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Abstract: A unified theory is developed for attributable proportion (AP) and population attributable fraction
(PAF) of joint effects, marginal effects or interaction among factors. We use a novel normalization with a
range between –1 and 1 that gives the traditional definitions of AP or PAF when positive, but is different
when they are negative. We also allow for an arbitrary number of factors, both those of primary interest and
confounders, and quantify interaction as departure from a given model, such as a multiplicative, additive
odds or disjunctive one. In particular, this makes it possible to compare different types of threeway or
higher order interactions. Effect parameters are estimated on a linear or logit scale in order to find point
estimates and confidence intervals for the various versions of AP and PAF, for prospective or retrospective
studies. We investigate the accuracy of three confidence intervals; two of which use the delta method and a
third bootstrapped interval. It is found that the delta method with logit type transformations, and the
bootstrap, perform well for a wide range of models. The methodology is also applied to a multiple sclerosis
(MS) data set, with smoking and two genetic variables as risk factors.

Keywords: attributable proportion, confidence interval, models of no interaction, normalization, population
attributable fraction

1 Introduction

Most complex diseases are influenced by a number of genetic and environmental factors, co-factors or
predictors that either have a marginal effect and/or interact in some way (Maher 2008; Eichler et al. 2010;
Bookman et al. 2011). The impact of these factors on disease risk is specified with a penetrance function

θðxÞ= PðY = 1jX = xÞ, (1)

where Y equals 1 (0) for an individual with (without) the disease, and x = ðx1, . . . , xpÞ is a vector with
exposure status for p co-factors. We will assume that the factors are binary, with xi = 1 or 0 depending on
whether an individual is exposed to factor i or not, although extensions to continuous covariates will be
discussed in Section 8. Often a few of the variables J � f1, . . . , pg are of main interest, whereas the others
are confounders. In this paper we develop a unified theory for the attributable risk or attributable propor-
tion (AP), and the population attributable fraction (PAF), when the effects of confounders are taken into
account. This theory will involve both joint effects, marginal effects and interaction.

The joint effect of all non-confounders will refer to their cumulative marginal effects and interaction.
The traditional definition of AP;

APtradðxÞ= θðxÞ− θremðxÞ
θðxÞ , (2)
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is the joint fraction of disease risk due the factors in J. The penetrance function θremðxÞ is the disease risk of
an individual whose exposure to all factors i 2 J of interest has been removed, whereas the confounding
variables i ∉ J remain at the levels specified by x. Equation (2) generalizes the definition of attributable
proportion, first introduced by Levin (1953) to quantify the effect that one single risk factor, smoking, has on
lung cancer. The joint effect is then equivalent to a marginal effect, since it is not possible to have
interaction for one single factor. Greenland and Robins (1988) noted that sometimes there is an ambiguity
as to whether θrem should include all subjects that develop the disease without exposure to the relevant
factor(s), or only those for which the factor(s) has no causal role. Often the former definition of attributable
proportion is used, since it is easier to estimate from data.

Since smoking is a risk factor (θ > θrem), APtrad is a number between 0 and 1. On the other hand, it is
negative without any lower bound for preventive factors (θ < θrem). It is then possible to use the preventive
fraction

PFðxÞ = θðxÞ− θremðxÞ
θremðxÞ , (3)

a number between 0 and 1 that equals the fraction of reduced disease risk for a subject exposed to
preventive factors, see for instance Aschengrau et al. (2003, pp. 65–66). But it is redundant to use
two different quantities APtrad and PF in order to quantify the effect of one set of factors, in particular
when it is not known before a study whether a predictor increases or decreases risk. The relative risk
could replace eqs (2) and (3) but it has no upper bound for risk factors. Instead, we propose another
normalization

APðxÞ= θðxÞ− θremðxÞ
max θðxÞ, θremðxÞ½ � (4)

of the attributable proportion, a number between –1 and 1 that equals APtrad for risk factors and −PF for
preventive factors.

In order to define a version of AP that averages the effect of all confounders, while still controlling for
their effect, we introduce θadd xð Þ, the penetrance function for a subject whose exposure to all factors i 2 J
has been added or turned on, whereas all confounding factors i ∉ J remain at the levels specified by x.
Let = ðX1, . . . ,XpÞ refer to the exposure vector of a randomly chosen subject in the population. The joint
proportion of risk due to the predictors in J is

AP =
E θadd Xð Þ½ �−E θrem Xð Þ½ �

max E θadd Xð Þ½ �,E θrem Xð Þ½ �f g , (5)

when averaging the effect of all confounders. The numerator of eq. (5) is the average causal effect (ACE)
when causation can be replaced by association (Agresti 2013), and the denominator normalizes ACE to a
value between –1 and 1.

It is also possible to define counterparts of eqs (2), (3) and (4) for a whole population. The population
attributable fraction

PAFtrad =
E θ Xð Þ½ �−E θrem Xð Þ½ �

E θ Xð Þ½ � , (6)

quantifies the fraction of disease prevalence E θðXÞ½ � that is jointly attributable to a subset J of risk factors. It
is an important quantity for public health and a tool for deciding which possible interventions that should
be prioritized, see Deubner et al. (1980), Northridge (1995), Benichou (2001) and Sjölander and Vansteelandt
(2011). For preventive factors, one uses instead the population prevented fraction

PPF =
E θðXÞ½ �−E θremðXÞ½ �

E θremðXÞ½ � , (7)
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i. e. the fraction by which prevalence is decreased when the population is jointly exposed to all factors in
J. Analogously to eq. (4), we combine eqs (6) and (7) into a generalized version

PAF=
E θ Xð Þ½ �− E θrem Xð Þ½ �

max E θ Xð Þ½ �,E θrem Xð Þ½ �f g (8)

of population attributable fraction that takes values between –1 and 1 and equals PAFtrad for risk factors
and −PPF for preventive factors.

It is possible to reinterpret eqs (4), (5) and (8) to quantify epistasis or interaction among a subset J of at
least two predictors, rather than their joint effect. Several methods are available to quantify interaction,
see Greenland (1983), Cordell (2002), Phillips (2008), VanderWeele (2010) and VanderWeele and Knol
(2014) for reviews. Some epistasis definitions involve causation, counterfactuals or potential outcomes
(Rothman 1976a), and under certain conditions they can be tested statistically (VanderWeele and Robins
2008; Sjölander et al. 2014; Lekman et al. 2014). We will adopt a common and weaker definition of
epistasis in terms of a model whose interaction parameter between a subset J of factors is nonzero.
When attributable proportion is used to quantify the strength of this interaction (rather than the joint
effect), we must not include any marginal effects. This amounts to reinterpreting θremðxÞ as the disease risk
when exposure to each factor in J is the same as in the definition of θðxÞ, but interaction among them, not
their marginal effects, is removed. This requires that a model M of no interaction is defined. Statisticians
have commonly used logistic regression models and multiplicative odds, but additive models of interac-
tion have recently gained popularity, since they are believed to approximate an underlying biological
reality more accurately (Rothman 2012). In particular, a collection of factors exhibits sufficient cause
interaction when they are all present in at least one causal mechanism that is sufficient to bring about the
disease. For binary factors and outcomes, it has been shown in VanderWeele (2009) and references
therein, that under mild regularity conditions, sufficient cause interaction is closely related to additive
interaction.

Given that a model M has been specified, interaction is positive or negative when there is excess or
lowered risk due to interaction, depending on the sign of APtrad. For positive interaction that increases
disease risk (synergism), APtrad is a number between 0 and 1 that quantifies the proportion by which disease
risk is lowered when interaction among the factors in J is removed for subjects with exposure x. But for
negative interaction that lowers disease risk (antagonism), APtrad has no lower bound. The alternative
definition eq. (4) is identical to eq. (2) when positive, but normalized differently for negative values, as
minus the proportion by which disease risk is lowered for a subject with exposure x when interaction
among the factors in J is added, with a lower bound of –1. The two extreme cases when AP equals –1 and 1
correspond to interaction that completely eliminates or dominates disease risk. The quantities AP and PAF
in eqs (5) and (8) are also numbers between –1 and 1, with similar interpretation as the proportion of
disease risk when interaction among the predictors in J is removed or added.

As far as we know, APtrad has only been used for interaction between pairs of binary factors under
additive models of no interaction, but we will apply our new normalization of AP and PAF much more
generally. Our framework is a model with an arbitrary number p of factors, when the joint effect or
interaction among a subset J of them is of interest. We consider a large class of models M of no interaction,
such as an additive, multiplicative or disjunctive one. Results of Hosmer and Lemeshow (1992), Assman
et al. (1996) and Andersson et al. (2005) are extended, whereby linear or logit parametrization of effect
parameters is used to obtain point estimates and three types of confidence intervals, two Wald intervals
based on the multivariate delta method and asymptotic normality of parameter estimates, and a bootstrap
interval. In particular, we utilize that eq. (4) is restricted to ½− 1, 1� and show that a Wald interval based on a
logit type transformation and the bootstrap work very well for a wide range of models.

Our work was motivated by a recent study in Lekman et al. (2014), where possible genetic interaction
effects of major depressive disorder were sought for in terms of pairs of single nucleotide polymorphisms
(SNPs), using different multiplicative and additive models of no interaction. For some pairs of SNPs, AP
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estimates for the additive models were far below –1, with difficulty of interpretation. Although different
normalizations of AP due to interaction have been proposed (VanderWeele 2013), the one in eq. (4) is the
first that guarantees a range of ½− 1, 1�.

In order to estimate AP and PAF one typically uses cohort data, and external information is needed in
order to calculate these quantities from case-control data. But since odds ratios can be estimated consis-
tently from case-control data, an alternative strategy is to redefine the attributable proportion in terms of
odds ratios rather than disease risks. We apply such an odds ratio based definition of AP, with our new
normalization, to estimate interaction effects of a multiple sclerosis (MS) data set previously analyzed in
Hedström et al. (2011).

