i,
whereasNkMtki is the total number ofmigrants from k to i between
generations t and t+1. In order for subpopulations sizes to remain
constant, the relation

Ni =

s
k=1

NkMtki (6)

must hold for all i and t . The stochasticity of Mt reflects the
randomness of the migration process, but it is assumed that the
expected forward migration matrix M = E(Mt) = (Mki) is
constant over time. For each pair k, i of subpopulations,Mki equals
the expected number of offspring of an individual in k that migrate
to i, whereas NkMki is the expected total number of migrants from
k to i. By taking the expected value of both sides of (6), it follows
that

Ni =

s
k=1

NkMki (7)

must hold for all subpopulations i, in order to keep their local
census sizes constant. The overall forward migration rate M =

1 −


i(Ni/N)Mii is the expected fraction of offspring that live in
another subpopulation than their parents.

The simplest and best known example is the island model of
Wright (1951). It has equally large subpopulations or islands (Ni =

Nei = N/s), and the same amount of migration between all pairs of
them (Mki = M/(s − 1) for i ≠ k). The one- and two-dimensional
stepping stone models of Kimura (1953) and Weiss and Kimura
(1965) position subpopulations over a grid, with local migration
fromeach subpopulation to one of its twoor four neighbors. Amore
general class of subdivided populations is treated in Hössjer et al.
(2014, 2015) and references therein, with subpopulation sizes and
migrationpatterns of any form. Fig. 1 illustrates four different types
of geographic subdivision.

There is also a square backward migration matrix B =

(Bik)
s
i,k=1 of order s whose elements Bik = NkMki/Ni specify the

expected fraction of genes in subpopulation i of generation t + 1
whose parents in generation t live in subpopulation k. Unless all
subpopulations have the same size, the forward and backward
migration matrices M and B will differ. Since the row sums of B
Fig. 1. Four different metapopulations with their subpopulations depicted as
circles, and their local census and effective sizes shown as numbers within circles.
Directed arrows are drawn between all pairs k, i of subpopulations for which the
forward migration rate between two consecutive generations is positive (Mki > 0).
The island model and the two stepping stones models have the same value of
Mki for all such pairs of subpopulations. These are related to the overall forward
migration rate M as Mki = M/4 for the island model, Mki = 5M/8 for the linear
stepping stone model and Mki = 3M/10 for the two-dimensional stepping stone
model. For the lower right population, the expected numberNkMki ofmigrants from
k to i is shown, corresponding to a forward migration rate of M = 0.033. This
systemhas subpopulations 1–4 located along a circle, withmigration back and forth
possible between neighbors, and the fifth subpopulation is a sink that only receives
migrants. This metapopulation has previously been studied in Hössjer et al. (2014),
and higher values ofM are obtained bymodifying the expected number ofmigrants
proportionally between all pairs of subpopulations. Fig. 4 plots the required time to
migration–drift equilibrium as a function ofM , for all four metapopulations.

are one (cf. (7)), it is the transition matrix of a Markov chain with
state space {1, . . . , s}. We will assume that this Markov chain has
a unique stationary distribution γ = (γ1, . . . , γs).

The mathematical theory for diploid populations is much more
complicated than for haploid ones. In order to obtain more
explicit inbreeding and diversity expressions, we will assume
a reproduction model where gametes first migrate randomly
between subpopulations, then mating and selfing are random
within each subpopulation, as specified in Example 2 of Hössjer
et al. (2015). This corresponds to a reproduction cycle between
generations t and t + 1 that can be decomposed into the following
three steps:

1. For each subpopulation k = 1, . . . , s of generation t , a random
subset Nek of all its Nk individuals is selected as breeders, and
their 2Nek genes are put into a pool.

2. For each subpopulation i = 1, . . . , s of generation t + 1, its 2Ni
genes are drawn randomly with replacement in the following
manner: At first the parental pool number k is chosen with
probability Bik, and then a parental gene is chosen randomly
from all the 2Nek possible genes of this pool.

3. For each subpopulation i = 1, . . . , s, the 2Ni drawn genes from
Step 2 are randomly paired to form Ni diploid individuals.

It follows from Steps 2 and 3 of this reproduction scheme that
the joint distribution of the number of migrating genes from all
subpopulations k = 1, . . . , s to i is multinomial

(2N1Mt1i, . . . , 2NsMtsi) ∼ Mult(2Ni; Bi1, . . . , Bis),

and in particular that (6) holds, since the row sums of B are one.
Although Steps 1–3 are an essentially haploid reproduction

scheme, it follows fromHössjer et al. (2015) that it provides a good
approximation of a diploid and geographically structured popu-
lation whose genotype frequencies are close to Hardy–Weinberg
equilibrium within each subpopulation. This is a reasonable as-
sumption if mating within subpopulations is close to random.
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4. Measures of inbreeding and genetic diversity

In this section we introduce measures of inbreeding and
diversity that will be used in the next section to define various
effective sizes. In Sections 4.1–4.2 we consider variation at one
single locus that represents an autosomal segment, such as a
genetic marker or a gene. Since each individual carries two copies
of this gene, the total number of gene copies in subpopulation i is
2Ni at each generation. For simplicity, we will refer to these gene
copies as genes. In Sections 4.3–4.4 we will also consider genetic
variation at multiple loci.

4.1. Covariances of allele frequency change

Consider one single locuswith a gene that exists in two variants
(alleles) A and a.We let pti be the fraction of genes of subpopulation
i and generation t that carry allele A, whereas the remaining
fraction 1 − pti of genes of subpopulation i in this generation have
allele a. It is assumed that the population was founded T > 0
generations ago, and we require that the frequency p−T ,i = p of
A is the same for all subpopulations i of the founder generation
t = −T < 0. We introduce the standardized covariances

ftij =
Cov(pti − p, ptj − p)

p(1 − p)
(8)

between allele frequency change in i and j from the founder
generation up to generation t , for all pairs i, j of subpopulations.
Let ft be a column vector of length s2 that contains all standardized
covariances (8) of generation t . Because of the random mating,
selfing and migration assumptions of Section 3, this vector will
satisfy the same linear time recursion

ft+1 = 1 − A(1 − ft) (9)

as for a haploid population (Hössjer et al., 2014, Example 2 of
Hössjer et al., 2015), where 1 is a column vector of s2 ones, and
A = (Aij,kl) is a square matrix of order s2, with rows and columns
indexed by subpopulation pairs i, j and k, l respectively. These
elements have the form

Aij,kl =


1 −

1
2Ni

δij

BikBjl


1 −

1
2Nek

1 −
1

2Nk

δkl

, (10)

where Bik is the backward migration rate from i to k, Nek is the
number of breeding individuals of k, and δij equals 1 or 0when i = j
or i ≠ j respectively.

In order to summarize the allele frequency change by one single
number, all subpopulations are assigned non-negative weights
w1, . . . , ws that sum to one. This includes a number of possible
weighting schemes, such as uniform weights (wi = 1/s),
weights proportional to local census sizes (wi = Ni/N), weights
proportional to number of breeding individuals (wi = Nei/


j Nej),

reproductiveweights (wi = γi, see Fisher, 1958; Felsenstein, 1971)
and local weights for some subpopulation j ∈ {1, . . . , s} (wi = δij).
Let

pt =


i

wipti (11)

be the weighted frequency of allele A for all subpopulations. The
standardized variance

f vart =
Var(pt − p)
p(1 − p)

=

Var


i
wi(pti − p)


p(1 − p)
=


i,j

wiwjCov(pti − p, ptj − p)

p(1 − p)

=


i,j

wiwjftij (12)

quantifies the amount of genetic drift from the founder generation
up to generation t , according to the prechosen subpopulation
weights. In the second step of (12) we invoked (11) and used that
all wi sum to one, and in the last step we inserted the definition of
ftij in (8). This reveals that the standardized variance is a weighted
average of all standardized covariances.

4.2. Inbreeding and coancestry coefficients

Let f inbrti be the inbreeding coefficient of subpopulation i at
generation t . This is the probability that a pair of distinct genes
within the same individual of subpopulation i and generation t
is identical by descent, i.e. descends from the same gene of the
founder generation t = −T . The coancestry coefficient f cotij is
similarly defined as the probability that a gene pair from two
different individuals of subpopulations i and j of generation t is ibd.
In order to average these quantities over subpopulations, we letwi
be the probability of picking an individual from i, so that

f inbrt =


i

wif inbrti (13)

and f cot =


i,j wiwjf cotij are the inbreeding and coancestry
coefficients of generation t , when subpopulations are weighted
as wi. In particular, if subpopulation weights are proportional to
local census sizes (wi = Ni/


j Nj), Eq. (13) coincides with the

traditional definition of the inbreeding coefficient, the probability
that a pair of distinct genes from a randomly chosen individual of
the metapopulation is ibd.

