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Foreword

These notes are based on lecturaes given at Goteborgs Universitet
during spring 1968. They are aimed at giving a fairly elementary and
deteiled introduction to the basic concepts of category theory and
thus prepare the reader for the study fMitchell's moncgraph {18},
Gabriel's paper on abelian categories {101, etc. A second volume of
notes with emphasis on the theory of Grothendieck categories will,

hopefuliy, appear later.
Gsiteborg, August 1969



Introductian

Instead of trying to give an account of the subject matter of
category theory we will just mention a few examples which illustrate

the applications of the theory of categories and functors.

A) Homology theory: The purpose of algebraic topology is to carry

over as much as possible of topology to algebra, since algebra lends
itself better to computations. An example of 'such a transition from
topology to algebra is given by homology theories. A homology theory

H assigns to each topological space X an abelian group H(X) which
is called the "homology group" of X, and furthermore assigns to

pach continuous map f: X -» Y of topological spaces a corrssponding
group homomorphism H(f): H(X)-e H(Y). This assignment should satisfy
the following conditions in Eilenberg - Steentod's axiomatization of
homology theory:

1) H(idx) = 1dyiyye
2) H(gf) = H(g)+H(f) when Ff: X—> Y and g3 Y- Z,
3) - 7) see [B], Ch. I, § 3.

We are here only interested in the first two axioms, which guarantes
the "naturality" of H. In functor terminology they say that the
assignment X —H(X), f— H(f) is a functor from the category of
topological spaces and continuous maps to the category of abelian
groups and group homomorphisms. The categorical terminology is useful
when describing homology theories, but it is hardly indispensable.
It is when we want to compare homoclogy theories with each other that
we feel the need of the functorial lanquage.

Let H and K be two homology theories. When comparing H

and K we use the notion of a natural transformation &: H - K.

Such a transformation is obtained if for every space X there is
defined a group homomorphism @X:H(X)-» K(X) which is natural in

the sense that if f: X = Y 1is a continuous map, then the following



diagram is commutative:
&

X
H(X) ———> K(X)
HP)Y 4 oK)
R(Y) "-"—@‘""—9 K(Y)
Y

& 4is called a natural equivalence if furthermore every @X is an

isomorphism,

B) There exist numerows other examples of functors which yield a

transition from one "theory" to another, ®.g.:

(i) to each affine variety is assigned its coordinate ring.

(ii) to each commutative ring is assigned the topological space
consisting of the set of prime ideals of the ring, with its
Zariski topology.

(iii) to each compact Hausdorff space is assigned its ring of
continuous complex-valued functions, which gives a functor into
the category of Bommutative Banach algebras,

In each of these examples we should have specified what the functor

does to the morphisms, but it should be clear from the contexts

what the morphisms are and where they go under the functor,

C) Homolaegical algebra (i.e. the study of projective or injective

resolutions, derived fumctors, etc.) is usually pursued in categories
of modules (e.g. as in [6]). But in algebraic geometry one needs

to do similar things far sheaves of abelian groups. By doing
homological algebra in abelian categories one gets a unifying treatment

of the subject ([12], [170).

D) Adjoint functors, For each abelian group A we let G(A) denocte

the underlying set of A. G may be considered as a "forgetful"
functor from the cateqgory (Ab) of abelian gropps to the category
(Ens) aof sets. Conversely we may to each set S assign the free
abslian group F(S) on S, and to each set map S — S' assign

the homomorphism F(S) = F(S') obtained by linear extension. In this
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way we obtain a functor F from (Ens) to (Ab), The two functors

are interrelated by the formula
Hom(S, G(A)) = Hom (F(S), A)

where the left Hom denotes the set of functions S5 — G(A), while
the right Hom denotes the set of group homomorphisms F(S) — A.
This formula is an example of a very common phenomenon in mathematics

and is described by saying that G is a right adjoint of F. The

theory of adjoint functors was initiated by Kan [13] and is one of the

fundamental tools aof category theory.

Chapter I. Categories: Inside theory.

§ 1. Categories.

It is clear from the examples given in the Introduction that a category
should consist of "objects" and "morphisms". But the objects are
uniquely determined by their identity morphisms and hence they may be
left out in the definition of categories. We will therefore first make
an abstract, "algebraic", definition of categories and then see hou

this may be reformulated in terms of objects and morphisms.

Definition. A pategory C is a set M with a binary composition

defined for certain pairs in M, satisfying:

C 1: If either vy(Ba) or (yBla is defined, then both are defined and
equal.