The paper is organized as follows. In Section 2 we consider the case of two factors and additive models
of no interaction, and then in Section 3 an arbitrary number of factors, and a generalized linear model
(McCullagh and Nelder 1989) family of no interaction models that include additive, additive odds, multi-
plicative and disjunctive models. In Section 4 we define the analogous versions of AP in terms of odds
ratios. Then we define point estimates and confidence intervals for prospective and retrospective studies in
Section 5, conduct a simulation study in Section 6, analyze the MS data set in Section 7, and conclude with
a discussion in Section 8. Further mathematical and implementation details are given in Appendices A-F.

2 Two predictors

2.1 Marginal and joint effects

Suppose we have p= 2 binary co-factors or predictors, and let

RRðx1, x2Þ= θðx1, x2Þ
θð0, 0Þ

be the relative risk for exposure profile ðx1, x2Þ compared to a baseline risk when exposure is absent. The
attributable proportion APðxÞ=APðx; JÞ in eq. (4) for a subset J � f1, 2g of predictors takes the form

APðx1, x2; f1gÞ= θðx1, x2Þ− θð0, x2Þ
max θðx1, x2Þ, θð0, x2Þ½ � =

RRðx1, x2Þ−RRð0, x2Þ
max RRðx1, x2Þ, RRð0, x2Þ½ � (9)

for the marginal effect of the first factor,

APðx1, x2; f2gÞ= θðx1, x2Þ− θðx1, 0Þ
max θðx1, x2Þ, θðx1, 0Þ½ � =

RRðx1, x2Þ−RRðx1, 0Þ
max RRðx1, x2Þ, RRðx1, 0Þ½ � (10)

for the marginal effect of the second factor, and

APðx1, x2; f1, 2gÞ= θðx1, x2Þ− θð0, 0Þ
max θðx1, x2Þ, θð0, 0Þ½ � =

RRðx1, x2Þ− 1
max RRðx1, x2Þ, 1½ � (11)

for the joint effect of both factors. We see from eqs (9)–(11) that APðx1, x2; JÞ is only a function of relative
risk RRðx1, x2Þ when both factors are considered jointly, or when the effect of one factor is of interest and
exposure from the other confounding factor is absent. In the latter case, if the confounding factor 2 (say) is
exposed as well, APðx1, 1; f1gÞ is also a function of RRð0, 1Þ.

The marginal effect AP=APðJÞ in eq. (5) of predictor 1 is

APðf1gÞ= E θð1,X2Þ½ � −E θð0,X2Þ½ �
max E θð1,X2Þ½ �,E θð0,X2Þ½ �f g .

where expectation is over the exposure distribution of the confounding variable X2. The marginal effect
APðf2gÞ of predictor 2 is analogous.
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The population attributable fraction PAF =PAFðJÞ in eq. (8) is defined as an average of eqs (9)–(11) with
respect to an exposure distribution qðx1, x2Þ =PðX1 = x1,X2 = x2Þ of both predictors. For instance, the marginal
effect of predictor 1 in the population is

PAFðf1gÞ= E θðX1,X2Þ½ �− E θð0,X2Þ½ �
max E θðX1,X2Þ½ �,E θð0,X2Þ½ �f g .

The population attributable fraction of predictor 2 is defined in the same way, reversing the roles of X1 and
X2. The joint effect of both predictor variables is

PAFðf1, 2gÞ= E θðX1,X2Þ½ �− θð0, 0Þ
max E θðX1,X2Þ½ �, θð0, 0Þf g .

2.2 Interaction

Both variables J = f1, 2g are required to define APðxÞ=APðx; J,MÞ of interaction, and therefore J will be
dropped in the notation. We also need a model M of no interaction, and write θremðxÞ= θremðx; MÞ. The
departure from no interaction is referred to as ERIðxÞ= θðxÞ− θremðxÞ, the excess risk due to interaction. It is
usually required that both factors i are turned on (xi = 1) in order for ERI to be nonzero, and then it can
either be positive or negative. For an additive model of no interaction the traditional definition is

θrem,tradð1, 1; AdditiveÞ= θð1, 0Þ+ θð0, 1Þ− θð0, 0Þ.

Insertion into eq. (2) and division by the baseline risk θð0, 0Þ gives

APtradð1, 1; AdditiveÞ= RRð1, 1Þ− RRð0, 1Þ+RRð1, 0Þ− 1½ �
RRð1, 1Þ . (12)

The numerator of eq. (12) is commonly referred to as the interaction contrast ratio (ICR) or the relative
excess risk due to interaction (RERI), whereas the denominator is the relative risk for a subject exposed to
both factors. Their ratio in eq. (12) is a number between 0 and 1 that quantifies the proportion of risk due to
interaction when RERI is positive, but it is negative without a lower bound when RERI < 0. In order to
overcome this deficiency of APtrad, let θiðxÞ= PðY = 1jXi = xÞ be the marginal penetrance function of factor i.
It has been suggested by Rothman (2012) to recode any factor i that is preventive (θið1Þ < θið0Þ) so that both
factors become risk factors (θið1Þ > θið0Þ). Another suggestion of Knol et al. (2011) is to recode variables
jointly, so that the penetrance function is minimized by θð0, 0Þ. A third possibility is to redefine the
denominator of eq. (2) to θð1, 1Þ − θð0, 0Þ, or the one in eq. (12) to RRð1, 1Þ− 1, see Rothman (2012) and
VanderWeele (2013).

Although all three of these suggestions can be helpful, the following example shows that none of them
guarantees an AP between –1 and 1. We assume θð0, 0Þ=0, θð1, 0Þ= θð0, 1Þ=0.5, θð1, 1Þ=0.1 and that all
exposure profiles are equally likely, i. e. qðx1, x2Þ =0.25. It follows that θið0Þ=0.25 and θið1Þ=0.3, so that
both variables are risk factors. Neither marginal nor joint risk considerations will therefore cause any
recoding, but yet

APtradð1, 1; AdditiveÞ= 0.1− ð0.5 + 0.5−0Þ
0.1

= − 9,

the same value as when θð1, 1Þ − θð0, 0Þ is used in the denominator instead.
Our solution is to modify eq. (12) in two ways. First we truncate the predicted risk to a number between

0 and 1, i. e.

θremðx1, x2Þ= θð0, 0Þ+ x1 θð1, 0Þ− θð0, 0Þf g+ x2 θð0, 1Þ − θð0, 0Þf g½ �10, (13)
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where ½θ�ba = max a, minðθ, bÞ½ �, arguing that it makes little sense to have a predictive risk that is not a
probability. Second we apply the new normalization eq. (4) and divide by the baseline risk θð0, 0Þ, so that

APðx1, x2; AdditiveÞ= RRðx1, x2Þ−RRremðx1, x2Þ
max RRðx1, x2Þ, RRremðx1, x2Þ½ � , (14)

where RRremðx1, x2Þ= θremðx1, x2Þ=θð0, 0Þ is the relative risk when interaction between the two factors has
been removed. Defined in this way, eq. (14) is the proportion by which positive/antagonistic interaction
increases risk, and minus the proportion by which protective/negative interaction decreases risk. In
particular, eq. (14) equals –0.9 rather than –9 in the numerical example above. In order to motivate
truncation in eq. (13), consider a second example with θð0, 0Þ =0.3 and θð0, 1Þ = θð1, 0Þ= θð1, 1Þ=0.1. Then
APð1, 1; AdditiveÞ= 1, but it would equal 2 without truncation.

The excess risk due to interaction in eq. (14) is only of interest when x1 = x2 = 1, since otherwise it is zero.
Since there are no confounders in the model (jJj= p= 2), the attributable fraction [14] agrees with AP in
eq. (5) when x1 = x2 = 1. But we need to consider arbitrary exposure profiles ðx1, x2Þ in order to define the
population counterpart PAF= PAFðMÞ of eq. (14) in eq. (8). For two predictors it can be written as

PAFðAdditiveÞ= E RRðX1,X2Þ½ �− E RRremðX1,X2Þ½ �
max E RRðX1,X2Þ½ �,E RRremðX1,X2Þ½ �f g . (15)

When positive, eq. (15) is the fraction of population risk due to additive interaction; when negative, it is
minus the fraction by which such interaction decreases risk.

3 Arbitrary number of predictors

3.1 Marginal and joint effects

For an arbitrary number p of factors, we express in Appendix A.1 several quantities in terms of the relative risk

RRðxÞ= θðxÞ
θðxÞ (16)

of exposure x compared to a scenario 0 = ð0, . . . , 0Þ where exposure is absent for all factors. This includes
the joint attributable proportion APðxÞ=APðx; JÞ in eq. (4) for exposure x, due to factors in J, the
corresponding joint attributable proportion AP=APðJÞ in eq. (5), when averaging over all confounders,
and the joint population attributable fraction PAF=PAFðJÞ for factors J in eq. (8). The marginal attributable
proportion or population attributable fraction for a single non-confounding variable is a special case of
these definitions, with jJj= 1.

3.2 Interaction

Consider an arbitrary subset J of at least two factors, and a model M that belongs to a class of generalized
linear models of no interaction. To each x we associate another vector xJ = ðxJ1, . . . , xJpÞ, whose exposure to
all factors of interest has been removed (xJi =0 if i 2 J), whereas the confounding variables remain at the
levels specified by x (xJi = xi if i ∉ J). With this notation, we can specify the disease risk for a subject with
exposure x and no interaction among the variables in J, as

θrem = θremðx; J,MÞ= g − 1 ρ gðθðxJÞÞ+
X
i2J

βixi

" #( )
, (17)
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where g is a link function that transforms the disease probability θ to regression space, βi = g θðxJ + eiÞ½ �−
g θðxJÞ½ � is a regression coefficient for predictor variable i 2 J that is typically a function of xJ, ei is a unit
vector of length p with one in position i and zeros elsewhere, and ρ a projection that guarantees
θremðx; J,MÞ 2 ½0, 1�.