If the individual origin of all genes is hidden, it is not possible
to distinguish between inbreeding and coancestry coefficients. We
may then regard the population as haploid, and let f hinbrtij be the
ibd probability of a gene pair drawn from subpopulations i and j
of generation t . We refer to this quantity as a haploid inbreeding
coefficient (hinbr). Since the probability is 1/(2Ni − 1) and 1 −

1/(2Ni−1) that a gene pair from the same subpopulation i is drawn
from the same or from different individuals, it follows that

f hinbrtij =


1

2Ni − 1
f inbrti +


1 −

1
2Ni − 1


f cotii , i = j,

f cotij , i ≠ j.
(14)

The corresponding weighted haploid inbreeding coefficient of
generation t is

f hinbrt =


i,j

wiwjf hinbrtij . (15)

Let f gidtij be the ibd probability of two genes drawn randomly with
replacement from subpopulations i and j at time t . We will refer to
it as a gene identity (gid), although its original definition (Nei, 1975,
Chapter 6) was in terms of identity by state (ibs) rather than ibd
sharing. Since the probability is 1/(2Ni) of drawing the same gene
twice if i = j, the gene identity and haploid inbreeding coefficients
are related as

f gidtij =



1 −

1
2Ni


f hinbrtij +

1
2Ni

, i = j,

f hinbrtij , i ≠ j.
(16)
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In Appendix A we prove that gene identities for individuals from
different subpopulations i ≠ j, satisfy

0 ≤ f gidtij ≤



1
4Nj

+


1
4Nj

2

+ f gidtii


f gidtjj −

1
2Nj


,

if f gidtii ≥ f gidtjj ,

1
4Ni

+


1
4Ni

2

+ f gidtjj


f gidtii −

1
2Ni


,

if f gidtii ≤ f gidtjj .

(17)

The right hand side of (17) improves (is smaller than) the upper

bound

f gidtii f gidtjj derived in Hössjer et al. (2014).

There is a close relationship between the standardized covari-
ances (8), inbreeding coefficients, coancestry coefficients, and gene
identities (14). First, it is shown in Hössjer et al. (2014) that the
column vector of all s2 gene identities f gidtij of generation t satisfies
the same time recursion (9) as the corresponding vector ft of stan-
dardized covariances. The initial condition f−T ,ij = 0 imposed on
the standardized covariances, is approximately valid for all f gid

−T ,ij as
well, if all genes of the founder generation −T are regarded as dif-
ferent by descent, and no subpopulation is very small. Under these
circumstances the approximation

ftij ≈ f gidtij (18)

is accurate. Second, it can be seen from the definition of the
essentially haploid reproduction scheme of Section 3 that

f inbrti = f cotii (19)

for each subpopulation i, since genes pair up randomly to form
individuals in the last Step 3 of this scheme. It follows from (14) and
(19) that the diploid inbreeding coefficient f inbrti of subpopulation i
equals the corresponding haploid one f hinbrtii , and from (16) and (18)
we deduce that both of these inbreeding coefficients are essentially
equivalent to the standardized variance ftii. On the other hand,
there is sometimes a big difference between the subpopulation
weighted diploid and haploid inbreeding coefficients f inbrt and
f hinbrt in (13) and (15), when subpopulations are close to isolated.

4.3. Subpopulation differentiation

The coefficient of gene differentiation (Wright, 1951; Nei, 1973,
1977) at one single locus is a number

GST ,t =


i

wi(pti − pt)2

pt(1 − pt)
(20)

between 0 and 1 that for each generation t quantifies how much
allele frequencies differ between subpopulations, when these are
assigned non-negative weights wi that sum to one. The scenario
GST ,t = 0 corresponds to identical subpopulations (pti = pt for
all i) and GST ,t = 1 to a system in which different alleles are fixed
in the various subpopulations (pti = 0 or 1, and not all pti equal).
Given information from the founder generation t = −T only, the
allele frequencies pti of any subsequent generation t > −T are
random, and so is GST ,t . We may compute a prediction

gST ,t =


i

wiE[(pti − pt)2]

E[pt(1 − pt)]
=


i

wiftii −

i,j

wiwjftij

1 −

i,j

wiwjftij

ofGST ,t based on the assumption of equal allele frequencies p−T ,i =

p in all subpopulations of the founder generation. It is also a
number between 0 and 1, where 0 corresponds to genetically
identical subpopulations (all ftij = f for some 0 ≤ f < 1)
and 1 to a system where individuals of different subpopulations
are unrelated (ftij = 0 for all i ≠ j) but those from the same
subpopulation are fully related (ftii close to 1 for all i).

Nei (1973, 1977) has extended the coefficient of gene differ-
entiation to settings where there are Lt biallelic genetic markers
x = 1, . . . , Lt of generation t , with A(x) and a(x) the two alleles at
locus x. Let pti(x) be the frequency of allele A(x) in subpopulation i
and generation t . The multilocus version of (20) is defined as

GST ,t =


i

wi

x

(pti(x) − pt(x))2
x
pt(x)(1 − pt(x))

, (21)

where pt(x) =


i wipti(x) is the subpopulation weighted
frequency of A(x). Assuming that the frequency p−T ,i(x) = p(x) of
A(x) is the same in all subpopulations i of the founder generation,
we define the standardized covariances for each locus x as in (8),
with pti(x) and p(x) instead of pti and p. But since the time recursion
(9) of the standardized covariances does not depend on the founder
allele frequency, it follows that ftij will be the identical at all loci x.
The predicted coefficient of gene differentiation

gST ,t =


i

wi

x
E[(pti(x) − pt(x))2]

x
E[pt(x)(1 − pt(x))]

=


i

wiftii −

i,j

wiwjftij

1 −

i,j

wiwjftij
(22)

is therefore the same, regardless of number of loci. In the last step
of (22) the term


x p(x)(1−p(x)) is canceled out in the numerator

and denominator.

4.4. Additive genetic variance

Consider a quantitative trait (or phenotype) with value Y u
ti for

individual u = 1, . . . ,Ni of subpopulation i in generation t .
We assume that the genetic component of this trait originates
from a number of polymorphic loci x = 1, . . . , Lt , where each
replacement of the a(x) allele by the other allele A(x) at locus
x increases the expected value of the phenotype by σ , whereas
each replacement of the A(x) allele by a(x) decreases the expected
phenotype by the same amount. This is equivalent to saying that if
the locus is homozygous for the A(x) allele, its expected phenotype
marginally increases by 2σ , compared to if it is homozygous for the
a(x) allele. Write

Y u
ti = mti + 2σ

Lt
x=1

(puti(x) − pti(x)) + (ϵu
i − ϵ̄i),

where ϵu
i is an environmental effect and 2puti(x) ∈ {0, 1, 2} is

the number of copies of A(x) for individual u of subpopulation
i, whereas mti =

Ni
u=1 Y

u
ti/Ni, pti(x) =

Ni
u=1 p

u
ti(x)/Ni and

ϵ̄i =
Ni

u=1 ϵu
i /Ni refer to average values of the phenotypes,

allele frequencies and environmental effects among all individuals
of subpopulation i and generation t . When subpopulations are
assigned weights wi, the phenotype mean and variance of
generation t are mt =


i wimti and

Vt =

s
i=1

wi

Ni

Ni
u=1

E[(Y u
ti − mt)

2
] = VtA + Vtϵ, (23)

where expectation is taken over all environmental effects and the
random allocation of the 2Nipti(x) copies of the A(x) allele among
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all 2Ni gene copies, for all subpopulations i and loci x. In the last
step of (23) we assumed that environmental and genetic effects
are independent, so that Vt splits into an environmental variance
component Vtϵ and an additive genetic variance component

VtA = σ 2


i

wi


x

E[(2p1ti(x) − 2pt(x))2]

= σ 2


i

wi


x

2Ni − 2
2Ni − 1

2pti(x)(1 − pti(x))

+ 4(pti(x) − pt(x))2


≈ σ 2


i

wi


x

2pti(x)(1 − pti(x)) + 4(pti(x) − pt(x))2


= 2σ 2

x


pt(x)(1 − pt(x)) +


i

wi(pti(x) − pt(x))2


= 2σ 2

x

pt(x)(1 − pt(x))(1 + GST ,t). (24)

In the second step of (24)weused that 2p1ti(x)has a hypergeometric
distribution with parameters 2Ni, pti(x) and 2. This follows from
the fact that there are 2Ni gene copies at locus x in subpopulation
i, a fraction pti(x) of which have allele A(x). When genotypes are
allocated to all individuals of subpopulation i, the 2Ni gene copies
are paired randomly. Therefore, the number ofA(x) alleles assigned
to each individual u is obtained by drawing two alleles without
replacement from the pool of 2Ni gene copies, 2Nipti(x) of which
have allele A(x). In the third approximate step of (24) we assumed
thatNi are large for all subpopulationswith positiveweights, and in
the last stepwe invoked the definition of themultilocus coefficient
of gene differentiation (21).

Let vtA = E(VtA) be the expected additive genetic component
of generation t . It follows from the approximate expression of VtA
in (24), the definition of standardized covariances in (8), and the
definition of gST ,t in (22), that

vtA = 2σ 2

x

p(x)[1 − p(x)]


1 − 2


i,j

wiwjftij +


i

wiftii



= 2σ 2

x

p(x)[1 − p(x)]


1 −


i,j

wiwjftij


(1 + gST ,t). (25)

5. Effective sizes

In Sections 5.1–5.4we consider a number of effective sizesNe =

Ne([t, t + τ ]) that quantify the predicted amount by which a given
characteristic changes per generation over a time interval [t, t+τ ]

of length t that starts at t ≥ 0, when subpopulations i are assigned
non-negative weights wi that sum to one. In contrast, the effective
size in Section 5.5 quantifies the long term rate per generation at
which genetic variants are lost, i.e. the limit τ → ∞.