C 2: If Bo and yB are defined and B is an identity (i.e. Ef = ¢
and Bn= m uwhenever defined), then ya is defined.

C 3: For each g there exists identities ey and e, such that

e.o and as gre defined.

1
Lemma 1. The identities e and e. in C 3 are uniquely determined
by a.
Proof. Suppose also e' is an identity and e'q is defined. Then

el(e‘a) = e, is defined, so also ele‘ is defined by C 1. Both

L]



el and e' are identities, so e, = ele' = e',
Let C be a category. Let the set of identities in LC be indexed
by a set 0 and denote the identity corresponding to A €0 by 1A.

(E.g. we may choose 0 to be the set of identities itself.)

For each ¢ € M there exist uniquely determined A and B8 in O
such that « 1, and 15 a are defined (C3 and Lemma 1). a is then
said to be a morphism from A to B, and we write o: A - B. The set
of morphisms fram A to B is denoted by HomE (A,B), and then
mn = (A?B) Hom (A,B) (disjoint union). The elements of 0 are called
ob jects and ane often writes 0b(C) for Q. Similarly one sometimes
writes Mor(C) for the underlying set M of C.
Lemma 2. Let og: Ao B and f: C— D be morphisms. Then Ba is
defined if and only if B = C.
Proof. If B = C, then Bo is defined by C 2. Conversely, if Ba
is defined, then o =g (15 a) and B 15 is defined by C 1.
Hence B = C, by Lemma 1.

It is now quite easy to see that the following definition of
categories is equivalent to the one given above (which definition

one uses depends on what applications one has in mind):

"Definition". A category consists of:

i) a set 0, whose elements are called ob jects;

ii) a set Hom (A,B), uwhose elements are called morphisms from

A to B, for each ordered pair (A,B) of objects;
iii) a composition Hom (8,C) x Hom (A,B) —» Hom (A,C) for each
ordered triple (A,B,C)s
and satisfies:
1) Hom (A,B) and Hom (D,D) are disjoint sets if (A,B) # (C,D);
2) Y (Ba) = (Yﬁ)a when these compositions of morphisms are defined;
3) for each object A there exists 1, € Hom (A,A) such that

1Aa =z gand B 1A = f§ when these compositions are defined.

Examples of categoriss:
1. A category with only one identity (i.s. only one object) is

called a monoid (or semigroup with identity).
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2. Recall that a set 0 1is called preordered under a binary relation
< if the relation is reflexive and transitive. 0 is partially
ordered under £ if furthermore x< y, y< x= x =y, Every
preordered set 0§ defines a category with 0 as the set of
objects, and Hom(A,B) consisting of one element if A B and
being empty if A { B. Conversely, a categary where each Hom (A,B)
consists of at most one element defines naturally a preordered sst.

3, For each category L[ there exists a dual category Eo, whose
underlying set is the same as that of , L but with « *¥*B =B o,
where ¥ denotes composition in QD and « composition in C (so QO
is obtained by "reversing the arrows" of Q). Every definition
or theorem for the category C may be dualized to a corresponding
definition ar theorem far QD. It is not necessary here to deavelop
any meta-theory fidrrthe dualization prooedure, since we will meet no
difficulties in the future when deciding what the dual theorems
and proofs look like, If a result for the category [ is
numbered as Prop. n, then the dual result for g° will be refered
to as Prop. n”. (A more detailed discussion of duality may be

found in [4]).

When trying to define the category of all sets one meets the
difficulty that there exists no "sets of all sets", Therefore we
must restrict ourselves to consider only sets belonging to some
sufficiently large set (2 so called "universe'; alternatively ue

could have defined categories to be classes instead aof sets).

Definition, A set U is called a universs if:

Uu1: If x € them X © U.

U2 If X € then 2% € U.

u3: If X, YeE U, then {X,Y}e U.

U 4: If (><i):_LE ; 1is a family where I € U and each X; € U, then

uxie_u_.
1
We introduce the following

g,
Y,

Sgt - theoretical axiom: Every set is @ member of some universe,

In [15] it is proved that this axiom is squivalent to requiring that
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for each cardinal number o there exists an inaccessible cardinal
number § such that o < B

Let U be a universe. A category £ 1is called a U-gategory
if Hom (A,B) € U for each pair of objects A,B. £ 1is called
U-small (or just small if the universe is fixed throughout the
argument) if C€ U. Note that £ is U-small if and only if
C is a U-category and O0b(C) € U. It should also be noticed that
given any categary L, there exists a smallest universe U such
that C is U-small (this is a consequence of the set-theoretical

axiom and the fact that any intersection of universes is a universe).