A number of models (17) are shown in Table 1; the identity link gðθÞ= θ gives an additive model, the
odds link gðθÞ= θ=ð1− θÞ an additive odds model, the canonical logit link gðθÞ= log θ=ð1− θÞ½ � a multi-
plicative model, the log link gðθÞ= logðθÞ a multiplicative risk model and gðθÞ= − logð1− θÞ a multicausal
disjunctive model (Pearl 1988). No truncation is necessary (ρðηÞ= η) for the multiplicative model in order to
ensure θrem 2 ½0, 1�, for the additive model ρðηÞ= ½η�10, for the multiplicative risk model ρðηÞ= ½η�0−∞, and for
the additive odds and disjunctive models ρðηÞ= ½η�∞0 . Our framework also incorporates many other no
interaction models than eq. (17), see Appendix E.

In Appendix A.2 we express a number of quantities in terms of eq. (16) and

RRremðx; J,MÞ = θremðx; J,MÞ
θð0Þ , (18)

the relative risk for exposure x when interaction among all factors in J has been removed. This includes the
attributable proportion APðxÞ=APðx; J,MÞ of interaction in eq. (4) among the factors in J for exposure x,
the corresponding attributable proportion AP=APðJ; MÞ of interaction in eq. (5) when averaging over
confounders, and, finally, the attributable fraction of interaction PAF=PAFðJ,MÞ in eq. (8) among the
factors in J for the whole population.

4 Odds ratios

It is possible to estimate relative risks consistently for cohort studies or case-control studies with incident
cases who developed the disease after exposure (Miettinen 1976). But many case-control studies involve
prevalent cases that were diagnosed before the study began. It is not possible then to estimate relative risks
consistently, unless the sampling fraction of cases and controls is known. But since odds ratios

ORðxÞ= OðxÞ
Oð0Þ =

θðxÞ= 1− θðxÞ½ �
θð0Þ= 1− θð0Þ½ � (19)

can be estimated consistently also for the latter kind of studies (Cornfield 1951, Prentice and Pyke 1979,
Skrondal 2003) they may replace relative risks, both for AP due to marginal effects eq. (34) and interaction
eq. (37).

Table 1: Examples of generalized linear models [17] of no interaction.

Model Link function g(θ) θ(xJ) θ(xJ + ei ) d(O) O(xJ) O(xJ+ei)

Additive θ β0 β0 +βi
O

1 +O
β0

1−β0

β0 +βi
1−β0 −βi

Additive odds θ
1− θ

β0
1 +β0

β0 +βi
1 +β0 +βi

O β0 β0 +βi

Multiplicative logð θ
1− θÞ eβ0

1 + eβ0
eβ0 +βi

1 + eβ0 +βi
logðOÞ eβ0 eβ0 +βi

Multipl. risk logðθÞ eβ0 eβ0 +βi logð O
1 +OÞ eβ0

1− eβ0
eβ0 +β1

1− eβ0 +β1

Disjunctive − logð1− θÞ 1− e−β0 1− e−β0 −βi logð1 +OÞ eβ0 − 1 eβ0 +βi − 1

Note: For each model, g is the link function that transforms the disease probability θ to regression space η=gðθÞ, and d is the function
that similarly links odds O= θ=ð1− θÞ to η= dðOÞ. Risks and odds formulas are shown when exposure is turned on for at most one
of the factors in J � f1, . . . ,pg.
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Consider a subset J � f1, . . . , pg of factors, and a non-interaction model M among them. In Appendix
A.3 we define a number of odds-ratio based quantities in terms of eq. (19) and

ORremðx; J,MÞ= θremðx; J,MÞ= 1− θremðx; J,MÞ½ �
θð0Þ= 1− θð0Þ½ � , (20)

the odds ratio for exposure x when interaction among the factors in J has been removed, with θremðx; J,MÞ
as in eq. (17). This includes the joint attributable proportion APORðx; JÞ of the odds ratio for exposure x due
to the factors in J, the corresponding joint attributable proportion APORðJÞ when averaging the effect of all
confounders, the attributable proportion APORðx; J, MÞ of the odds ratio due to interaction among the
factors in J for exposure x, and finally, the corresponding attributable proportion APORðJ,MÞ of the odds
ratio due interaction among the factors in J, when averaging over the confounding factors. When APOR > 0,
it is the relative proportion of the odds ratio of disease attributed to joint effect or interaction among the
variables in J. On the other hand, when APOR < 0, it is minus the proportion by which joint effect of
interaction among the variables in J decreases the odds of developing the disease.

Odds ratios typically approximate relative risks well for rare diseases. When this is the case, the odds
ratio based versions of the attributable proportion are close to the corresponding risk based quantities of
Section 3. For the models studied by Kalilani and Atashili (2006), the odds ratio approximation was
accurate for diseases with baseline risks up to 0.2. But sometimes the difference is notable, and depending
on disease risks and mode of interaction the odds ratio based attributable proportion may be biased
(Kalilani and Atashili 2006; Zou 2008).

The attributable proportion of the odds ratio due to interaction has a particularly explicit form for the
additive odds model. For instance, when there are p = 2 risk factors and x = ð1, 1Þ, we tacitly assume in the
notation that J = f1, 2g (since otherwise APOR = 0) and find that

APOR 1, 1; Additive oddsð Þ = ORð1, 1Þ− ORð0, 1Þ+ORð1, 0Þ− 1½ �∞0
max ORð1, 1Þ, ORð0, 1Þ+ORð1, 0Þ− 1½ �∞0

� � (21)

is an odds ratio analogue of eqs (13)–(14). The corresponding traditional definition

APOR, trad 1, 1; Additive oddsð Þ = ORð1, 1Þ− ORð0, 1Þ+ORð1, 0Þ− 1½ �
ORð1, 1Þ

can be found for instance in Rothman (2012).

5 Inference

We will outline a unified approach to estimate the attributable proportion eqs (4)–(5) or eqs (40)–(41), and
the population attributable fraction [8] due to joint effects or interaction of an arbitrary subset
J � f1, . . . , pg of factors. It is assumed that a saturated model Msat is fit to data. For the risk-based
quantities eqs (4)–(5) or eq. (8), the parameter vector ψ = ðψxÞ of Msat has 2p components, one for each x.
A linear parametrization of the risk function is

θðxÞ= θðx,ψÞ=ψx. (22)

Another possibility is to parametrize a logit transformation of risk. This was utilized by Hosmer and
Lemeshow (1992) for the traditional definition [12] of AP of interaction with p= 2 risk factors and an additive
model of no interaction. They noted that the disease probability for a subject with exposure x can be
parametrized in two ways. Either

θðxÞ= θðx,ψÞ=
exp

P
y ≤ xψy

� �
1 + exp

P
y ≤ xψy

� � , (23)
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with y = ðy1, . . . , ypÞ and y ≤ x interpreted componentwise, i. e. yi ≤ xi for i= 1, . . . , p, and ψx an interaction
parameter defined for the jxj= Pi xi nonzero risk factors of x. This is an ordinary logistic regression
parametrization for a model with p predictors having 0 as their baseline levels, and interactions of all
orders (Agresti 2013). If all nonzero exposure profiles x are viewed as different levels of one single predictor
variable, then

θðxÞ= θðx,ψÞ= exp ψ0 +ψxð Þ
1 + exp ψ0 +ψxð Þ , (24)

with ψx the log odds of x compared to the baseline level 0. Since the two parametrizations eqs (23) and (24)
only differ by a linear transformation, they give identical inference, although eq. (24) is often simpler. We
can also express the odds ratio eq. (19) conveniently in terms of any of the two logistic parametrizations,
either

ORðxÞ =ORðx,ψÞ= exp
X

0 < y ≤ x

ψy

 !
, (25)

for eq. (23), or

ORðxÞ=ORðx,ψÞ= 1, x =0,

exp ψxð Þ, x ≠0,

(
(26)

for eq. (24). Neither eq. (25) nor eq. (26) involve the baseline parameter ψ0, and therefore we redefine ψ to
equal ðψx; x ≠0Þ when quantities with odds ratios are estimated.

All quantities APðxÞ, APORðxÞ, AP, APOR and PAF of interest are functions

ξ = ξðψÞ = aðψÞ− bðψÞ
max aðψÞ, bðψÞ½ � . (27)

of the parameter vector ψ, with different choices of a and b, as summarized in Table 5. In order to estimate
ξ , suppose we have data ðxi,YiÞ, i= 1, . . . ,N from N subjects, with ψ̂ = ðψ̂xÞ the accompanying maximum
likelihood estimator of ψ̂. If this is a cohort design or some other prospective study, ψ̂ maximizes a
prospective likelihood, the probability of disease given exposure. For the linear parametrization (22) we
have that

ψ̂x =
Nx1

Nx
,

with Nxy the number of subjects i with xi = x and Yi = y, and Nx =Nx0 +Nx1. For either of the two logit scale
parametrizations (23)–(24), we use standard logistic regression software to compute ψ̂. This is also
possible for a case-control study, where sampling is on the response variable, and ψ̂ maximizes a
retrospective likelihood, the probability of exposure given disease, as long as we focus on quantities
that only involve odds ratios (Prentice and Pyke 1979). We estimate ξ by replacing ψ with ψ̂ in eq. (27),
so that

ξ̂ = ξðψ̂Þ = aðψ̂Þ− bðψ̂Þ
max aðψ̂Þ, bðψ̂Þ½ � . (28)

For large N one often approximates the distribution of ψ̂ by a multivariate normal Nðψ,�Þ with asymptotic
covariance matrix �. The denominator of eq. (27) is not differentiable when aðψÞ= bðψÞ. But since the
numerator is zero at such points, ξðψÞ is still differentiable and ξ̂ approximately normally distributed
N ξ , σ2ð Þ with asymptotic variance σ2 =D�DT ,D= ∂ξðψÞ=∂ψ, and DT its transpose. As in Hosmer and
Lemeshow (1992) we use the delta method to find a Wald type confidence interval

I = ξ̂ − z1− α=2σ̂, ξ̂ + z1− α=2σ̂
� �

(29)
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for ξ with asymptotic coverage probability 1− α, where zβ is the β-quantile of a standard normal distribu-
tion, and

σ̂ = ðD̂�̂D̂TÞ1=2 (30)

the standard error of ξ̂ , with �̂ and D̂ estimates of � and D. For the linear parametrization (22), �̂ is a
diagonal matrix with elements

�̂xx =
ψ̂xð1− ψ̂x Þ

Nx
, (31)

since observed risks are independent binomial proportions. For the logit parametrizations, �̂ is available
from standard logistic regression software. A formula for D̂ is derived in Appendix B.