5.1. Variance effective size

As in Section 4.1 we consider genetic variation at one single
locus with alleles A and a, and let pt =


i wipti be the

subpopulation weighted frequency of A in generation t . Since pt
is scalar, it is possible to compare its rate of change with the allele
frequency change of a WF model. The variance effective size NeV
(Crow, 1954) is the size of a WF population whose standardized
variance of allele frequency change pt+τ −pt between generation t
and t+τ is the same as in the studied population. In order to obtain
a tractable expression for NeV , expectation is not with respect to
allele frequency variation from generation t , but rather from the
founder generation −T up to t + τ . In view of (3), this gives

1 −


1 −

1
2NeV

τ

=
E[(pt+τ − pt)2]
E[pt(1 − pt)]

=
E[(pt+τ − p)2] − E[(pt − p)2]

E[pt(1 − pt)]

+
−2Cov(pt+τ − pt , pt − p)

E[pt(1 − pt)]
= I + II. (26)

The first term on the right hand side of (26) can be expressed in
terms of the standardized variances (12), as

I =
f vart+τ − f vart

1 − f vart
=


i,j

wiwj(ft+τ ,ij − ftij)
i,j

wiwj(1 − ftij)
. (27)

In previous work (Hössjer et al., 2014) we only considered the case
T = t = 0, so that pt = p and hence the second term II of (26)
vanished. This is far too simplistic, and in Appendix B we derive
the more general expression

II =
2w(I − Bτ )f̄tw ′
i,j

wiwj(1 − ftij)
, (28)

wherew = (w1, . . . , ws) is a rowvector of subpopulationweights,
and f̄t = (ftij)si,j=1 is a square matrix of order s that contains all
standardized covariances (8). If follows from (28) that II = 0
for reproductive weights w = γ , since γ = Bγ is a stationary
distribution of B.

5.2. Diploid inbreeding effective size

The diploid version of the inbreeding effective size, NeI,dipl, is
based on the inbreeding coefficients (13). It is defined as the size
of a WF population whose inbreeding coefficient increases by the
same relative amount between generations t and t + τ as in the
studied population. This gives

1 −


1 −

1
2NeI,dipl

τ

=
f inbrt+τ − f inbrt

1 − f inbrt

=


i

wi(f inbrt+τ ,i − f inbrti )
i

wi(1 − f inbrti )
, (29)

since (4) implies that the left hand side of (29) equals (f hinbrt+τ −

f hinbrt )/(1 − f hinbrt ) for a WF population of size NeI,dipl. The original
effective size definition of Wright is essentially a special case of
(29) with τ = 1 and f inbrt = 0.

5.3. Haploid inbreeding effective size

The haploid version of the inbreeding effective size, NeI,hapl, is
based on the haploid inbreeding coefficients (15). It is defined as
the size of a WF population whose haploid inbreeding coefficient
increases by the same relative amount between generations t and
t + τ as in the studied population. Similarly as for the diploid
inbreeding effective size, we deduce from (4) that

1 −


1 −

1
2NeI,hapl

τ

=
f hinbrt+τ − f hinbrt

1 − f inbrt
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=


i,j

wiwj(f hinbrt+τ ,ij − f hinbrtij )
i,j

wiwj(1 − f hinbrtij )

≈ I. (30)

In the last step of (30) we inserted the definition of I in (27) and
used the fact that f hinbrtij ≈ ftij, which follows from (14), (16) and
(18). Consequently, the haploid inbreeding effective size will differ
from the variance effective size, unless II = 0.

5.4. Additive genetic variance effective size

For the additive genetic variance effective size, we will look at
the rate at which the expected additive genetic variance vtA in (25)
decays in absence ofmutations, so that the number of polymorphic
loci Lt is a non-increasing function of t . We define NeAV as the size
of a WF population for which this decay rate is the same between
generations t and t + τ as in the studied population. This gives

1 −


1 −

1
2NeAV

τ

=
vtA − vt+τ ,A

vtA

= I +

1 −

i,j

wiwjft+τ ,ij

1 −

i,j

wiwjftij

gST ,t+τ − gST t
1 + gST ,t

≈ I, (31)

where in the last step we assumed gST ,t ≈ gST ,t+τ , which
is increasingly accurate as t increases and gST ,t converges to a
nonzero limit.

In order to motivate (31), we will show that its left hand side
equals the decay rate of additive genetic variance for a biallelic
single locusWFmodel of sizeNeAV , with frequency pt in generation
t for allele A. To this end, we use (24) in order to conclude that
VtA ≈ 2σ 2pt(1 − pt) and vtA ≈ 2σ 2E [pt(1 − pt)]. From this it
follows that

vtA − vt+τ ,A ≈ 2σ 2
{E [pt(1 − pt)] − E [pt+τ (1 − pt+τ )]}

= 2σ 2E (pt+τ − pt)2 .

Making use of (3) we conclude that the left hand side of (31) equals
(vtA − vt+τ ,A)/vtA for a WF population of size NeAV , as claimed.

It follows from (30) and (31) that the haploid inbreeding and
additive genetic variance effective sizes are essentially equivalent,
i.e.

NeI,hapl ≈ NeAV . (32)

5.5. Eigenvalue effective size

The eigenvalue effective size NeE (Crow, 1954; Nagylaki, 1980;
Ewens, 1982) characterizes the long term multiplicative rate at
which one of the two alleles, A or a, is lost. In order to specify this
rate, we introduce the column vector

pt = (pt1, . . . , pts)′ (33)

of allele frequencies ofA in all subpopulations. For the reproduction
model of Section 3, this is a Markov chain with a huge state space

X =


0,

1
2N1

, . . . ,
2N1 − 1
2N1

, 1


× · · · ×


0,

1
2Ns

, . . . ,
2Ns − 1
2Ns

, 1


,

and a transition matrix P = (Px,y; x, y ∈ X) with entries

Px,y = P(pt+1 = y|pt = x).

It is the largest non-unit eigenvalue of P that determines the rate
at which one of the two alleles gets fixed. When migration is
possible between all subpopulations, in one or several generations,
the backward migration matrix B is irreducible. Then there are
only two absorbing states of the Markov chain (33), either x =

(0, . . . , 0) if a gets fixed in all subpopulations, or x = (1, . . . , 1) if
A takes over all subpopulations. Because of this, 1 is an eigenvalue
of P withmultiplicity 2, and it is the third largest eigenvalue λ3(P)
of P that determines the fixation rate.We defineNeE as the size of a
WF population for which the rate of lost variants λ3(P) is the same
as in the studied population. From (5) we deduce that

1 −
1

2NeE
= λ3(P). (34)

This eigenvalue effective size is in general substantially larger than
Nei, and often at least as large as the sum of the local effective sizes
Nei.

Because of its size, P is less tractable than A, the matrix that
appears in the linear recursion (9) of standardized covariances.
Denote its largest eigenvalue by λ = λ1(A). It follows from
(10) that if the backward migration matrix B is irreducible and
aperiodic, so is A. The Perron–Frobenius Theorem (Cox and Miller,
1965) then implies that 0 < λ < 1 is unique and real valued.
Hössjer (2015) considers a large class of reproduction schemes that
includes the one in Section 3, and proves that

λ = λ3(P). (35)

Combining (34) and (35) we find that

1 −
1

2NeE
= λ. (36)

Compared to (34), this equation is often preferable to use when
computing the eigenvalue effective size.

6. Comparison between effective sizes

In this section we will analyze the effective sizes of Section 5.
We recall from (32) that NeAV is very close to NeI,hapl, and therefore
we only compareNeI,dipl,NeI,hapl,NeV andNeE , Since this comparison
is very different for local and global populations, we treat them
separately in Sections 6.1–6.2. The corresponding theoretical
results can be found for general populations in Appendix D, and
for the island model in Appendix E. For simplicity, we will assume
that the inbreeding and variance effective sizes are instantaneous
(τ = 1).

6.1. Local effective size

For a diploid subdivided population, the instantaneous local
haploid and diploid inbreeding effective sizes of subpopulation i
are essentially the same,

NeIi,dipl = NeIi,hapl = NeIi. (37)

They quantify how much the inbreeding coefficient or gene
diversity of i changes from one generation to the next, whereas the
local variance effective size NeVi tells how much allele frequencies
of i change. They are all defined by assigning subpopulation i full
weight (wi = 1), and they differ from Nei in that they account for
migration between i and the other subpopulations. Local effective
sizes are commonly compared using Nei as gold standard (Waples
and England, 2011; Ryman et al., 2014). But since NeIi includes
the effect of migration, it is a more relevant quantity than Nei for
predicting how inbreeding changes. BothNeIi andNeVi are very close
to Nei when i is almost isolated from the other subpopulations, or
when there is little differentiation between them. But

NeVi < Nei < NeIi (38)
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when the migration rate between i and the rest of the metapop-
ulation is large and the subpopulations are differentiated, with a
substantial downward bias of NeVi. This phenomenon has been de-
scribed for the island model by Ryman et al. (2014), and in Appen-
dices D.1 and E we show more generally that it is caused by the
extra term II of (26). Intuitively, immigration into i from the other
subpopulations will magnify allele frequency shift in i between
generations t and t + 1, and thereby cause NeVi to decrease. The
impact of immigration into i on NeIi is just the opposite. Since im-
migrants aremore distantly related to individuals in i, in the diploid
case they will typically cause the inbreeding coefficient within i to
either increase at a slower rate, so that NeIi becomes larger, or even
cause the inbreeding coefficient to decrease, so that NeIi is unde-
fined. This difference between NeIi and NeVi persists and gets more
extreme when the system approaches a migration–drift equilib-
rium (see Figs. 2 and 3). Whereas NeVi remains below Nei, the local
inbreeding effective size

NeIi → NeE (39)

converges to the eigenvalue effective size.