Examples:

4, g—(Ens) 48 the category whose objects are the sets belonging to
U and where Hom (A,B) consists of all functions from A to B,
with the ordinary composition.

5, g-(Top) has as objects all topological spaces in U (i.e. whose
underlying sets belong to Q), and as morphisms all continuous
functions between such spaces.

6. U-(Gr), resp. U-(Ab), has as objects all groups in U, resp. all
abelian groups in U, and as morphisms all group homamorphisms,

7. U-(Banach) has as objects all Banach spaces in U and as morphisms
all continuous linear functions betwsen these spaces.

8. The category !—(Ens)D of sets with base-points has as objscts
all pairs (A,a), where A is a set in U and =a € A. A morphism
(A,a) = (B,b) is a function A — B which maps a to b,

Similarly one defines gf(Top)D.
All these categories are U-categories, but they are not U-small,
In the future we will often drop the "U" and just write (Ens),

(Ab), etc, since the universe will be kept fixed.

Definition, Let £ be a category with underlying sst M. A subset

N of M defines a gubcategory D of C if:
1) N is closed under the composition in L.
2) If ¢ € N and e 4is an identity in C such that either ae or

e« is defined, then e € N,
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D is then the category on N obtained by restricting the binary
composition in £ to N,

Using instead the hobjective" approach to categories we may
formulate the definition of subcategories as follows:
"Definition". A category D is a subcategory of a category £ if:
1) 0b(R) < oOb(L).
2) HomD(A,B) CqumC(A,B) when A,B are objects in D,

3) The-compOSition-ﬁn D is induced by the composition in (.
4) 1, is the same in D as in [, when A s an object in D,

The subcategory is full if equality holds in 2).

Example:
9, (Ab) is a full subcategory of (Gr)i Note that (Top) 4is not a
subcategory aof (Ens), since a set can have different topologies,

Similarly, (Banach) is naot a subcategory of (Ab).

Exercises:
Te éhow that the following holds for a universe U:
a) If X €U, then {X} €U,
b) If X,Y € U, then (X,Y)€ U.
c) If (Xi)I is a family of sets with I € U and sach X; € U,

then TX. € U,
1t T

d) If X €U, then card X < card U.

2, Verify that U-(Ens) is a U-category which is not U-small,

3., Let C be any category, Shou that Hom(A,A) is a semigroqp.with
identity, for each object A,

4, Let L be eany category. for each pair A,B of objects, write
A <B if Hom(A,B) £ g. Show that this defines a preordering on

o6(g) .

§ 2. Some special morphisms and objects.

Let C be a category. A morphism a: A — 8 is an isomorphism if

there exists f: B — A such that Ba = 1A, a = 1B' A and B are then

isomorphic objects. Isomorphy is clearly an egquivalence relation on the
set 0b(C), If B is only a right inverse of o, d.e. af = 15, then
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o is called a retraction, while p is a coretraction. (Note that

"coretraction" is the dual notion to "retraction", since ® is a
re fraction in ED if and only if « 1is a coretraction in C).
Next we want te extend the concepts of injectiveness and
sur jectiveness of functions, well-known in e.g. the categories (Ens)
and (Gr), to general categories. It turns out that the following

definitions are the proper ones for this purpose:

Pefinition, o: A— B 1is a monomorphism if for svery aobject C and

gvery pair of morphisms &, n: C~- A with a«f=am one has & = 1

Dually, ¢« is an epimerphism if for every object C and svery pair

of morphisms &, m: B = C with &&= na one has & = M,

Examples:

1« In the categories (Ens), (Top) and (Ab) one has monamorphism =
injection, epimorphism = surjection. Let us e.g. verify this in
the case of abelian groups. It is quite clear that every injection
must be a monomorphism and that every surjection is an epimorphism.
Now suppose. o: A —» B is a monomorphism between abslian groups.

If x,y € A and o(x) = ofy), define two homomorphisms

E,m Z— A (Z stands for the integers) by E(n) = nx, n(n) = ny.
Then af = an, so & = 1, l.e, X = ys Next wse suppose that «
is an epimorphism. Define two homomorphisms £,n: B - 8/Im «a

as & = natural map, 1N = zero map. Then Ea = noy 80 E = 1,1l
Im ¢ = B, and o 1is surjective.