When ξ is close to one of its two boundary values –1 and 1, the distribution of ξ̂ will typically be
skewed, unless the sample size N is very large. Since eq. (22) assumes a symmetric normal distribution of ξ̂ ,
the actual coverage probability πð1− αÞ=Pðξ 2 IÞ may deviate substantially from the nominal 1− α.
This suggests that a conveniently chosen transformation of hðξ̂Þ of ξ̂ will have a distribution closer to
normal. When ξ ∉ f− 1, 1g, the logit type transformation hðxÞ= log ð1 + xÞ=ð1− xÞ½ � gives a Wald confidence
interval

I =
exp hðξ̂Þ− z1− α=2~σ
� �

− 1

exp hðξ̂Þ− z1− α=2~σ
� �

+ 1
,
exp hðξ̂Þ+ z1− α=2~σ

� �
− 1

exp hðξ̂Þ+ z1− α=2~σ
� �

+ 1

0@ 1A, (32)

where ~σ = h′ðξ̂Þσ̂ = 2~σ=fð1 + ξ̂Þð1− ξ̂Þg. Whereas the interval in eq. (29) may extend outside ð− 1, 1Þ, eq. (32) is
always a subset of ð− 1, 1Þ as long as ξ̂ 2 ð − 1, 1Þ. Other confidence interval approaches for ξ that deal
with asymmetric distributions include the methods of variance estimates recovery (Zou 2008), likelihood
ratio based intervals obtained from a saturated additive odds ratio model (Richardson and Kaufman 2009),
nonparametric bootstrap (Assman et al. 1996), with accelerated bias correction (Zou 2008). In Appendix D
we define a bias-corrected and accelerated version of the percentile bootstrap method.

The exposure distribution qðxÞ= PðX = xÞ is assumed to be known in eq. (28) for the population based
AP, PAF and APOR. In Appendix C we show how to compute standard error and confidence intervals when q
is estimated from a prospective study.

6 Numerical illustration and simulation

Figures 1–2 illustrate how normalizations eqs (2) and (4) affect APð1, 1; MÞ of interaction for two
saturated models I and II with p = 2 factors. Model I has two risk factors, whereas II has one risk and
one preventive factor. As expected, the normalization has a large impact for both models when AP is
negative. The model of no interaction influences the value of AP a lot for model I, and to some extent
for model II. Table 2 gives values of the disease risk θremðx; J,MÞ when various types of interaction
among the variables in J is removed. This is done for models I and II, as well as for a model III with p= 3
co-factors.

Table 3 displays estimated coverage probabilities of confidence intervals for the odds ratio based
attributable fraction APORðx; J,MÞ of interaction. Each coverage probability is estimated from a number
of randomly drawn data sets with N=2 cases and controls, generated from the two saturated models I and II
with p= 2 co-factors, and the model III with p= 3. We use two models M of no interaction, additive odds and
multiplicative, and three types of confidence intervals; the delta method (29), the logit delta method (32)
and the bootstrap method (48). It is seen that the accuracy of all three confidence intervals increase with N,
and overall the bootstrap method has the best performance, although the simpler logit delta method works
well for a wide range of models. Appendix F provides more details about the simulation study.
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Table 2: Three saturated models I-III with p risk factors.

Sat.
model

Additive Add odds Disj Mult

p θð0,0Þ θð1,0Þ θð0, 1Þ θð1, 1Þ θ remð1, 1Þ
I  . . . . . . . .
II  . . . . . . . .

p θð0,0,0Þ θð1, 0,0Þ θð0, 1, 0Þ θð0,0, 1Þ θð1, 1,0Þ θð1,0, 1Þ θð0, 1, 1Þ θð1, 1, 1Þ

III  . . . . . . . .

Additive Add odds Disj Mult Additive Add odds Disj Mult

θ remð1, 1,0Þ θ remð1,0, 1Þ

. . . . . . . .
θ remð0, 1, 1Þ θ remð1, 1, 1Þ

. . . . . . . .

Note: For each model, the risks θðxÞ are displayed for all 2p exposure profiles x, and the predicted risks θremðxÞ= θremðx; J,MÞ for
exposure profiles with at least two factors turned on. The latter are based on four different models M of no interaction among all
co-factors (J= f1, . . . ,pg).

Figure 1: Plots of normalized attributable proportion
APð1, 1Þ=APð1, 1; J,MÞ of interaction [37] (solid) and the
corresponding traditional quantity [2] (dashed). The
curves are functions of θð1, 1Þ for a saturated model with
p=2 co-factors, whose other three risks θð0, 0Þ=0.05,
θð1, 0Þ=0.25, θð0, 1Þ=0.4 are the same as for Model I
of Table 2. Both variables are non-confounders
(J= f1, 2g), and three different no interaction models
M are assumed; additive (thick line), additive odds
(upper thin line) and multiplicative (lower thin line).

Figure 2: Plots of normalized attributable proportion
APð1, 1Þ=APð1, 1; J,MÞ of interaction [37] (solid) and the
corresponding traditional quantity [2] (dashed) versus
θð1, 1Þ for a saturated model with p=2 risk factors,
whose other three risks θð0, 0Þ=0.1, θð1, 0Þ=0.05,
θð0, 1Þ=0.15 are the same as for Model II of Table 2.
Both variables are non-confounders (J= f1, 2g), and two
different no interaction models M are assumed; additive
(thick line), and multiplicative (thin line). The curves for
the additive odds model (not shown) are very close to
those of the additive model.
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7 A real data set

MS is a complex and inflammatory disease causing damage to the central nervous system. A number of
family studies indicate a genetic component of the disease, with a major contribution from variants at the
human leukocyte antigen (HLA) complex. It is well known that presence of allele 15 of the HLA-DRB1 gene
is a risk factor, whereas allele 02 of the HLA-A gene has a protective effect (Cree 2014). Several data sets
reveal that environmental factors, in particular smoking, impact the aetiology of the disease as well.
A recent paper of Hedström et al. (2011) demonstrated pairwise positive additive interaction between
these three factors for a Scandinavian case-control data set with 843 cases and 1209 controls. Here we
will redo parts of the analysis, using our novel measures APOR of joint effects and interaction. As in
Hedström et al. (2011), we use a binary coding xDRB1*15 = 1 for an individual with genotype 15/X or 15/15,
xA*02 = 1 if the genotype is Z/Z, and xsmoking = 1 for a current smoker, with X and Z referring to any allele
different from HLA-DRB1*15 and HLA-A*02 respectively. For simplicity, we will not adjust for the confound-
ing effect of age, gender, residential area and ancestry, as in Hedström et al. (2011). Table 4 summarizes
results for different models, three of which have one single factor, one with both genetic factors included,
and one model with all three factors present.

Each one-factor model quantifies the marginal effects of a single covariate, without taking the con-
founding effect of the other two into account. DRB1*15, A*02 and smoking are risk factors, since the
estimated odds ratios cORð1Þ between MS and each factor equals 3.47, 1.63 and 1.58 when the other two

Table 3: Estimates π̂ð1−αÞ of coverage probabilities for confidence intervals of odds ratio based APs of interaction.

Saturated
model

APORðx; J,MÞ Delta Logit delta Bootstrap BCa

x M Value N π̂ð0.95Þ π̂ð0.99Þ π̂ð0.95Þ π̂ð0.99Þ π̂ð0.95Þ π̂ð0.99Þ
I ð1, 1Þ Add odds –.  . . . . . .

, . . . . . .
, . . . . . .

I ð1, 1Þ Mult –.  . . . . . .
, . . . . . .

, . . . . . .

II ð1, 1Þ Add odds .  . . . . . .
, . . . . . .

, . . . . . .

II ð1, 1Þ Mult .  . . . . . .
, . . . . . .

, . . . . . .

III ð1, 1, 0Þ Add odds . , . . . . . .
, . . . . . .

III ð1, 1, 0Þ Mult –. , . . . . . .
, . . . . . .

III ð1, 1, 1Þ Add odds . , . . . . . .
, . . . . . .

III ð1, 1, 1Þ Mult . , . . . . . .
, . . . . . .