6.2. Global effective size

The instantaneous global (total) inbreeding and variance ef-
fective sizes NeIT ,dipl, NeIT ,hapl and NeVT quantify how inbreeding
coefficients, gene diversities and allele frequencies of the whole
population change from one generation to the next. This corre-
sponds to using a scheme where all or most of the subpopulations
have positive weights (wi > 0). It is shown in Appendix D that
NeIT ,dipl is a harmonic average of all local NeIi, provided that these
exist. If the subpopulations are almost isolated with little differen-
tiation at start, NeIT ,dipl will initially be close to a harmonic average
of the local effective sizesNei, and then gradually increases towards
NeE when the migration–drift equilibrium of (39) is approached.
The global haploid inbreeding and variance effective sizes NeIT ,hapl
and NeVT , on the other hand, are initially much larger than NeIT ,dipl,
beforemigration–drift equilibrium is attained. In particular, for re-
productive subpopulations weights we have

NeIT ,dipl < NeIT ,hapl ≈ NeVT , (40)

since the II termof (28) vanishes. ThenNeIT ,hapl andNeVT will start at
a level that equals the sum of all local effective sizes, or larger, and
after that gradually converge to the NeE limit (see Appendices D.2
and E for details). This is illustrated in Fig. 2 for a metapopulation
with two subpopulations. It is not until the system has reached
equilibrium that NeVT and NeIT ,dipl get close to one another, and

NeIT ,dipl,NeIT ,hapl,NeVT → NeE (41)

as t → ∞.
There are at least two reasons for the very different behavior

of NeVT and NeIT ,hapl on one hand, and NeIT ,dipl on the other. First,
in contrast to the local variance effective size, for reproductive
subpopulation weights there is no downward bias of NeVT due
to immigration, since II = 0 in (28). Even though the allele
frequency shift in each subpopulation is magnified by immigration
from the other parts of the metapopulation, these shifts will
not have the same direction in all subpopulations and therefore
more or less cancel out. Second, it follows from (14)–(15) and
(29)–(30) thatNeIT ,dipl quantifies rate of changeswithin individuals,
whereas NeIT ,hapl essentially quantifies temporal changes of
coancestry coefficients. If the subpopulations are almost isolated
and genetically distinct from start, the coancestry coefficients
between subpopulations will differ a lot from the inbreeding
coefficients within individuals. If distinct alleles are close to
fixation in different subpopulations for a long time, the rate of
change of the coancestry coefficients between subpopulations
is small (a large NeIT ,hapl), whereas the inbreeding coefficients
continue to increase at amuch faster ratewithin all subpopulations
(a small NeIT ,dipl).

7. Migration–drift equilibrium

It is evident from Figs. 2 and 3 that the relationship between
the local or global variance and inbreeding effective sizes depends
crucially on how far away from migration–drift equilibrium the
system starts in generation 0, and how long time it takes to attain
this equilibrium. In this section we will develop tools to quantify
this. Recall that the population in generation t is characterized by
the vector ft of standardized covariances ftij in (8). It is shown in
Hössjer et al. (2014) that 0 ≤ ftii ≤ 1, ftij = ftji, and from the
Cauchy–Schwarz inequality we deduce

0 ≤ ftij ≤

ftiiftjj. (42)

Due to symmetry, it suffices to consider the set F of admissible
values of all ftij with 1 ≤ i ≤ j ≤ s, which is a subset of
the s(s + 1)/2-dimensional unit cube. By studying the long term
behavior (9) of the standardized covariances, it can be seen that
migration–drift equilibrium corresponds to a one-dimensional
subset

F eq
= {fij, 1 ≤ i ≤ j ≤ s; fij = 1 − crij, 0 < c ≤ cmax} (43)

of F , with r = (rij; 1 ≤ i, j ≤ s)′ the right eigenvector of A
with eigenvalue λ. Without loss of generality we assume that the
elements of r and the corresponding left eigenvector l = (lij; 1 ≤

i, j ≤ s) are normalized so that
i,j

lij =


i,j

lijrij = 1. (44)

The upper bound cmax of c in (43) is imposed to ensure that
F eq

⊂ F . We notice that F eq is a line segment between the two
end points 1 − cmaxr and 1. These end points correspond to the
minimal and maximal amount of inbreeding that is possible under
equilibrium. In order to quantify how far away from equilibrium a
population system is, we define for any f = (fij) ∈ F a projection

f eq = (f eqij ) = π(f ) (45)

down to F eq as f eqij = 1 − min((1 − f var), cmax)rij, where f var =
i,j lijfij. The distance of f to migration–drift equilibrium is a

number

d(f , F eq) = max
i,j

|fij − f eqij |

1 − f eqij
(46)

between 0 and 1 that is well defined if fij < 1 for at least
one subpopulation pair i, j. Indeed, since A is a non-negative
and irreducible matrix if there are no isolated components of
the metapopulation, all lij and rij are strictly positive by the
Perron–Frobenius Theorem, and therefore f eqij < 1 holds for all
pairs i, j of subpopulations.

The distance measure (46) has two important properties. It is
first of all invariant

d((1 − c)f + c1, F eq) = d(f , F eq)

with respect to all convex linear combinations 0 ≤ c < 1 of the
standardized covariance vector f and a totally inbred population
1, at least if all the standardized covariances are sufficiently large.
Second, the convergence rate

d(ft , F eq) → 0 as t → ∞ (47)
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Fig. 2. Plots of NeE (dotted) and local and global diploid NeI = NeI,dipl (solid) and NeV (dashed) for two populations of size N1 = Ne1 = 20 and N2 = Ne2 = 100 between
generations t and t + 1 for t = 0, . . . , 99 when the expected exchange isM migrants per generation. Initially (t = 0) f11 = f22 = 0.5 in all plots, whereas f12 = 0.5 ((a) and
(c); left) or f12 = 0 ((b) and (d); right), and the migration rate is M = 1 ((a) and (b); upper) or M = 3 ((c) and (d); lower). Note that subplot a describes the behavior of the
Ne curves for all scenarios of the present population model whereM = 1 and f11 = f12 = f22 and that the same holds true for subplot (c) when M = 3.
towards migration–drift equilibrium determines the speed at
which the local or global inbreeding effective sizes approachNeE . In
more detail, it is shown at the end of Appendices D.1 and D.2 that
the instantaneous local or global diploid and haploid inbreeding
effective sizes between generations t and t + 1 satisfy

|N−1
eI,dipl − N−1

eE |

|N−1
eI,hapl − N−1

eE |
≤ 2


d(ft , F eq) + d(ft+1, F eq)


, (48)
whenever these effective sizes exist. The same relation holds
for the variance effective size when reproductive subpopulation
weights are used.

In order to quantify the convergence rate in (47), we define the
time
τε = min{t ≥ 0; d(ft , F eq) ≤ ε} (49)
it takes for the system to getwithin distance ε frommigration–drift
equilibrium, where 0 ≤ ε ≤ 1 is a given tolerance level. For any
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Fig. 3. Plots of various effective sizes for the circular population systemwith a sink (Fig. 1) between generations t and t + 1 for t = 1, . . . , 99. The plots to the left show the
global diploid inbreeding effective size NeIT = NeIT ,dipl with size proportional weights wi = Ni/N (thick solid line), local inbreeding (haploid or diploid) effective sizes NeIi
for all five subpopulations i = 1, . . . , 5 (thin solid lines), and eigenvalue effective size NeE (dotted line). The plots to the right show the global variance effective size NeVT
with size proportional weights (thick solid line), local variance effective sizes NeVi for all five subpopulations i = 1, . . . , 5 (thin solid lines), and eigenvalue effective size NeE
(dotted line). In the first t = 0 generation there is no subpopulation differentiation in the upper subplots (standardized covariances f0ij = 0.1 for all pairs of subpopulations)
and some subpopulation differentiation in the lower subplots (f0ii = 0.1, f0ij = 0 when i ≠ j). In the upper left plot, all local curves NeIi start at the corresponding census
size Ni and then gradually converge to NeE = 957. For the two curves with Ni = 400 the i = 2 curve is slightly below the i = 4 curve. In the lower left subplot, it is the i = 3
curve that first drops below upper NeIi = 1500 limit of the graph, followed by the i = 5, i = 1, i = 2 and i = 4 curves.
population system it can be derived by first finding ft recursively
for all t ≥ 0 from (9), and then computing d(ft , F eq) from the
left and right eigenvectors l and r of A. It turns out that the rate
of convergence towardsmigration–drift equilibrium is determined
by how much smaller the modulus |λ2| of the second largest
eigenvalue of A is compared to λ. It is shown in Appendix C that
a rough upper bound of the time to equilibrium is

τε ≤
Cε

log λ
|λ2|

≤
Cε

1 −
|λ2|
λ

, (50)

where in the last stepwe assumed that |λ2|/λ is close to 1,whereas

Cε = max

0, log


d(f0, F eq)

ε


quantifies how far away from equilibrium the system is from start
(t = 0). It is also argued that 1 − |λ2|/λ is of the same order
or smaller than the forward migration rate M , depending on how
global or local migration is. Therefore, the time it takes to attain
equilibrium is at least of the order 1/M , with a proportionality
constant that depends on how far away the system is from
equilibrium at t = 0.