2. In (Gr) it is easy to ses that monomorphism = injection, and that
every surjection is an epimorphisme. It may be shown that every
epimorphism o: A —» B is surjective, but this is a little complicated
because Im o is not necessarily a normal subgroup of B, so we
cannot always form B/Im g as above. WUe refer to [7] or {18] for a
proof.

3. Every retraction is an epimorphism, and every coretraction is a
menomorphism. In particular, every isomorphism is both an epimorphism
and a monomorphism, The category is called balanced if the converse
also holds, f,e. if every morphism which is both an epimorphism
and a monomorphism also is an isomorphism. (Ens) and (Gr) are

balanced, while (Top) is not balanced.



If q: A— B 1is a monomorphism, we call A =a subobject of B
(this is actually an abuse of language, since subobjects should be
considered as equivalence classes of monomorphisms, with the
pquivalence defined below; this would however lead to complicated
notations); If also R: A' -» B is a monomorphism, then we write
A c A' if there exists a morphism vy A— A' such that By = a
(note that y will then be a monomorphism). ¢« and § are called
equivalent if y is an isomorphism (i.e. if A c A' and A'c A).

Dually we define guotient objects.

An object 0 is called initial if Hom(0,A) consists of exactly

one elesment for each object A. Any two initial objects in C

are isomorphic, as is easily verified. Dually we call O final if
Hom(A,0) consists of exactly one element for each object A. An
object which is both initial and final is called a zero abject. If
there exists a zero object 0 in [, ther we may define a zsro
morphism °n. 8 (or simply o) for each pair A,B of objects:

is the composition A — 0 — B. iNote that this morphism is

0
A,B
independent of the particular choice of zero object G.

Examples:

3. (Ens) and (Top) have the initial object 4, while every set
(space) consisting of one element is final.

4, In (Ens)O and (Top)oi every pair ({x}, x) is a zero abject.

5. (Gr) and (Ab) have zero objects.

Exarcises: -

1, Let «: A~ B and B: B'— C be morphisms. Show that if o and
B are monomorphisms, then so is Ba. Algp show that if ga is
Lé»monomorphsim, then so is a. Dualize.

2. Show that if a morphism o 38 both a retraction’and a monomorphism,
then ® is an isomorphism,

3, Suppose oa: A —B is a:ﬁorphism such that for each object G,
the obvious function Hom (C,A) = Hom (C,B) is a bijection.

Show that o is an isomorphism. _

4, Show that in the category of Hausdorff spaces (and continudus.maps),
f: X = Y is an epimorphism if f(X) is dense in Y. Alsoc shou
that if f is an epimorphism and Y is regular, then f(X) is
dense in Y.

5, Show that the category of ‘compact Hausderff épaces is balanced

(cf. [2], § 8.3, 9.4).
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§ 3. Kernels and cokernels.

Let £ be a category with a zero object O.

Definition. A kernel of a: A— B is a morphism u: K = A such that

1) au = o,
2) for every morphism E: X — A such that a &= o, there exists

a unique y: X-— K such that E= uvy.

o
K >A }B

Proposition 1. i) Every kernel is a monomorphism,

ii) Any twe kernels of o are equivalent subobjects.

Proof. Let a3 A - B8 have the kernel us K — A,

i) If there are morphisms g, B': X - K such that uB = up',
then let £. = uf = up'. Since af = o, £ should have a unique
factorization over u. Hence B = B'.

ii) Suppose also u': K'=— A is a kernel of . Since ou' = o,
there exists y2 K' = K with uy= u'. Since ou = o, thers

also exists B: K —» K' with u'@ = u. Hence

uyB = u'B=u=u"- 1K
uBy = uy = u' = u' - 1K"
But u and u' are manomorphsims, so YB = 1K and By = 1K"

i.e. B is an isomarphism.

Because of ii) we may speak of the kernel of « (with the
same abuse of language as when speaking about subobjects). Ve will
write u = ker o, K = Ker a when Uu: K - A is a kernel of o, If
the kernel exists for any morphism in E, then we say that

"C has kernels".

Proposition 2. If «q: A— B 1is a monomorphism, then Ker o = 0,
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Proof. If E: X—> A is such that of = o, then af = o OX,A°
But o is a monomorphism, so E = OX,A’ i.e. & may be factaorsd
over 0.