Note: APORðx; J,MÞ in eq. (40) of Appendix A.3 quantifies interaction among all co-factors J = f1, . . . ,pg for exposure x, with data
generated from the three saturated models of Table 2, with Additive odds or Multiplicative models of no interaction. The confidence
intervals with nominal coverage 1− α use the delta method (29), the logit delta method (32) or the bias corrected and accelerated
bootstrap method (48) with B= 1000 resamples. The delta methods (bootstrap) employ 1,00,000 (10,000) retrospectively simulated
data sets from the saturated model, with N=2 cases and controls.
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factors are not accounted for, see also Table 1 of Hedström et al. (2011). The fraction of odds ratio
attributable to each factor is

cAPORð1; f1gÞ=
cORð1Þ− 1

max cORð1Þ, 1h i = 0.711, for DRB1*15,

0.387, for A*02,

0.366, for smoking,

8><>:
and the accompanying confidence intervals are displayed in the first three rows of Table 4. This does not
imply that more than 70% of the odds ratio between MS and various risk factors is attributable to DRB1*15,
only that this is the case when no other co-factors or sufficient causes than DRB1*15 are taken into account,
cf. Lekman et al. (2014) for a more extensive discussion. We also notice from Table 4 that the estimated
APOR for DRB1*15 changes very little, to 0.718 and 0.704, when the confounding effect of A*02 is controlled

Table 4: Analysis of the Multiple Sclerosis data set of Hedström et al. (2011). This includes point estimates and confidence
intervals of the odds ratio based attributable proportion APOR for joint effects and interaction, and point estimates of the odds
ratio OR before and odds ratio ORrem after the joint effect or interaction has been removed.

Factors x J M dAPOR
cOR cORrem ILd IBCa

DRB*  f1g . . . (.,.) (.,.)

A*  f1g . . . (.,.) (.,.)

smoking  f1g . . . (.,.) (.,.)

(DRB*, ð1, 0Þ f1g . . . (.,.) (.,.)
A*) ð0, 1Þ f2g . . . (.,.) (.,.)

ð1, 1Þ f1g . . . (.,.) (.,.)
ð1, 1Þ f2g . . . (.,.) (.,.)
ð1, 1Þ f1, 2g . . . (.,.) (.,.)
ð1, 1Þ f1, 2g Add odds . . . (.,.) (.,.)
ð1, 1Þ f1, 2g Mult –. . . (–.,.) (–.,.)

(DRB*, ð1, 0, 0Þ f1g . . . (.,.) (.,.)
A*, ð0, 1, 0Þ f2g . . . (.,.) (.,.)
smoking) ð1, 1, 0Þ f1g . . . (.,.) (.,.)

ð1, 1, 0Þ f2g . . . (–.,.) (–.,.)
ð1, 1, 0Þ f1, 2g . . . (.,.) (.,.)
ð1, 1, 0Þ f1, 2g Add odds . . . (–.,.) (–.,.)
ð1, 1, 0Þ f1, 2g Mult –. . . (–.,.) (–.,.)
ð1, 1, 1Þ f1g . . . (.,.) (.,.)
ð1, 1, 1Þ f2g . . . (.,.) (.,.)
ð1, 1, 1Þ f1, 2g . . . (.,.) (.,.)
ð1, 1, 1Þ f1, 2g Add odds . . . (.,.) (.,.)
ð1, 1, 1Þ f1, 2g Mult . . . (–.,.) (–.,.)
ð1, 1, 1Þ f1, 2, 3g . . . (.,.) (.,.)
ð1, 1, 1Þ f1, 2, 3g Add odds . . . (.,.) (.,.)
ð1, 1, 1Þ f1, 2, 3g Mult . . . (–.,.) (–.,.)

Note: The two genetic variables DRB1*15 and A*02 encode genotypes of human leukocyte antigens in a binary way, as described in the
text, and smoking is an indicator of current smoking. All three variables are binary risk factors, with level 1 indicating increased risk.
Column 1 lists the p 2 f1, 2, 3g co-factors that are included in the model, column 2 displays for each factor whether risk is present (1) or
absent (0), and column 3 shows which co-factors (J 2 f1, . . . ,pg) that are included in APOR, see eq. (40) for a definition. The fourth
column displays whether joint effects (there is no model M of no interaction) or interaction (M is specified) between the factors in J is
estimated. The fifth column either shows point estimates of APORðx; JÞ in eq. (40) for joint effects, or of APORðx; J,MÞ in eq. (42) for
interaction. The sixth column contains point estimates of ORðxÞ in eq. (19), and the seventh column either lists estimates of ORðxJÞ for
joint effects, or of ORremðx; J,MÞ in eq. (20) for interaction. The eighth column is the Logit delta based confidence interval in eq. (32),
and the last column the bootstrapped BCa interval of eq. (48), based on B=20000 replicates. Both confidence intervals have a nominal
coverage probability of 1− α =0.95.
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for at levels 0 and 1, and to 0.728, 0.678 and 0.803 when A*02 and smoking are controlled for jointly, at
levels (0,0), (1,0) and (1,1).

Next we estimate the joint effect of two or more variables, and notice from Table 4 that the estimated
proportion of odds ratio attributable to DRB1*15 and A*02, is 0.821, 0.791 and 0.900 when smoking is not
accounted for, among non-smokers and among smokers respectively. The estimated APOR is even larger,
0.925, for all three variables jointly. This corresponds to an odds ratio that drops from 13.340 to 1 when the
joint effect of all factors is removed.

The framed numbers of Table 4 are estimates of additive APOR of interaction between the two genetic
factors DRB1*15 and A*02 under various smoking scenarios. It is seen that APOR varies substantially; 0.248,
0.118 and 0.593, depending on whether smoking is not accounted for, if only non-smokers are considered, or
if only smokers are included. In the first case the odds ratio drops from 5.576 to 4.196 when interaction
between the two factors is removed, in the second case it drops from 4.782 to 4.220, and in the third case from
13.340 to 5.447. The corresponding confidence intervals in Table 4 agree fairly well with those in Table 5 of
Hedström et al. (2011). We are also able to estimate the proportion of additive interaction (0.660) among all
three factors jointly, which corresponds to an odds ratio that decreases from 13.340 to 4.555 when interaction
among the three variables is removed. The corresponding fractions of odds ratio attributable to multiplicative
interaction between two or three factors are given in Table 4 as well, with accompanying confidence
intervals. For instance, the proportion of multiplicative interaction between DRB1*15 and A*02 is –0.048
when smoking is not accounted for, corresponding to an odds ratio that decreases from 5.856 to 5.576 when
interaction among the two variables is added. The multiplicative interaction is often much weaker than the
additive, in particular for the two genetic risk factors. This implies that the joint effects estimates of APOR are
less sensitive to the levels of the confounding variables, see formula [51] of Appendix E.

Suppose, finally, that the two labels of A*02 are switched (before looking at data). Then this factor
becomes protective, with xA*02 = 1 if the genotype is 2=Z or 2/2, and the estimated odds ratio between A*02
and MS changes from 1.63 to 1/1.63. Consequently, the estimated marginal attributable proportion

cAPORð1; f1gÞ= 1=1.63− 1
maxð1=1.63, 1Þ = −0.386

for A*02 becomes negative, with a 95% confidence interval ð−0.490, −0.273Þ for the logit delta method, and
ð−0.487, −0.267Þ for the bootstrap method. The proportion of odds ratio due to additive interaction between
DRB1*15 and A*02 becomes negative as well (–0.280) when smoking is not controlled for, with 95%
confidence intervals ð−0.482, −0.051Þ and ð−0.468, −0.022Þ for the logit delta and bootstrap methods.

Table 5: Examples of quantities ξ in eq. (27).

ξ aðψÞ bðψÞ Type of quantity

APðx; JÞ θðx,ψÞ θðxJ,ψÞ Joint effect
APðJÞ P

xθðxJ,ψÞqðxÞ
P

xθðxJ,ψÞqðxÞ
PAFðJÞ P

xθðx,ψÞqðxÞ
P

xθðxJ,ψÞqðxÞ
APORðx; JÞ ORðx,ψÞ ORðxJ,ψÞ
APORðJÞ

P
xORðxJ,ψÞqðxÞ

P
xORðxJ,ψÞqðxÞ

APðx; J,MÞ θðx,ψÞ θremðx,ψ; J,MÞ Interaction
APðJ,MÞ P

xθðxJ,ψÞqðxÞ
P

xθremðxJ,ψ; J,MÞqðxÞ
PAFðJ,MÞ P

xθðx,ψÞqðxÞ
P

xθremðx,ψ; J,MÞqðxÞ
APORðx; J,MÞ ORðx,ψÞ ORremðx,ψ; J,MÞ
APORðJ,MÞ P

xORðxJ,ψÞqðxÞ
P

xORremðxJ,ψ; J,MÞqðxÞ

Note: All risk based quantities involve the θðx,ψÞ, given by either of eqs (22)–(24). The odds ratio based quantities involve ORðx,ψÞ in
eqs (25) or (26). The quantity θremðx,ψ; J,MÞ in rows 6–8 refers to the risk function [17] when interaction among the variables in J
has been removed according to model M, see Table 6. The quantity ORremðx,ψ; J,MÞ in the last two rows refers to the odds ratio [20]
when interaction among the variables in J has been removed, see Table 7. The exposure distribution in the study population is qðxÞ.
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8 Discussion

We studied the attributable proportion (AP) and its population counterpart (PAF) for models of disease that
involve a number of binary predictor variables. The definition of AP and PAF was extended in several ways.
First, we put AP and PAF for joint effects, marginal effects and interaction into a general framework.
Second, we introduced a novel normalization of AP and PAF between –1 and 1, with a natural interpretation
in terms of proportion of risk attributable to removing or adding joint or interaction effects. Third, we
allowed for an arbitrary number of co-factors and subsets thereof for which exposure is of main concern,
whereas the other confounders are controlled for. Fourth, our framework incorporates not only additive
models of no interaction, but also various other models. Fifth, we outlined a general approach for point
estimates and various types of confidence intervals for prospective or case-control studies.

Several extensions are possible. First, we assume that a null model M of no interaction is embedded
into a larger saturated model Msat. For a logit parametrization of risk, the multiplicative model is a linear
subspace of Msat, but other null models are more complicated curved exponential families (Lehmann and
Casella 1998). An advantage of our approach is that no parameter estimates are needed for M, whereas
those for Msat are straightforward; binomial proportions or output from standard logistic regression soft-
ware. Apart from this we only need formulas for how M predicts risks or odds, and the derivatives of these
predictions with respect to model parameters. Our approach requires data for all 2p exposure profiles in
order to estimate the parameters of the saturated model. If such data is not available, it is better to use a
smaller alternative model than MsatnM, or to reduce p.