Since τε depends on ε, it may be wise to report τε for several
values of this tuning parameter. Fig. 4 illustrates that τ0.01 and
τ0.1 are highly dependent on M and the degree of subpopulation
differentiation at start. It is evident that the convergence time
for small migration rates is far too large to be of interest in
manymanagement applications. For such migration scenarios, NeE
is of limited relevance, unless the system starts very close to
equilibrium.

Notice that the predicted coefficient of gene differentiation (22)
satisfies the same invariance property as the distance measure d,
in that its value remains the same if ft is replaced by (1− c)ft + c1.
In addition, gST ,t will attain the same value

geq
=


i,j

wiwjrij −

i

wirii
i,j

wiwjrij
(51)

for any ft ∈ F eq. The implication of this is that migration–drift
equilibrium (43) corresponds to a unique predicted coefficient
of gene differentiation (51), regardless of how much inbreeding
there is in the population, that is, regardless of where along
the line segment F eq the vector ft of standardized covariance is
located. Although the exact form of geq depends on the migration
model, it roughly ranges from 0, for a metapopulation whose
expected number of immigrants per generation is substantially
larger than 1 (NM ≫ 1), up to 1 for a model with completely
isolated subpopulations (M = 0). An explicit formula for geq is
derived for the island model in Appendix E. If the weights wiwj for
subpopulation pairs are replaced by lij, formula (51) simplifies to

geq
= 1 −


i

li·rii,

where li· =


j lij.

8. Discussion

In this paper we compared the inbreeding, variance and eigen-
value effective sizes, with a particular focus on geographically
structured populations. We also gave an explicit characterization
ofmigration–drift equilibrium for a subdivided population, and the
time it takes to reach this equilibrium. These results are important,
since subpopulations behave as more or less isolated units before
equilibrium. The time it takes to reach this limit therefore influ-
ences, e.g., the extent to which short and long term and conserva-
tion genetic goals are reached for separate subpopulations as well
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Fig. 4. The required number τε of generations to reach migration–drift equilibriumwith tolerance level ε is shown on a log–log scale as a function of the forward migration
rate M , for each of the four metapopulations of Fig. 1. The number of migrants is adjusted between all pairs of subpopulations proportionally, so that the overall migration
rate equalsM . The symbols represent different combinations of tolerance levels and subpopulation differentiation scenarios for the t = 0 generation. τε is given for ε = 0.1
(squares) or ε = 0.01 (circles) when there is initially no subpopulation differentiation, with standardized covariances ftij = 0.1 for all pairs i, j of subpopulations. τε is also
given for ε = 0.1 (pluses) or ε = 0.01 (stars) when there is initial subpopulation differentiation, with ftii = 0.5 and ftij = 0 for identical or different (i ≠ j) subpopulations.
Symbols are missing whenever τε = 0. It is seen that τε increases dramatically when the migration rate gets low. For small migration rates, it takes a somewhat longer time
to reach equilibriumwhen subpopulations are genetically similar initially, whereas for large migration rates, it takes longer time to reach equilibriumwhen subpopulations
are genetically distinct from start. The convergence time τε is smaller for systems with more global migration, in particular for the island model and to some extent for the
2-dimensional stepping stone model.
as for the metapopulation as a whole. An important topic of fu-
ture research is to describe the migration–drift equilibrium more
explicitly in terms of genetic differentiation between subpopula-
tions, for a system with a pre-specified demography. It should be
noted, however, that themigration–drift equilibrium concept is re-
stricted to populations whose size is either constant over time (as
in this paper), or at least varies cyclically. It is not directly applica-
ble to human and other populations whose size steadily increases,
or to small, threatened populations that steadily decrease.

Our starting point was that the rate of changed inbreeding and
additive genetic variance of quantitative traits are the most appro-
priate concepts for short and long term predictions, respectively.
We found that the inverse of the variance effective size is some-
times a poor approximation of both of these rates for geographi-
cally subdivided systems, for local populations as well as for the
metapopulation.When the inbreeding rate of a subpopulation or of
the total population is positive, its inverse is equivalent to a diploid
version of the local or global inbreeding effective size, respectively.
In the sameway, the negative rate of change of the additive genetic
variance of a local population or of the metapopulation, can be ap-
proximated inmost cases by the inverse of a haploid version of the
local or global inbreeding effective size.

But inbreeding coefficients may decrease locally or globally
for some generations in a system with substantial gene flow be-
tween genetically distinct subpopulations. Then the diploid local
or global inbreeding effective size is not defined (see also Laikre
et al., in press). The reason is that the Wright–Fisher model is a
too simplistic reference model, which is not able to reproduce de-
creased inbreeding rates. It can be seen from Figs. 2 and 3 that
even when NeI,dipl exists, it may still behave quite chaotically in
parameter regions where the inbreeding coefficient increases very
slowly. The same phenomenon can be observed for the local (but
not the global) haploid inbreeding effective size, when additive ge-
netic variance of a local population increases for some generations
due to gene flow from neighboring subpopulations.
In view of these limitations of the inbreeding effective size, an
alternative would be to use the more general concept

1fI,dipl = 1 −


1 −

f inbrt+τ − f inbrt

1 − f inbrt

1/τ

τ=1
=

f inbrt+1 − f inbrt

1 − f inbrt
(52)

for diploidmodels and short term protection. It is the rate at which
inbreeding changes per generation between t and t + τ , with
y1/τ = sgn(y)|y|1/τ . Notice that

1fI,dipl ∈


1 −


1

1 − f inbrt

1/τ

, 1


may be negative or positive, and the diploid inbreeding effective
size NeI,dipl = 1/(21fI,dipl) is defined when 1fI,dipl > 0, but
undefined when 1fI,dipl < 0. In particular, when τ = 1 we refer to
1fI,dipl as the instantaneous amount of changed inbreeding.

Fig. 5 shows a number of instantaneous 1fI,dipl curves for the
sink population system of Fig. 1. It illustrates the advantage of
using the rate of changed inbreeding as criterion instead of the
corresponding NeI,dipl curves, shown in the lower left subplot of
Fig. 3. Whereas the local and global NeI,dipl curves are defined only
after a substantial number of generations, the local and global
1fI,dipl curves are defined at all time points.

For long term protection, we may similarly use 1fI,hapl as the
rate at which the gene identity (or haploid inbreeding coefficient)
changes between generations t and t+τ . In particular,when τ = 1,
1fI,hapl is the instantaneous rate of changed gene identity.

The above considerations suggest that it may sometimes be
preferable to focus on inverse effective population sizes. We may
then regard the haploid or diploid version of (52) as a yardstick to
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Fig. 5. The diploid rates (52) of changed inbreeding1fI = 1fI,dipl are shown for the
circular population with sink in Fig. 1, during t = 100 generations. All curves refer
to instantaneous rates (length of time interval τ = 1 in (52)), and they are derived
from the lower left subplot of Fig. 3, with the same subpopulation differentiation of
generation 0 (f0ii = 0.1, f0ij = 0when i ≠ j). The global1fIT curve is drawnas a thick
solid line, and the local 1fIi curves (i = 1, . . . , 5) as thin solid lines. The dotted line
corresponds to the eigenvalue effective size, with 1fE = 1/(2NeE) = 5.22 · 10−4 . It
can be seen that migration causes inbreeding to decrease in all subpopulations for
quite a long time at first, before it starts to increase. The curve that first becomes
positive is 1fI3 , followed by 1fI5 , 1fI1 , 1fI2 and 1fI4 .

compare the other notions NeX of effective size with. To this end,
we translate such an NeX into an ‘‘equivalent rate

1fX =
1

2NeX
(53)

of changed inbreeding’’. For the variance effective size, it follows
from (26) that 1fV equals a standardized variance of allele
frequency change per generation between t and t + τ , whereas
for the eigenvalue effective size 1fE gives the long term rate at
which alleles are lost. But on the other hand, the inbreeding rate
scale (52)–(53) is sometimes less intuitive than the effective size
scale, which is alsomuchmorewell known and understood among
biologists. For instance, it may seem more difficult to distinguish
the two inbreeding rates 0.001 and 0.01 than the corresponding
effective sizes 500 and 50.