Dualizing the definition of kernels we obtain gokernels; the
explicit definition is left to the reader. Note that every cokernel
is an epimorphism and that the cokernel of an epimorphism is zero.
Ue use the notations caker ¢, vresp. Coker a, for the cokernel

of o

Examples:

1. In (Ab): let o: A — B be a group homomorphism. Then it is easily
verified that
Keroc:{xEF\'a(X)
Coker a = 8 / Im o.

2. In (Gr): let a: G — H be a group homomorphism. Then
Ker o = {x € G | ol x)
Coker o = H / ITnm «

where Im o denotes the unigue smallest normal subgroup of H

n
[sw]
B

-

1}
-
D

containing Im «,
3. In (Ens)oz let oz (X, xo)-4 (v, yo) be a morphism. Then

ker « = ({x | a(x) = y_}, x)
Coker a = (Y / Im o, ;;)

a
where Y / Im o is obtained from Y by identifying all elements
im Im «. Note that o may have Ker g = o without being a
monomorphism, but that Coker a = o if end only if o is an

gpimorphism.

In categories without zero objects one may somebimes use

"gqualizers" as subtitutes for kernels.

Definition. Let «,a't A - B be a pair of morphisms. An ggualizer
for (a,a') is a morphism wu: K — A such that

1) au = a'u,
2) for every morphism E: X —» A such that af = o', there exists

a unique y 3 X = K such that & = uy.
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As in the case of kernels one shows that u must be a monomorphism
and that any twao equalizers for (a,o') must be equivalent. We write
K = Equ { ga'). There is a dual notion of tcoequalizer, denoted by

Coequ (a,a').

Example:

4, in (Ens), (Gr) etc, ws have Equ (aya') = {x | alx) = a'(x)} .

Exercises:

Let C be a category with zero ob ject.
1. Show that ker(coker(ker a«)) = ker a whenever the involved

ker and coker exist.

2. Show that if every monomorphism in £ 1is = kernel of some morphism,
then C is balanced (use ex. 1).

3, Show that the full subcategory of (Ab) consisting of the torsion

groups has kernels and cokernels.

§ 4. Products and caoproducts.

Let C be any category.

Definitign. Let (Ai)iE 1 be a family of objects in C. A product
of (Ai)I is an object A together with morphisms p.: A— Ay (i€ 1),
such that for each object X and morphisms o, : X = A (i€1)
there is a unique morphism &z X = A with p, o= &, (i €1).

To prove the uniqueness af the product (up to isomorphisms),
1et (B, q;: B — Ai) be another product of (Ai)I. Since A is a
product we have «: B — A with pia = 055 and since B is a product

we have PB: A— B with qu =P, Then

= = = = = ici H
piaB qf3 P Py 1A off 1A by unicity;

= = = = = " .
qBa = po =g; =q; Tg @ Ba=Tg

Hence A and B are isomorphic and, fPurthermore, the isaomorphism o

has the property that P,a = qi.
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e denote the product object by I Ai and call the morphisms

Ps pro jections. For finite index sets II one usually writes
A1 X see X An for the product. If the product exists for all finite
families, then £ is said to "havse finite products", and if the
product exists for all families indexed by a set belonging to a
gertain universe U, then C “has U-products”.

It does not follow in general from the definition of products
that the projections Py are epimorphisms. This may however be
proved if we assume that Hom(A,B) £ B for every pair of objscts A,B.
For given a family (Ai)I of objects, we may then for each fixed

j € 1 define morphisms f.: A, —A. as
i J i

(FJ’1A-
f

J
\~i arbitrary choice, i £ Je

1

i

By the definition of product thers exists uj: Aj - HAi such that

pj uj = 1. So pj is a retraction, hence in particular an
gpimorphism, If L has a zero object, then we may choose Fi
above to be zero when i # j. The resulting monomorphisms uj for
this particular choice are called injections.

Let us now return to a general category £ and suppose we have
a femily of marphisms f.: A, - B, (i€1). Then it is clear

that there exists a unique morphism f: T A, - II Bi (assuming the

. : I
existarea Bf thase préddets) mékdng 'the following diagrem commutatives

f.\

0 a ——=>1 B,

1t I

\L L Write f =1 f,.
£ 1 *

Ai“_—_l“"a Bi

The dual notion to product is coproduct (ar direct sum). It is

dencted either as EDAi or as LLAi. The explicit definition is left
I 1
to the reader and we just indicate it by the diagram
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When all the objects Ai are equal to some object A, we denote the
coproduct by AI.

If £ has a zsro ob ject, then (dualizing the above results)
the canonical injections u, are monomorphisms and one may define

rojections p.: JLA, = A, such that
BEEIEEREEEE Py T

Examples:

1. U-(Ens) has both U-products and U-coproducts. The product is just
the ordinary cartesian praduct, while the coproduct is the disjoint
union. Similarly for U-(Top).