Second, our confidence intervals for the attributable proportion can be used to define Wald type
goodness of fit tests, which reject no joint effects or interaction among the tested factors whenever the
confidence intervals do not include 0. One may also employ a likelihood ratio test between the smaller null
model and MsatnM. But this approach is less feasible when the null model is a complex no interaction model
M, with a maximum likelihood estimator that is possibly much more complicated than the estimate for Msat.

Third, there is sometimes no á priori knowledge of which co-factor levels to use as baseline. For
instance, among a pair of SNPs it may not be known which one that increases disease risk. Then one may
use the symmetrized version

APsymm =
jθð1, 1Þ+ θð0, 0Þ− θð0, 1Þ+ θð1, 0Þ½ �j
max θð1, 1Þ+ θð0, 0Þ, θð0, 1Þ + θð1, 0Þ½ � (33)

to quantify departures from an additive model of no interaction, since it is invariant with respect to labeling
of the two factors, and takes a value between 0 and 1. A value of 0 indicates no additive interaction, and
positive values that additive interaction is present. Since the labeling of at least one risk factor is arbitrary,
we cannot decide whether interaction departs negatively or positively from the additive model. The odds
ratio version APsymm

OR replaces θðx1, x2Þ by ORðx1, x2Þ in eq. (33). Because of the singularity at 0, it is not
straightforward to produce confidence intervals for the risk or odds ratio based versions of APsymm though,
and a Bayesian approach might be preferable.

Fourth, attributable fractions have been used for models where some or all of the p covariates are
continuous, see Eide (2001) and references therein. Our new definitions eqs. (4), (5) and (8) of the
attributable proportion and population attributable fraction apply to these settings as well. However, the
parameter vector ψ becomes infinite dimensional, and a challenging topic for future research is to modify
the inference procedure of Section 5 to this setting. See also Moore (2004) and Moore et al. (2006) for
nonparametric machine learning and data mining approaches to quantify interaction for binary predictors.

Fifth, the synergy index is a measure of additive interaction of two risk factors x. It has been advocated
by Skrondal (2003) as less sensitive to additional covariates associated to the disease but not to x = ðx1, x2Þ,
see also Greenland (1993). A generalized version

Sðx; J,MÞ= θðxÞ− θðxJÞ
θremðx; J,MÞ− θðxJÞ =

RRðxÞ−RRðxJÞ
RRremðx; J,MÞ−RRðxJÞ
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of the synergy index could be defined for any no interaction model M and number of risk factors, or a
version SORðx; J,MÞ that uses odds ratios instead of relative risks. They predict increased risk or OR, with
values exceeding 1, when interaction among the variables in J is positive or synergetic. Point estimates and
confidence intervals for Sðx; J,MÞ and SORðx; J,MÞ are obtained as in Section 5. The latter assume
asymptotic normality of Ŝ, or of logðŜÞ, if it is known á priori that S > 0 (Rothman 1976b).

In summary, we argue our unified theory for AP and PAF of joint effects or interactions among an
arbitrary number of factors contributes with significant knowledge to understand synergies of biological
and environmental factors that influence health and disease.

Appendix A. General definitions of attributable proportions
and its generalizations in terms of risk ratios and odds ratios

A.1 Marginal and joint effects

Consider a subset J � f1, . . . , pg of factors, and an exposure vector x = ðx1, . . . , xpÞ. The joint attributable
proportion of risk in eq. (4) due to the factors in J, can be expressed in terms of the risk ratio [16], as

APðx; JÞ= RRðxÞ−RRðxJÞ
max RRðxÞ, RRðxJÞ½ � , (34)

where xJ is the vector for which exposure to all factors in J has been removed (see Section 3.2). This follows
by first substituting θremðxÞ= θðxJÞ into eq. (4), and then dividing the numerator and denominator of this
equation by θð0Þ.

In order to define the joint attributable proportion of risk eq. [5] among the factors in J, we associate to
each x another vector xJ = ðxJ1, . . . , xJpÞ, whose exposure to all factors i 2 J has been added or turned on
(xJi = 1), whereas all confounding factors i ∉ J remain at the levels specified by x (xJi = xi). Let also X refer to
the exposure vector of a randomly chosen individual. Then eq. (5) takes the form

APðJÞ= E RRðXJÞ� �
− E RRðXJÞ½ �

max E RRðXJÞ½ �,E RRðXJÞ½ �f g , (35)

with expectation referring to the average effect of the confounders. This follows by substituting
θaddðxÞ= θðxJÞ into eq. (5), and then dividing the numerator and denominator of this equation by θð0Þ.
The joint population attributable fraction [8] due to the factors in J, is similarly expressed as

PAFðJÞ= E RRðXÞ½ �−E RRðXJÞ½ �
max E RRðXÞ½ �, E RRðxJÞ½ �f g . (36)

A.2 Interaction

The versions eq. (4) and (5) of the attributable fraction due to interaction among the variables in J can be
expressed in terms of the risk ratios [16] and [18], as

APðx; J,MÞ= RRðxÞ−RRremðx; J,MÞ
max RRðxÞ, RRremðx; J,MÞ½ � (37)

for a fixed exposure vector x, and as

APðJ; MÞ= E RRðXJÞ� �
− E RRremðXJ; J,MÞ� �

max E RRðXJÞ½ �, E RRremðXJ; J,MÞ½ �f g (38)
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when averaging over confounders. The population attributable fraction [8] due to interaction among the
factors in J is similarly rewritten as

PAFðJ,MÞ = E RRðXÞ½ �−E RRremðx; J,MÞ½ �
max E RRðXÞ½ �,E RRremðx; J,MÞ½ �f g . (39)

A.3 Odds ratio based quantities

The odds ratio versions of attributable proportion use odds ratios [19] and [20] instead of relative risks in
eqs (34)–(35) and eqs (37)–(38). By making such a substitution, we find that

APORðx; JÞ= ORðxÞ −ORðxJÞ
max ORðxÞ, ORðxJÞ½ � , (40)

APORðJÞ=
E ORðXJÞ� �

− E ORðXJÞ½ �
max E ORðXJÞ½ �,E ORðXJÞ½ �f g , (41)

APORðx; J,MÞ= ORðxÞ−ORremðx; J,MÞ
max ORðxÞ, ORremðx; J,MÞ½ � (42)

and

APORðJ; MÞ= E ORðXJÞ� �
−E ORremðXJ; J,MÞ� �

max E ORðxJÞ½ �, E ORremðXJ; J,MÞ½ �f g . (43)

Appendix B. Delta based confidence interval

In this appendix we describe how to produce delta based confidence intervals for ξ in eq. (27). This quantity
either corresponds to one of the five notions AP(x; J), AP(J), PAF(J), APOR(x; J), APOR(J) of attributable
proportion or fraction for joint effects in eqs (34)–(36) and eqs (40)–(41), and the corresponding quantities
AP(x; J,M), AP(J,M), PAF(J,M), APOR(x; J,M), APOR(J,M) for interaction in eqs (37)–(39) and eqs (42)–(43). For
each of these quantities, ξ = ξðψÞ involves the parameter vector ψ and the two functions a= aðψÞ and
b= bðψÞ, as shown in Table 5. The population based quantities APðJÞ, PAFðJÞ, APORðJÞ of joint effects, and
APðJ; MÞ, PAFðJ; MÞ, APORðJ; MÞ of interaction, involve the exposure distribution q as well. In this
appendix it is assumed to be known, but in Appendix C we extend the analysis to situations where q is
estimated from a prospective study.

Let ψ̂ the the maximum likelihood estimator of ψ, and ξ̂ = ξðψ̂Þ the accompanying plug in estimate of ξ .
The two delta based confidence intervals (29) and (32) involve the standard error eq. (30) of ξ̂ . In order to
find the standard error we need an estimate �̂ of the covariance matrix of ψ̂. For a linear parametrization of
the risk function, eq. (31) describes how to compute �̂, and for a logit parametrization, it is available from
standard logistic regression software. The other quantity D̂ of the standard error is an estimate of
D= ∂ξðψÞ=∂ψ, the derivative of ξ with respect to the parameter vector ψ. In order to compute D we introduce
A=daðψÞ=dψ and B=dbðψÞ=dψÞ. Differentiating eq. (27) with respect to ψ, we get

DðψÞ= AðψÞ−BðψÞ
max aðψÞ, bðψÞ½ �
− 1faðψÞ > bðψÞg

aðψÞ− bðψÞ½ �AðψÞ
aðψÞ2

− 1faðψÞ < bðψÞg
aðψÞ− bðψÞ½ �BðψÞ

bðψÞ2 ,

(44)
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with 1Ω the indicator function of Ω, which equals 1 when Ω holds and 0 otherwise. Although there is a point
of discontinuity of the derivative of the denominator of eq. (27), D is still differentiable, since the numerator
vanishes at such points. We estimate eq. (44) by

D̂=Dðψ̂Þ,

and insert this estimate into eq. (30) in order to obtain the standard error of ξ̂ .
The two parametrizations ψ1 = ψ1

x; x 2 f0, 1gp� 	
and ψ2 = ψ2

x; x 2 f0, 1gp� 	
of the saturated logistic

regression model in eqs (23) and (24), only differ by a linear transformation

ψ2
x =

ψ1
0, x =0,P
0 < y ≤ x ψ

1
y, x ≠0,

(

or equivalently

ψ2 =ψ1C, (45)

for a square matrix C of order 2p. This implies ξ 1ðψ1Þ= ξ 2ðψ1CÞ, ψ̂2 = ψ̂1C, �̂2 =CT�̂1C and D̂1 = D̂2CT .
Therefore the two parametrizations give identical point estimates ξ̂ = ξ iðψ̂iÞ, standard errors
σ̂ = ðD̂i�̂iD̂T

i Þ1=2, delta based and logit delta based confidence intervals. It can be shown, by a Taylor
expansion argument, that the linear parametrization (22) gives identical standard errors and (logit) delta
based confidence intervals as well.