A number of extensions are of interest. First, one of the most
frequently usednotions ofNe is the linkage disequilibriumeffective
size NeLD (Hill, 1981; Waples, 2006; Waples and Do, 2010). A
general theory of NeLD for subdivided populations is still lacking,
but results for the island model (Waples and England, 2011)
reveal that NeLD may deviate substantially from the inbreeding
and variance effective sizes. Second, in order to obtain estimates
of NeI,dipl and NeI,hapl from real data, it is necessary to estimate
identity by descent sharing. This is a non-trivial task, but hidden
Markov models have recently been applied to estimate inbreeding
coefficients (Leutenegger et al., 2003) and coancestry coefficients
(Lynch and Ritland, 1999; Browning and Browning, 2011). Third,
our new effective size concept, NeAV , focuses on changes of the
additive genetic variance of a quantitative trait. An interesting
topic of future research is to consider dominance and epistasis
effects aswell. Such an analysismay reveal that there is no longer a
close relationship (32) between the phenotype based effective size
on one hand, and the haploid inbreeding effective size on the other.
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Appendix A. Derivation of upper bound (17) for gene identities

In order to prove (17), we assume there are C ibd classes of the
founder generation t = −T , and let Ptic be the frequency of class
c in subpopulation i at generation t . For instance, if the first C1 ibd
classes correspond to allele A, and the remaining C −C1 ibd classes
to allele a, then pti =

C1
c=1 Ptic . The (expected) gene identity of

subpopulations i and j of generation t is an expectation

f gidtij = E(Ftij)

of the corresponding observed gene identity

Ftij =


c

PticPtjc, (54)

with respect to all reproduction cycles from the founder generation
up to generation t . We will first prove that

0 ≤ Ftij ≤



1
4Nj

+


1
4Nj

2

+ Ftii


Ftjj −

1
2Nj


,

if Ftii ≥ Ftjj,

1
4Ni

+


1
4Ni

2

+ Ftjj


Ftii −

1
2Ni


,

if Ftii ≤ Ftjj,

(55)

for two different subpopulations i and j. Suppose that Ftii and Ftjj
are fixed. Since (55) is symmetric with respect to Ftii and Ftjj, we
may without loss of generality assume Ftii ≥ Ftjj and Ptic > 0 for
c = 1, . . . , C̃ , whereas Ptic = 0 and Ptjc > 0 for c = C̃ + 1, . . . , C .

Then x =
C̃

c=1 Ptjc satisfies 0 ≤ x ≤ 1. It follows from (54) and
the Cauchy–Schwarz inequality that given x, Ftij is maximized by
putting Ptjc = xPtic for c = 1, . . . , C̃ . We may therefore assume
that this relation holds, so that

Ftij = Ftiix, (56)

and

C̃
c=1

P2
tjc = Ftiix2. (57)

Since
C

c=C̃+1 Ptjc = 1− x and Ptjc ≥ 1/(2Nj) for c = C̃ +1, . . . , C ,
it follows from (57) that

Ftjj − Ftiix2 =

C
c=C̃+1

P2
tjc ≥

1 − x
2Nj

,

⇓

x ≤
1

4FtiiNj
+


1

4FtiiNj

2

−
1

2FtiiNj
+

Ftjj
Ftii

.

(58)

Hence, in order to maximize Ftij we plug the upper bound of x in
(58) into (56), and the result is identical to the first part of (55).

In order to prove (17) we notice that (55) can be written as

Ftij ≤ g(Ftii, Ftjj) = min

g1(Ftii, Ftjj), g2(Ftii, Ftjj)


,

where

g1(x, y) =
1
4Nj

+


1
4Nj

2

+ x

y −

1
2Nj


,
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g2(x, y) =
1
4Ni

+


1
4Ni

2

+ y

x −

1
2Ni


.

Since both g1 and g2 are concave, so is g , and it follows from Jensen’s
Inequality that

f gidtij = E(Ftij)

≤ E[g(Ftii, Ftjj)]
≤ g[E(Ftii), E(Ftjj)]

= g(f gidtii , f gidtjj ),

as was to be proved.

Appendix B. Derivation of variance effective size formula (28)

In Hössjer and Ryman (2014), it is shown that the frequency
vector (33) of allele A is a vector valued autoregressive process

pt+1 = Bpt + εt+1 (59)

over generations, with B the backward migration matrix, and εt a
random s × 1 column vector that quantifies genetic drift due to
individuals’ varying reproductive success. It satisfies

E(εt+1|pt)| = 0. (60)

Recall that the frequency of allele A is the same (= p) in all
subpopulations of the founder generation t = −T , so that p−T =

p(1, . . . , 1)′. We use (59)–(60) and the fact that the backward
migration matrix has row sums 1 to deduce

E(pt) = Bt+Tp(1, . . . , 1)′ = pBt+T (1, . . . , 1)′ = p(1, . . . , 1)′, (61)

where expectation is with respect to allele frequency dynamics
from the founder population up to generation t . In order to verify
(28), we first rewrite (11) in vector notation as pt = wpt . Then we
insert this formula and (61) into (26), and find that

II =
2E

w(pt − pt+τ )(pt − p1)′w ′


p(1 − p) − E


(pt − p)2


=

2wE

(pt − E(pt+τ |pt))(pt − p1)′


w ′

p(1 − p) −

i,j

wiwjE

(pti − p)(ptj − p)


=

2w(I − Bτ )E

(pt − p1)(pt − p1)′


w ′

p(1 − p) −

i,j

wiwjE

(pti − p)(ptj − p)

 , (62)

where I is the identitymatrix of order s, and in the last stepweused
E(pt+τ |pt) = Bτpt , which is a consequence of (59)–(60). Formula
(28) followsby first dividing thenumerator anddenominator of the
right hand side of (62) by p(1− p), and then using the definition of
f̄t as a matrix of standardized covariances ftij in (8).

Appendix C. Convergence to migration–drift equilibrium

In order to verify convergence to migration–drift equilibrium,
we introduce the eigenvalues λ = λ1, . . . , λs2 of A (including
multiplicity), sorted in descending order of their moduli, and let
A = Q−1DQ be the Jordan decomposition of A, so that D is an
upper triangular matrix with all its eigenvalues along the diagonal
(dkk = λk). It follows from this representation ofA and iterated use
of (9) that

1 − ft = Q−1DtQ (1 − f0). (63)

Since r = (rij)′ is the right eigenvector of A with eigenvalue
λ, it is the first column of Q−1, whereas the corresponding left
eigenvector l = (lij) is the first row of Q . From this we conclude
that
1 − ftij

λt
= (1 − f var0 )rij


1 + P2

tij


|λ2|

λ

t

+ · · · + P s2
tij


|λs2 |

λ

t
→ (1 − f var0 )rij (64)

as t → ∞, where f var0 =


ij lijf0ij is the amount of genetic drift
up to generation 0, averaged over the components lij of the left
eigenvector, Pk

tij are polynomial and sinusoidal functions of t for
k = 2, . . . , s2 and each pair i, j of subpopulations.

The right hand limit of (64) corresponds to migration–drift
equilibrium, and it is attainedwhen (1− ftij)/(1− ftkl) converges to
rij/rkl for all quadruples i, j, k, l of subpopulations. It follows from
(44) and (63) that

f vart =


ij

lijftij = λt f var0 .

Hence for all sufficiently large time points the projection (45) of ft
onto the equilibrium set F eq satisfies

f eqt = π(ft) = 1 − λt(1 − f var0 )r.
Together with (46) and (64), this implies that approximately

d(ft , F eq) = max
i,j


s2

k=2

Pk
tij


|λk|

λ

t


≤ d(f0, F eq)


|λ2|

λ

t

, (65)

where in the last stepwe assumed that all Pk
tij are constant in t . This

is true for instance when all eigenvalues of A are distinct.
The upper bound (50) of τε follows immediately from the

right hand side of (65), and it only depends on the subpopulation
differentiation at time 0 and |λ2|/λ. In order to find a fairly simple
approximation of |λ2|/λ, we first replace A in (10) by another
matrix A(∞) with elements Aij,kl(∞) = BikBjl that correspond
to an infinitely large population (Ni = Nei = ∞). This matrix
A(∞) has a simpler form than A, and its s2 eigenvalues (including
multiplicity) can be expressed explicitly as γiγj for 1 ≤ i, j ≤

s, where γ1 = 1, γ2, . . . , γs are the eigenvalues of B, listed in
descending order of their magnitudes |γi|. If no subpopulation
is isolated, B is an irreducible matrix with |γ2| < 1. It follows
that the magnitudes of the two leading eigenvalues of A(∞) are
λ(∞) = 1 × 1 = 1 and |λ2(∞)| = 1 × |λ2| = |λ2|. Since
the elements of A are obtained by perturbing those of A(∞) by an
amount at most O(1/min(Nei)), the eigenvalues will be perturbed
by the same order (van der AA et al., 2007). Hence we obtain

|λ2|

λ
=

|γ2| + O [1/min(Nei)]

1 −
1

2NeE

≈ |γ2|, (66)

where in the last step we assumed |γ2| to be of larger order
than 1/Nei for all i. For a metapopulation with almost isolated
subpopulations, 1 − |γ2| is a small number, and (50) implies that
τε is roughly inversely proportional to 1 − |γ2|, at least when the
latter quantity is of larger order than the inverse of all Nei.

For the island model, it is easy to see that

γ2 = · · · = γs2 = 1 −
s

s − 1
M =⇒ 1 − |γ2| =

s
s − 1

M.