2. In (Ens)o, the product is essentially the cartesian product, whils
the coproduct is obtained by taking the disjoint union with all
base points identified.

3, In (Ab), the product is the ordinary direct product (i.e. the
cartesian product with group operations defined component—wise).

The caproduct coincides with the direct sum (i.e. the subgroup of
‘thm'dirept produot.chich consists of elements with all but a
finite number of coordinates egual to zero).

4, In (Gr), the product coincides with the direct product, while
the coproduct is the same as the free product (see [16], Ch. I,

Prap. 8).

Let (Ai)I and (BJ)J be two families of objects in C. Every
morphism
1A, I8
1 o3 !

defines in a natural way morphisms Ai—’ Bj for each pair (i,j).
Conversely, given a morphism %i: Ai-e Bj for each pair (i,]),
one sees by using the definitions of products and coproducts, that

there exists a unique maerphism « such that pj o u, = aji,all (i, J).

A aji

5 — — Bj

“ T"j
S o ~
LLAi-——*———“—*;H Bj
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Consider in particular the casc when L has zero objects and

8. : A.- A, is defined as
Ji 1 J

We then obtain a canonical morphism ©&: LA, - 1II AR.» which in
J . I
general is neither a monomorphism not an epimorphism;

Exercises:

1. Let C have zero objects and consider a product A1 X A2 with
pro jections Pqs Py and injections Uys u2. Show that uy = ker Poe

2. Show that the products and coproducts in the U-category L may

be characterized by the formules

[{]

Hom (X, 0 Y.) I Hom (X, Y,)
;& 1 i

Hom (L1 X., Y) = @ Hom (X., Y)
i i
I I
where I € U and the second member products are taken in U-(Ens).
3, Show that the category of abelian torsion groups has coproducts but n.

not infinite products.

§ 5., Pullbacks and pushouts.

Let C be a category.

Definithon., Let a1= A1- B and a2: Az-* B be morphisms in C.
A pullback for a1 and a, is an object P together with morphisms
pi: P - A1, Pyt p—- A2 such that:

1) @y py =%y Py

2) for every object X and morphisms 51: X — A1, 52: X = A2 such
that a1 51 = a2 52, there exists a unique y: X — P such that
p; Y =%, and py, Y =&,

X X
NN

A N

A

51 y =) iy F\z
(%) \
Y1 J,“z
/g 3 B
11 o 4
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It is easily verified that the pullback is unique up to isomorphism:

We will denote it as P = A1 XB A2,

not record the given morphisms a, o

even though this notation does

2'
Dualizing the definition of pullbacks we obtainnpushouts.

A pushout diagram for @, B - A1 and azz B -~ A2 ldoks like

We write A1L15 A2 for the pushout.

Proposition 3. If a, in the pullback diagram (*) is a monomorphism,

then also Py is a monomorphism,

Proof. Suppose we have &,M: X = P such that p1E = PqNe Then

@, p g = a1p1g and by commutativity azpzi = €, PN But «, is 2
monomarphism, so ng = p,fa Now we have a pair of morphisms

p15 : X - A1 and pZE s X A2 which have the two factorizations

& and mn through P, By definition #f pullback we must then have
a:’).

In the situation described by the propesition, we call the pullback

P an inverse image of A, by a, and denote it as a1—1(A2).

If both aq and a, are monomorphisms, then their pullback P

is a subobjesct of both A1 and AZ’

denoted as A1 n AZ'

and it is reasonable to call it

the intersecticn of A1 and A2,

Proposition 4. If L has equalizers and finite products, then it has

pullbacks.,

Proaf. Let ayc Aq-ﬂ 8 and uyt Az-e B be given morphisms. Considsr
the product A1 X A2 with its projections Py and Py to A1
resp. A,. We assert that A, x, A, = Equ (a1 Prs O pz), and leave

to the reader to verify that this equalizer has the universal
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properties that the pullback should have.

18 2 ////)2 2
P
\, A
A1 X A2 .
2
P WV
A ) B
7/
1 oy
Exampless

1. It follows from the construction made in the proof of Praop. 4
that in the eategaries (Ens), (Gr) and (Ab) we have
= X = -
Inverse images and intersections have their usual meaning.