Example 1 (Odds ratio based AP of interaction between two predictors.). We illustrate the two logit
parametrizations for p = 2 factors, where ξ =APOR ð1, 1Þ; J,M½ � quantifies interaction between two predictors
J = f1, 2g by means of a no interaction model M. We suppress J in the notation and notice from Table 5 that
eq. (27) holds with aðψÞ=OR ð1, 1Þ,ψ½ � and bðψÞ=ORrem ð1, 1Þ,ψ; M½ �. Since none of the two logit parame-
trizations include the baseline risk ψ00, we write their parameter vectors as ψi = ðψi

01,ψ
i
10,ψ

i
11Þ for i= 1, 2. It

follows from eqs (25)–(26) that these reduced parameter vectors satisfy the same type of linear relationship
[45] as the non-reduced vectors, with

C =

1 0 1

0 1 1

0 0 1

0B@
1CA,

so that ψ1
01 =ψ

2
01 =ψ01, ψ

1
10 =ψ

2
10 =ψ10, and ψ2

11 =ψ01 +ψ10 +ψ
1
11. From eqs (25)–(26) we find that

aðψ1Þ= expðψ1
01 +ψ

1
10 +ψ

1
11Þ,

aðψ2Þ= expðψ2
11Þ,

are functions of the chosen parametrization, but not of the no interaction model M. Taking the derivative
with respect to ψ, it follows that

Aðψ1Þ= aðψ1Þð1, 1, 1Þ,
Aðψ2Þ= aðψ2Þð0, 0, 1Þ.

By Table 7, bðψÞ only depends on first two coordinates ψ01 and ψ10 of the parameter vector, and hence is the
same for both parametrizations. We have that

bðψ1Þ= bðψ2Þ=
expðψ01Þ+ expðψ10Þ− 1, M = Additive odds,

expðψ01 +ψ10Þ, M = Multiplicative.

(
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Differentiating with respect to ψ we obtain

Bðψ1Þ=Bðψ2Þ=
expðψ01Þ, expðψ10Þ, 0½ �, M = Additive odds,

bðψ2Þð1, 1, 0Þ, M = Multiplicative.

(

Appendix C. Delta based confidence interval with unknown
exposure distribution

In the definition of ξ̂ for the population based quantities AP, PAF and APOR, it is assumed that the
regression parameters ψ are unknown, whereas the exposure distribution q is known. Since this is rarely
the case, q has to be estimated. Fortunately it is possible to enlarge the parameter vector ψ to include q as
well. We will outline how the standard error σ̂ for a prospective study can be computed, so that formulas
[29] and [32] still apply for the two delta based confidence intervals.

Suppose the exposure distribution q= fqðxÞ; x 2 f0, 1gpg is unknown, represented as a probability
vector with 2p − 1 free parameters. This gives an enlarged parameters vector

�ψ = ðψ, qÞ
that includes effect as well as exposure distribution quantities. Since AP, PAF and APOR all depend on the
exposure distribution, we write these quantities as

ξ = ξð�ψÞ= að�ψÞ− bð�ψÞ
max að�ψÞ, bð�ψÞ½ � (46)

instead of eq. (27). For a prospective study with data fðxi,YiÞ; i= 1, . . . ,Ng, we estimate the exposure
distribution as

q̂ðxÞ= Nx

N
,

for all binary vectors x of length p, with Nx the number of subjects i with xi = x. Let �̂ψ = ðψ̂, q̂Þ be the vector of
estimated effect and exposure distribution parameters, with q̂= fq̂ðxÞ; x 2 f0, 1gpg. Insertion into eq. (46)
gives a plug in estimate

ξ̂ = ξð �̂ψÞ= að �̂ψÞ− bð �̂ψÞ
max½að �̂ψÞ, bð �̂ψÞ�

of ξ . The two delta based confidence intervals eqs (29) and (32) still apply, with a standard error computed
as

σ̂ = �̂D �̂��̂D
T


 �1=2

(47)

instead of eq. (30). Here �̂D= �Dð �̂ψÞ is an estimate of �Dð�ψÞ=dξð�ψÞ=d�ψ, computed similarly as in eq. (44), and

�̂�= �̂ 0
0 �̂q


 �
is an estimate of the covariance matrix �� of the enlarged parameter vector, using the fact that the effect and
exposure parameters are asymptotically orthogonal. Since Nq̂ has a multinomial distribution, the estimated
covariance matrix of the exposure parameters q̂, has elements

�̂q, xy =
q̂ðxÞ 1− q̂ðxÞ½ �=N, x = y,
− q̂ðxÞq̂ðyÞ=N, x ≠ y.

�
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Appendix D. Bootstrap BCa confidence interval

We use nonparametric bootstrap (Efron and Tibshirani 1993) and define for each resampled data set
ðx*1 ,Y*

1 Þ, . . . , ðx*N ,Y*
NÞ a corresponding estimate ξ̂ * = ξðψ̂*Þ, where

ψ̂* = ψ̂ fx*i ,Y*
i g

� 	
.

The resampled data points ðx*i ,Y*
i Þ are drawn randomly with replacement from the original data set

fðxi,YiÞgNi= 1 for a prospective study, and separately with replacement within controls and cases for
a retrospective study, keeping the total number of controls and cases fixed in each resample. The bias-
corrected accelerated percentile method of Efron (1987) is based on B independent replicates ξ̂ *1 , . . . , ξ̂

*
B

of ξ̂ *, and a confidence interval

I = ξ̂ *ð½Bπ1�Þ, ξ̂
*
ð½Bπ2�Þ

� �
(48)

with asymptotic coverage 1− α, where ξ̂ *ð1Þ ≤ . . . ≤ ξ̂ *ðBÞ are the ordered ξ̂ *i ,

π1 =Φ ẑ +
ẑ + zα=2

1− âðẑ + zα=2Þ

 �

,

π2 =Φ ẑ +
ẑ + z1− α=2

1− âðẑ + z1− α=2Þ

 �

,

Φ is the cumulative distribution function of a standard normal,

ẑ = z PB

i= 1
1ξ̂*
i
≤ ξ̂g=B

n o
a bias correction term, and

â=

PN
i= 1 ðξ̂ ð�Þ − ξ̂ ð− iÞÞ

3

6
PN

i= 1 ðξ̂ ð�Þ − ξ̂ ð− iÞÞ
2n o3=2

,

an acceleration term that is a rescaled estimate of the skewness of the influence function of ξ̂ (Hampel et al.
1986), with ξ̂ð− iÞ the leave one out estimate of ξ for the original data set, when one observation ðxi,YiÞ is
removed, and ξ̂ð�Þ =

PN
i= 1 ξ̂ð− iÞ=N. Notice that π1 = α=2 and π2 = 1− α=2 when ẑ = â =0.

Appendix E. Risks and odds ratios when interaction is removed

Suppose a specific model of no interaction M is chosen, and that we want to assess the amount
of interaction among the co-factors in J. For a prospective study we use either of the three quantities
APðx; J,MÞ, APðJ,MÞ or PAFðJ,MÞ, and it follows from Table 5 that this requires expressions for
θremðx,ψ; J,MÞ, the disease risk when interaction among the variables in J is absent. For a retrospective
study we use either of the two quantities APORðx; J,MÞ and APORðJ,MÞ, which requires analogous formulas
for the odds ratio ORremðx,ψ; J,MÞ when there is no interaction among the variables in J. In this appendix
we provide the required expressions for θremðx,ψ; J,MÞ and ORremðx,ψ; J,MÞ.
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E.1 Prospective studies

Table 6 provides expressions for θremðx,ψ; J,MÞ for some of the generalized linear models M of no
interaction in eq. (17). Formulas are given for the linear and the two logistic parametrizations of ψ in
eqs (22)–(24). Due to presence of the baseline risk parameter ψ0, several expressions are quite complicated.
For this reason, it is important to adapt parametrization to the assumed model of no interaction, using the

Table 6: Disease risk θremðx,ψ; J,MÞ for exposure profile x when interaction among the factors in J has been removed.

p M x J ψ θremðx,ψ; J,MÞ
 Mult (,) f1, 2g lin ψ01

1−ψ01
� ψ10
1−ψ10

� 1−ψ00
ψ00



1 + ψ01

1−ψ01
� ψ10
1−ψ10

� 1−ψ00
ψ00

� �
logit expðψ00 +ψ01 +ψ10Þ

1 + expðψ00 +ψ01 +ψ10Þ
Add (,) lin ψ01 +ψ10 −ψ00

logit expðψ00 +ψ01Þ
1 + expðψ00 +ψ01Þ +

expðψ00 +ψ10Þ
1 + expðψ00 +ψ10Þ −

expðψ00Þ
1 + expðψ00Þ

Disj (,) lin 1− ð1−ψ01Þð1−ψ10Þ=ð1−ψ00Þ
logit 1− exp − logð1 + eψ00 +ψ01 Þ− logð1 + eψ00 +ψ10 Þ+ logð1 + eψ00 Þ½ �

Mrisk (,) lin ψ01ψ10=ψ00

logit expðψ00 +ψ01Þ
1 + expðψ00 +ψ01Þ �

expðψ00 +ψ10Þ
1 + expðψ00 +ψ10Þ �

1 + expðψ00Þ
expðψ00Þ

 Mult (,,) f1, 2, 3g lin ψ010
1−ψ010

� ψ100
1−ψ100

� 1−ψ000
ψ000

= 1 + ψ010
1−ψ010

� ψ100
1−ψ100

� 1−ψ000
ψ000

� �
logit expðψ000 +ψ010 +ψ100Þ

1 + expðψ000 +ψ010 +ψ100Þ

(,,) logit expðψ000 +ψ001 +ψ100Þ
1 + expðψ000 +ψ001 +ψ100Þ

(,,) logit expðψ000 +ψ001 +ψ010Þ
1 + expðψ000 +ψ001 +ψ010Þ

(,,) logit expðψ000 +ψ001 +ψ010 +ψ100Þ
1 + expðψ000 +ψ001 +ψ010 +ψ100Þ

(,,) f1, 2g logit expðψ000 +ψ010 +ψ100Þ
1 + expðψ000 +ψ010 +ψ100Þ

(,,) [] expðψ000 +ψ001 +ψ010 +ψ100 +ψ011 +ψ101Þ
1 + expðψ000 +ψ001 +ψ010 +ψ100 +ψ011 +ψ101Þ

[] expðψ000 +ψ011 +ψ101 −ψ001Þ
1 + expðψ000 +ψ011 +ψ101 −ψ001Þ

Add (,,) f1, 2, 3g lin ψ010 +ψ100 −ψ000

logit expðψ000 +ψ010Þ
1 + expðψ000 +ψ010Þ +

expðψ000 +ψ100Þ
1 + expðψ000 +ψ100Þ −

expðψ000Þ
1 + expðψ000Þ

(,,) lin ψ001 +ψ100 −ψ000

logit expðψ000 +ψ001Þ
1 + expðψ00 +ψ001Þ +

expðψ000 +ψ100Þ
1 + expðψ000 +ψ100Þ −

expðψ000Þ
1 + expðψ000Þ

(,,) lin ψ001 +ψ010 −ψ000

logit expðψ000 +ψ001Þ
1 + expðψ00 +ψ001Þ +

expðψ000 +ψ010Þ
1 + expðψ000 +ψ010Þ −

expðψ000Þ
1 + expðψ000Þ

(,,) lin ψ001 +ψ010 +ψ100 − 2ψ000

logit expðψ000 +ψ001Þ
1 + expðψ000 +ψ001Þ +

expðψ000 +ψ010Þ
1 + expðψ000 +ψ010Þ +

expðψ000 +ψ100Þ
1 + expðψ000 +ψ100Þ −

2 expðψ000Þ
1 + expðψ000Þ

(,,) f1, 2g lin ψ010 +ψ100 −ψ000

logit expðψ000 +ψ010Þ
1 + expðψ000 +ψ010Þ +

expðψ000 +ψ100Þ
1 + expðψ000 +ψ100Þ −

expðψ000Þ
1 + expðψ000Þ

(,,) lin ψ011 +ψ101 −ψ001

[] expðψ000 +ψ001 +ψ010 +ψ011Þ
1 + expðψ000 +ψ001 +ψ010 +ψ011Þ +

expðψ000 +ψ001 +ψ100 +ψ101Þ
1 + expðψ000 +ψ001 +ψ100 +ψ101Þ −

expðψ000 +ψ001Þ
1 + expðψ000 +ψ001Þ

[] expðψ000 +ψ011Þ
1 + expðψ000 +ψ011Þ +

expðψ000 +ψ101Þ
1 + expðψ000 +ψ101Þ −

expðψ000 +ψ001Þ
1 + expðψ000 +ψ001Þ

Note: Each disease risk θremðx,ψ; J,MÞ is based on an assumed model of no interaction M among a subset J � f1, . . . ,pg of the p co-
factors, for a given exposure profile x = ðx1, . . . , xpÞ. The vector ψ = ðψxÞ contains the 2p parameters, either on the linear [22] or logit risk
scale [23]–[24]. For each model, the table includes those x for which at least two factors in J are turned on. An entry ’logit’ in the
parameter column means that both eqs (23) and (24) apply. All models M are from Table 1, with Mrisk =Multiplicative risk,
Disj = Disjunctive, Add=Additive and Mult =Multiplicative.
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linear parametrization for an additive model of no interaction, and any of the two logit parametrizations for
a multiplicative model of no interaction. More generally, it is appropriate parametrize ψ using the same link
function transformation g of risk, as in eq. (17).

But our framework includes other ways of choosing the model of no interaction. When no variables are
confounders (J = f1, . . . , pg), two possible models are

θrem x,ψ; f1, . . . , ng,Mð Þ= ψ0 +ψ11fx ≠0g, M dominant,

ψ0 +ψ11fx = 1g, M recessive.

(
(49)

They both involve two parameters ψ0 and ψ1 of the linear saturated model [22]; the disease risk for an
individual exposed to no (x =0= ð0, . . . , 0Þ) or all (x = 1 = ð1, . . . , 1Þ) factors. It is also possible to divide the
population into strata with different mechanisms of interaction (Westerlind et al. 2014), viewed as a
Bayesian network (Koski and Noble 2009). Other models of no interaction impose monotonicity constraints
on θremðxÞ (Traskin et al. 2013).

E.2 Retrospective studies

Table 7 provides ORremðx,ψ; J,MÞ expressions for two models M of no interaction and either of the two logit
parametrizations (25)–(26) of ψ. Since the baseline parameter is absent, many of the formulas in Table 7 are
simpler than those of Table 6.

We can use Table 7 (or more generally formula (17)) to deduce that APORðx; JÞ of joint effects is independent
of the levels of the confounding variables when there is multiplicative non-interaction among the variables
in J. Indeed, assuming an odds ratio parametrization (25), we notice that

ORðx,ψÞ=ORremðx,ψ; J, MultiplicativeÞ= exp ψxJ +
X
i2J

xiψxJ + ei

 !
. (50)

Table 7: Odds ratios ORremðx,ψ; J,MÞ for exposure profile x when interaction among the factors in J is removed.

p M x J ψ ORremðx,ψ; J,MÞ
 Multiplicative (,) f1, 2g logit expðψ01 +ψ10Þ

Additive odds (,) logit expðψ01Þ+ expðψ10Þ− 1

 Multiplicative (,,) f1, 2, 3g logit expðψ010 +ψ100Þ
(,,) logit expðψ001 +ψ100Þ
(,,) logit expðψ001 +ψ010Þ
(,,) logit expðψ001 +ψ010 +ψ100Þ
(,,) f1, 2g logit expðψ010 +ψ100Þ
(,,) [] expðψ001 +ψ010 +ψ100 +ψ011 +ψ101Þ
(,,) [] expðψ011 +ψ101 −ψ001Þ

Additive odds (,,) f1, 2, 3g logit expðψ010Þ+ expðψ100Þ− 1
(,,) logit expðψ001Þ+ expðψ100Þ− 1
(,,) logit expðψ001Þ+ expðψ010Þ− 1
(,,) logit expðψ001Þ+ expðψ010Þ+ expðψ100Þ− 2
(,,) f1, 2g logit expðψ010Þ+ expðψ100Þ− 1
(,,) [] expðψ010 +ψ001 +ψ011Þ+ expðψ100 +ψ001 +ψ101Þ− expðψ001Þ
(,,) [] expðψ011Þ+ expðψ101Þ− expðψ001Þ

Note: The odds ratios ORremðx,ψ; J,MÞ are based on an assumed model M of no interaction among the factors in J � f1, . . . ,pg, for a
given exposure profile x, where ψ = ðψx ; x≠0Þ contains the 2p − 1 non-baseline parameters of the saturated logistic regression model
[25] or [26]. An entry ’logit’ for ψ means that both parametrizations (25) or (26) apply. For each model, the table includes those x for
which at least two factors in J are turned on.
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Inserting eq. (50) into eq. (40), we find that

APORðx; JÞ= Oðx,ψÞ=OðxJ ,ψÞ− 1
max Oðx,ψÞ=OðxJ ,ψÞ, 1½ � =

expðP
i2J

xiψxJ + ei
Þ− 1

max expðP
i2J

xiψxJ + ei
Þ, 1

" # , (51)

independently of the levels xi of the confounding variables i≠ J.

Appendix F. Details from simulation study

The retrospective simulation study of Section 6 (and Table 3) contains a number of data sets with N=2 cases
and N=2 controls, for three models I, II and III of no interaction. For each simulated data set, exposure
profiles were generated independently from

PðxjY = yÞ= qðxÞ 1− θðxÞ½ �= 1−EðθðXÞÞ½ �, y =0,
qðxÞθðxÞ=EðθðXÞÞ, y = 1,

�
(52)

and some conveniently chosen prior distribution q. In most runs of the present simulation study, the prior
eq. (52) was uniform qðxÞ ≡ 2− p.

If N is too small, estimates of ψ may be ill-conditioned for data sets that lack some exposure profile x
among cases (Nx1 = 0) or among controls (Nx0 = 0). This may happen if either θðxÞ or 1− θðxÞ is small. Since
the saturated model is used for inference, N � 2p is required. For simulated data sets, the prior distribution
q in eq. (52) can be adjusted in order to minimize the required N. This is particularly important for the
bootstrap confidence interval method of Appendix D, since each simulated data set must be resampled B
times, and some of the resampled estimates ψ̂* may be even more ill-conditioned than ψ̂.

In order to avoid ill-conditioned estimates, we employed non-uniform priors in Table 3 for the following
runs: For Model I we used qð0, 0Þ= 4=7, qð1, 0Þ = qð0, 1Þ= qð1, 1Þ= 1=7 for all three methods when N = 500,
and for the bootstrap also when N = 1000. For Model II we chose qð0, 0Þ= 2=7, qð1, 0Þ= 3=7,
qð0, 1Þ= qð1, 1Þ= 1=7 for all three methods when N = 500, and for the bootstrap also when N = 1000. For
Model III we defined qðxÞ to be inversely proportional to min θðxÞ, 1− θðxÞ½ � for the bootstrap when N = 1000.
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