More generally, 1− |γ2| will be of the same order as the migration
rate M for population systems with global migration (similar
values ofMik for all i ≠ k), whereas 1−|γ2|will be of smaller order
than M for population systems with local migration (Mik > 0 only
when i and k are neighbors). The conclusion is that for systemswith
global migration, τε is approximately inversely proportional to M ,
whereas for systems with local migration it is even larger.
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Appendix D. Comparison between variance and inbreeding
effective sizes

In this appendix we make a detailed comparison between
three effective sizes; the variance effective size (26), the diploid
inbreeding effective size (29), and the haploid inbreeding effective
size (30). We will confine ourselves to instantaneous effective
sizes, so that the length τ of the time interval of genetic change is 1.

Starting with the diploid inbreeding effective size, we can
rewrite (29) as

1
2NeI,dipl

= 1fI

=


i

wi(ft+1,i − fti)
i

wi(1 − fti)

=


i

w′

i1fIi

=


i

w′

i
1

2NeIi
, (67)

when τ = 1, where we removed superscript inbr for the
inbreeding coefficients of all subpopulations (cf. the discussion
at the end of Section 4.2), and 1fIi = (ft+1,i − fti)/(1 − fti)
quantifies the relative amount by which the inbreeding coefficient
of subpopulation i changes between generations t and t + 1. In the
third step of (67) we introduced weights w′

i that are proportional
to wi(1 − fti) and sum to 1. In the last step of (67) we defined the
local diploid inbreeding effective size NeIi = 1/(21fIi) of i between
generations t and t+1. It is the value of the inbreeding effective size
in (67) when subpopulation i has full weight (wi = 1). Multiplying
both sides of (67) by 2, we find that the diploid inbreeding effective
size

1
NeI,dipl

=


i

w′

i
1
NeIi

(68)

is a weighted harmonic average of all NeIi.
For the haploid inbreeding effective size, we use the approxi-

mation in the last step of (30) with τ = 1 and write

1
2NeI,hapl

≈


i,j

wiwj(ft+1,ij − ftij)
i,j

wiwj(1 − ftij)

=


i,j

1fVij

=


i,j

w′

ij
1

2N ′

eVij
, (69)

where w′

ij are weights proportional to wij(1 − ftij) that sum to
one. In the last two steps of (69) we introduced 1fVij = (ft+1,ij −

ftij)/(1 − ftij) and N ′

eVij = 1/(21fVij), which can be thought of as a
local variance effective size of i when i = j, and a local covariance
effective size of pair i, j when i ≠ j, when only the first term I of
NeV is taken into account. Multiplying both sides of (69) by 2, we
find that the haploid inbreeding effective size

1
NeI,hapl

≈


i,j

w′

ij
1

N ′

eVij
(70)

is essentially a weighted harmonic average of all N ′

eVij.
For the variance effective size we add the second term (28) of

(26) to (69) with τ = 1, multiply by 2, and find that

1
NeV

=


i,j

w′

ij
1

N ′

eVij
+

4w(I − B)f̄tw ′
i,j

wiwj(1 − ftij)
. (71)
Comparing the expressions for the diploid inbreeding, haploid
inbreeding and variance effective sizes in (68), (70) and (71), we
notice two major differences:

1. The right hand side of (68) is aweighted average of inverse local
inbreeding effective sizes NeIi, with weights w′

i for all subpopu-
lations, whereas the right hand sides of (70) and (71) contain
weighted averages of inverse local variance and covariance ef-
fective sizesN ′

eVij, withweightsw′

ij for all pairs of subpopulations.
2. The right hand side of (71) contains an extra term due tomigra-

tion between subpopulations, not present in (68) and (70).

We will comment on the influence that items 1 and 2 have on
the difference between the inbreeding and variance effective sizes,
locally for one subpopulation and globally for the metapopulation.

D.1. Local effective sizes

For a local weighting scheme wi = 1, the diploid and haploid
inbreeding effective sizes in (68) and (70) reduce to NeIi and N ′

eVii
respectively. For any subpopulation i = 1, . . . , swe have that

NeIi ≈ N ′

eVii = Nei, if i is either isolated or genetically
identical to all other k ≠ i,

NeIi ≈ N ′

eVii ≽ Nei, if i is neither isolated nor genetically
identical to all other k ≠ i.

(72)

The left part of (72) follows from (14)–(16), (18)–(19) and the
definitions of N ′

eVii and NeIi. For the upper right part, we notice
that Bii = 1 and Bik = 0 for i ≠ k when i is isolated, so that
Aii,ii = 1 − 1/(2Nei) and Aii,kl = 0 for all kl ≠ ii in (10). It therefore
follows from (9) that N ′

eVii = Nei. In order to motivate the lower
right part of (72) we assume for simplicity Ni = Nei, so that the
formula for Aij,kl in (10) simplifies, with its last term in brackets
equal to 1. From the definition of N ′

eVii and (9) we find that

1
N ′

eVii
−

1
Nei

= −

2

1 −

1
2Nei


k,l

BikBil(ftii − ftkl)

1 − ftii
(73)

whenever N ′

eVii is well defined, i.e. when immigration does not
cause the standardized variance ftii of i to decrease. Thus N ′

eVii =

Nei holds when all subpopulations are genetically identical in
generation t (ftkl = f for all k, l). The notation N ′

eVii ≽ Nei in (72)
symbolizes that this inequality holds in most cases, for instance
when all subpopulations have the same amount of genetic drift
up to time t (ft11 = · · · ftss = f and hence ftkl ≤ f for all k, l). A
necessary condition for N ′

eVii < Nei to hold is that ftkk > ftii for at
least one subpopulation k ≠ i from which i receives immigrants.
But this is not a sufficient condition, since in many cases ftki < ftii
will hold in spite of this. Unless the migration rates (off-diagonal
elements of B) are large, the 2BikBii weight of the ftii − ftik term will
be much higher than the BikBil weight of any term ftii − ftkl with
k, l ≠ i.

The local variance effective sizeNeVi is obtained by puttingwi =

1 in (71), so that

1
NeVi

=
1

N ′

eVii
+

4

k
Bik(ftii − ftik)

1 − ftii
. (74)

From (72) we conclude that the only difference between NeIi and
NeVi is the second migration term on the right hand side of (74).
But this term is typically positive when the other subpopulations
k ≠ i are not toomuch related to i, for instancewhen ftik ≤ ftii holds
for all k ≠ i, with strict inequality for at least one subpopulation k
that has offspring in i (Btik > 0). Therefore, the second term of (74)
causesNeVi to be increasingly smaller thanN ′

eVii, themoremigration
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there is into i from the other subpopulations (large Bik), and the less
genetically related the other subpopulations are to i (smaller ftik).

A more detailed analysis reveals that NeVi is also, in most cases,
smaller than Nei. Indeed, combining the formula for N ′

eVii in (73)
with (74), we find that

1
NeVi

−
1
Nei

=

4

1 −


1 −

1
2Nei


Bii


k
Bik(ftii − ftik)

1 − ftii

−

2

1 −

1
2Nei

 
k,l≠i

BikBil(ftii − ftkl)

1 − ftii
. (75)

Repeating the argument below (73) we find that for most
population systems, the two numerators of (75) are both positive,
and the first is larger unless the migration rates are high. This
implies that NeVi ≤ Nei will hold for most systems, even under
migration–drift equilibrium.

In order to analyze the inbreeding and variance effective sizes
when the system approaches migration–drift equilibrium we will
use the definitions of NeE and N ′

eVii in (36) and below (70), the
closeness of NeIi and N ′

eVii derived in (72), and (64), to motivate that

|N−1
eIi − N−1

eE |

|N ′−1
eVij − N−1

eE |
≤ 2λ


d(ft , F eq) + d(ft+1, F eq)


≤ 2


d(ft , F eq) + d(ft+1, F eq)

 (76)

for all pairs i, j of subpopulations, where in the last step we used
λ ≤ 1. In order to verify the first step of (76) we put

dtij =

s2
k=2

Pk
tij


|λk|

λ

t

and notice, after some computations, that

N ′−1
eVij =

2(ft+1,ij − ftij)
1 − ftij

= 2
1 − λ + dtij − λdt+1,ij

1 + dtij
≈ N−1

eE + 2λ(dtij − dt+1,ij).

Then we subtract by N−1
eE on both sides of the last displayed

equation, take absolute values, employ the triangle inequality and
finally use |dtij| ≤ d(ft , F eq). Combining (65) and (76), we find that

NeIi,N ′

eVij → NeE (77)

as t → ∞, with a speed of convergence determined by how fast
the population system approaches migration–drift equilibrium.

To conclude, we have motivated (37)–(39): The local diploid
and haploid inbreeding effective sizes are approximately equal
(= NeIi), and they also equal the effective number of breeders Nei
for an isolated population i, whereas in general they are larger than
Nei when i receives immigrants from other subpopulations, and
eventually converges to NeE . The local variance effective size also
equalsNei when i is isolated, but it is typically smaller thanNei when
there is migration into i.

D.2. Global effective sizes

For a global weighting scheme, it follows from item 1 that the
global variance and haploid inbreeding effective sizes are typically
much larger than the global diploid inbreeding effective size,
before migration–drift equilibrium is attained. In order to see this,
we notice from (70) that NeIT ,dipl is a weighted harmonic average
of all NeIi when the local inbreeding effective sizes are all well
defined. If the subpopulations are genetically very similar initially
in generation 0, we deduce from (72) that NeIT ,dipl will start at a
value close to a harmonic average of all Nei, and then, due to (77), it
will increase towards NeE as the migration–drift equilibrium limit
is approached, in accordance with (41).