2. Suppose L has a final object 8. Then A1 X5 A2 = A1 X Az.

P——= A, K —————=>0

\ J NE

R i O A ——= B
o

3. Suppose L has a zero object 0 and let ows: A —B be a morphism.
Then Ker o = A XB 0.

Exercises:
1. Give explicit formulas for the pushout and cointersesction in (Ab),
2. Show that if C has pullbacks anc finitc intersections then it has

(Hint: the equalizer of «, Bt A — B may be obtained as 9qyalizers

A

\Ln

— AXB
£

the pullback diagram

p
-l
A._

if £ and n are suitably defined).
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3, Suppose C has a zero object and ALL B exists. Show that if
A and B are considered as subobjects of ALLB, then An B = O.

§ 6. Preadditive categories.

Thus far we have worked with categories of a quite general nature, but
in this § we will impose some more algebraic structure on our
categories.

Definition. A category C is preadditive if each set Hom (A,B) is
an abelian group and the composition mappings Hom (8,C) x Hom (A,B)—

- Hom (A,C) are bilinear.

If C is preadditive, then in particular each set Hom (A,B) has
an slement oA B which is a zero element for the group structure.
y
If now L also has a zero element 0O, then there ars zero morphisms
in the sense of § 2, We want to shouw that o] and o
R,B A,B

o
A,B
coincide. First note that by bilinearity we have for any morphism

: 1 e O = gt @ ¢ o! = ot _. i i
o A— B that OB,C OA,C and GC’A DC’B So in particular
1 e ! = g! t
we have DD,B DA’D OA,B and thus DA,B may be factored over O,
i.e. DA B = 0h g In the sequel we will denote the zero element of
b H

the group Hom(A,B) by %n.8 or o, even when [ has no zero object.
]
Note that if C is preadditive, then the following holds for a

morphism o

o is a monomorphism if and only if a £ = 0= § = 0j

o« is an epimorphism if and only if Eqg = 0 = § = O.

Exampless

1. (Ab) and (Banach) are preadditive categories.

2., If A is a ring, then the categories Mod. (A) of left A-modules
and Mod{(A). of right A-modules are preadditive.

3, Recall from § 1 that a category with only one identity is the same
as a semigroup with identity. Preadditivity of such a category

means that there is a second binary operation (a,p) — a+f »
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undsr which it is an ePelian group, such that
alp +B') =ap +ap ' (¢ +a')p = ap *+ a'Be
So a preadditive category with only one identity is the same as a

ring with identity. Its dual category is commonly called the

opposite ring,

Definition. A preadditive category is called additive if it has a zero

object and has finite products and coproducts,

n
Let C be additive and consider a finite product II A, e e have
previously defined 1
projections p.,: 0I Ai-+ A, 1 i=]
J with p.u; = 5i. =
injections u. A, -1 A, J J o i £ e
J J i :
n
We also have L u.,p, = 1.
, i1

i J J
of products we have L u;py = 1.

Proof: pj(z uipi) =7 pjuip. p p.* 1, so by the definition

n
Dually we have for the coproduct (@ Ai:
1

injections wu't: A.— A,
J J J @ i

n
5. and Zu
1

with ptlu! .
J 1 1

3 1 t e
pro jections pj.fﬂ Ai—§ Aj

There is a very useful converse of these results:

Proposition 5. Let C be a preadditive category. Suppose there are

jven morphisms u,: A, —» A and p,: A = A, (i =1 ess,n) such that
9 P i i i i ’

pJ.u__.L = 5ij and ):uipi = 1, Then A is a product (and by symmetry,
alsoc a coproduct) of the objects Ai’ with injections Uy and projectionrs

P.s
i
Proof. Suppose there are given morphisms ol X - Ai.'DGFine

2 X~ A as q = ziuiai. Then p\j = ; pjui“i

= aj. There is only
one choice for «, since if a's X = A is such that pia‘ = a

then o' = Zu,p,a' = Lu,o, = o,
iti i’i
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Hence the notions of product and of coproduct "coincide" far
preadditive categoriess We will now prove a useful formula for composi-
tion of morphisms between finite products. Let L[ be additive and

consider

o B
I A SN A, LT C,

K g d 1

where I, J and K are finite. « and f are represented by
matrices (ajk) and (Bij) with .

. B P _ .8
ajk—pj k,Bij—piBj'

B « is represented by a matrix with (i,k)=-entry

C A C B B A
P Bay =p; B(Zuypy) ay =I8;; o,
J J
i.e. the matrix representing £ o is the product of the matricss

representing B and o

Application:

Let o, ¢+ A—- B be morphisms, flatrix multiplications then give

o + B as the composition
(1) o 0}
1 (D B) (1,1)
A ——>A@A >B8® B > B.