In order to compare NeIT ,dipl with NeIT ,hapl and NeVT , we assume
that the subpopulation weights are reproductive, so that wB = w
and the second term of (26) vanishes. In view of (30) and (40), this
implies NeV ≈ NeI,hapl, and therefore it suffices to consider the
haploid inbreeding effective size. We will rewrite the right hand
side of (70) in a way that gives more insight, and in particular
reveals that NeIT ,hapl is at least of the same order as the sum of the
local effective sizesNei.We divide the generation cycle from t to t+
1 into one migration phase and one reproduction phase, and split
the time recursion (9) for standardized covariances accordingly
into two steps

ftij → f hinbrt+1,ij → ft+1,ij. (78)

In the firstmigration step the haploid inbreeding coefficients of the
offspring generation t + 1 are computed as

f hinbrt+1,ij = 1 −


k,l

BikBjl(1 − ftkl) (79)

when Ni = Nei is assumed, so that the last term of (10) in brackets
equals 1. In the second step the standardized covariances

1 − ft+1,ij =



1 −

1
2Nei


(1 − f hinbrt+1,ii), i = j,

1 − f hinbrt+1,ij, i ≠ j,
(80)

are calculated from the haploid inbreeding coefficients (cf. (16) and
(18)). We use (78)–(79) in order to split (70) into two terms,

1
2NeIT ,hapl

=


i,j

wiwj


k,l

BikBjlftkl − ftij



i,j

wiwj(1 − ftij)
+


i,j

w′

ij

ft+1,ij − f hinbrt+1,ij

1 − ftij

=


i,j

w′

ij

ft+1,ij − f hinbrt+1,ij

1 − ftij

=


i

w′

ii

2Nei − 1
1 − ft+1,ii

1 − ftii

=


i

w′

ii

2Nei − 1


1 −

1
2N ′

eVii


, (81)

and then, in the second step, we invoke the assumption of repro-
ductive weights, in the third step we insert (80), and in the last
step we employ the definition of N ′

eVii below (69). Since the first
migration phase of (79) can be viewed as a time recursion for stan-
dardized covariances of an infinitely large population, this stepwill
not change the average amount of genetic drift, as the second step
above reveals.

It is clear from (81) that NeIT ,hapl is at least as large as a
weighted harmonic average of all Nei − 1/2, multiplied a number
(= 1/


i w

′

ii) of order s. The global haploid inbreeding effective
size is therefore always at least of the same order as the sum of all
local effective sizes.

Under migration–drift equilibrium, it is easier to insert (77)
directly into (70) to deduce that NeIT ,hapl has the same asymptotic
limit NeE as NeIT ,dipl, in accordance with (41). It is also possible to
deduce the speed at which both of these inbreeding effective sizes
converge to NeE . In order to see this, we recall from (68) and (70)
that the (total) haploid and diploid inbreeding effective sizes are
weighted harmonic averages of NeIi and N ′

eVij. In conjunction with
(76) this proves (48), and in particular, that the (total) haploid and
diploid inbreeding effective sizes both converge to the eigenvalue
effective size, at the same speed at which the population system
converges to migration–drift equilibrium.
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Appendix E. Island model

In this appendix we will consider the island model in order to
exemplify the theory of Sections 5, 6 and Appendix D. This model
has the same forward and backward migration matrix M = B =

(Bik)
s
i,k=1 with diagonal elements Bii = 1 − m(s − 1)/s, and

off-diagonal entries Bik = m/s, where m = Ms/(s − 1). For
simplicity, we assume that the local effective and census sizes are
the same (Nei = Ni = N/s).

Due to the symmetry of the island model, there are only two
possible values ft,same and ft,diff of the standardized covariances ftij
in (8), depending on whether i equals j or not. For uniformweights
wi = 1/s, the predicted coefficient of gene differentiation (22)
takes the form

gST ,t =


1 −

1
s


ft,same − ft,diff

1 −
1
s ft,same −

s−1
s ft,diff

, (82)

and since Ni = Nei, the time recursion in (9)–(10) simplifies to
1 − ft+1,same
1 − ft+1,diff


=



1 −

1
2Nei


(1 − α)


1 −

1
2Nei


α

β 1 − β


×


1 − ft,same
1 − ft,diff


, (83)

where β = m(2 − m)/s is the probability that two genes from
different islands originate from the same island in the previous
generation, and α = (s − 1)β is the probability that two genes
from the same island descend from different islands. The closely
related recursions for haploid ibd probabilities of gene pairs drawn
without replacement, appear in Nei (1975), Li (1976) and Ryman
and Leimar (2008).

Let N ′

eV ,same = N ′

eVii and N ′

eV ,diff = N ′

eVij be the local variance
and covariance effective sizes defined below (69). After some
calculations it follows from (82) and (83) that

1
2NeV ,same

′

=
ft+1,same − ft,same

1 − ft,same

=
1

2Nei
−


1 −

1
2Nei


(2m − m2)

gST ,t

1 − gST ,t
(84)

and
1

2N ′

eV ,diff
=

ft+1,diff − ft,diff
1 − ft,diff

= (2m − m2)
gST ,t

s − 1 + gST ,t
. (85)

The bias term due to migration in (71) simplifies to

2 × II = 4m
w(I − 11′/s)f̄tw ′
i,j

wiwj(1 − ftij)

= 4m
gST ,t

1 − gST ,t
, (86)

for a local weighting scheme, where in the last step we used (82)
and the formula for f̄t below (28). Insertion of (84) and (86) into
(71) gives a local variance effective size

NeVi =
Nei

1 + (2m − m2)
gST ,t

1−gST ,t
+ 2Neim2 gST ,t

1−gST ,t

. (87)

This expression is very similar to formula (7) of Ryman et al. (2014),
with k = l = 1. Eq. (87) is obtained by conditioning on allele
frequencies of a founder generation,whereas the formula in Ryman
et al. (2014) was derived in a slightly different context; to find the
expected value of the variance effective size estimator of Jorde and
Ryman (2007).

For the inbreeding effective size we use the definition of NeIi
below (67), in conjunction with (72) and (84) to deduce that the
diploid total and (haploid or diploid) local inbreeding effective
sizes equal

NeIT ,dipl = NeIi =
Nei

1 − (2m − m2)(2Nei − 1) gST ,t
1−gST ,t

. (88)

It is the symmetry of the island model that makes the local and
global inbreeding effective sizes the same, cf. (68). Comparing (87)
and (88), we notice that (38) holds, and the difference betweenNeVi
and NeIi increases with m and gST ,t .

For the global variance effective sizewith uniformweightswi =

1/s, we have II = 0. Plugging (84)–(85) into (71), we get a global
variance effective and haploid inbreeding effective size

NeVT = NeIT ,hapl =
1

w′
same

1
N ′
eV ,same

+ w′

diff
1

N ′
eV ,diff

=
Neis

1 − (1 − m)2gST ,t
, (89)

withw′
same = s(1− ft,same)/[s(1− ft,same)+ s(s−1)(1− ft,diff)] and

w′

diff = 1−w′
same theweights assigned to the two terms in (84) and

(85). We notice from (89) that NeVT = NeIT ,hapl is at least as large as
the total census size N = Neis, and apart from the term (1 − m)2

of the denominator, (89) is identical to a well known expression of
Wright (1943). Wright’s formula has been generalized in different
directions by Whitlock and Barton (1997) and Nunney (1999).
Eq. (89) is also a special case of formula (69) in Hössjer and Ryman
(2014) that was derived by other methods.

The largest eigenvalue λ of the matrix in (83) is a root of a
quadratic characteristic equation. Plugging the solution of this
equation into (36), we find that

NeE =
1

α + β +
1

2Nei
(1 − α)


1 −


1 −

2β

Nei


α+β+

1
2Nei

(1−α)
2


≈ Neis

1 +

s − 1
s

1
4Neim


, (90)

where in the last step we assumed that m is small and Neim
large, and obtained the same expression as for the nucleotide
diversity effective size Neπ of an island model (Nei and Takahata,
1993). We notice from (90) that NeE is always larger than the total
census size Neis. In order to find the value (51) of the predicted
coefficient of gene differentiation at equilibrium geq, we need the
right eigenvector r = (rsame, rdiff)′ of the matrix in (83) with
eigenvalue λ. Using (51) and (90), it follows that

geq
=

s − 1
s

·
rdiff − rsame

1
s rsame +

s−1
s rdiff

=
s − 1
s

·
1

β

1−γ
−

1
s

≈
1

s
s−14Neim +

s−2
s−1

. (91)

This confirms the well known fact that the level of subpopulation
differentiation at equilibrium decreases with the migration rate.
The right hand side of (91) differs from a formula of Crow and Aoki
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(1984) in that the denominator has (s − 2)/(s − 1) rather than 1.
The right hand side of (91) is even closer to several gST ,t formulas
in Table 2 of Hössjer et al. (2013), for the reproduction scenarios of
the island model considered in that paper.

In order to check the consistency of our formulas, we inserted
the exact expression for geq in (91) into (88) and (89), and obtained
an equilibrium value of NeIT ,dipl, NeIi and NeVT that is identical to the
exact formulas for NeE in (36) and (90).
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