We finally note that if [ is additive, then:

1) « is a monomorphism & Ker a = O,
0.

i

oo is an epimorphism & Coker o
2)  Equ(a,g) = Ker (a =B ),

Ker ¢ = Equ (g,0).
3) £ has kernels if and only if L[ has pullbacks (Prop. 4).

Exercises:
Let € be a preadditive category.

17« Let A and B be objects in L. Show that:

a) Hom (A,A) 4is a ring under composition and addition.
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b) Hom (A,B) is naturally a right module over Hom(A,A) and
a left module over Hom (B,B).
2. Suppose that the two morphisms a,d A1-+ B and st Az—» B
have a pullback. Show that A1 X Az-a Az is a monomorphism if
and only if oy is a monomorphism.

§ 7. Abelian categories.

Roughly stated, an abelian category is an additive category in

which one can handle exact seguerices in about the same manner as aone

is used to in module categories.

Suppose C is a category which has kernels and cokernels. Any morphism

o has a factorization as indicated by the commutative diagram

Ker « Coker «
A % = B
X o
Coker (ker a) -—=> Ker (coker o)
o

where the existence of @ is obtained as follows:
coker ¢ » & = o= a = KB for some Bz A— Ker (coker a). Then
LB » ker ¢ = a * ker @ = 0, s0 B * ker @ = o since F is a
monomorphism. Hence B may be factored as B = oA . Also note that

o is uniquely determined by o

Consider as an example the particular case of ( = (Ab). There we
Im a,

have that Coker (ker @) = A/Ker @« and Ker (coker o)

and conssquently o is an isomarphism., The following definition

is therefore reasonable:

Definition. A category £ is abelian if

AB 1¢: C is additive.

AB 2: C has kernels and cokernels.

AB 3: a: Coker (ker o) — Ker (coker o) 4is an isomorphism, for every

morphism a.
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This definition is self-dual, i.e, LC 1is abelian if and only if

QO is. For every morphism ¢ in an abelian category we define its

image as Im a = Ker (coker a). The dual notion of coimage is rather

superfluous for abelian categories, since image and coimage are

canonically isomorphic,

Some examples of abelian categories:

1. (Ab) is abelian,

2. If A 4dis a ring, then Modi (A) and Mod (A). are abelian.

3, If 0 4is & sheaf of rings over a topological space, then the
category of QO-Modules is abelian ([11], p. 131).

4, The category of commutative algebraic group schemes of finite type
over a field is an abelian category.

For the rest of this § we will assume that L is abelian.

Proposition 6. Every abelian category is balanced,

Proof. Clear from AB 3.

ker (coker a)e.

il

Proposition 7. If o is a monomorphism, then o

coker (ker a)e

I

If a« 4is an epimorphism, then «

Proof. This is also gquite clear from AB 3.

For every morphism a there is a canonical factorization

ot
A = Im (pi B where q' 4is an epimorphism and u is a monomorphism,
e will show that the image is universal with respect to this property

(and thus deserves its name).

Proposition B. If a: A - B has a factorization A-g 113 B uwhere

n is a monomorphism, then Im aq ¢ I. If also & is an epimorphism,
then Im g and I are equivalent subobjects of B.
Proof. Suppose n is a monomorphism. Since coker n * o = o, there
exists vyt Coker @ —» Coker n such that coker n = y ¢ coker ge
But then clearly coker n * ker {coker ) = o, so ker (coker o)
may be factored sver ker {coker n) =n (Prop. 7). Hence Im q cl.
Letgp s Im o -1 be the factorization.

Now also suppose that & 1is an epimorphism. We have
no o' =0 =nE, S0 o' =E¢. ¢ is therefore an epimorphism, and

since it clearly is a monomorphism, it is an isomorphism (Prop. 6).
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In passing we mention the following result:
Theorem (Freyd) A category is abelian if and only if
i) it has zero object, pullbacks and pushouts;

ii) every monomorphism is a kernel and every epimorphism is a cokernel,

The point of this is that it is not necessary to assume preadditivitys
instead this is forced upan the category by way of s.g. the addition
formula at the end of the preceding §. The reader is refered to [9]

or [18] for a proof.

Ve will now introduce the machinery of exact sequences into the

abelian category C.

o .
s eas ie i .
Definition., A sequenNCe seeass — A, - 1 A, = A. .5 aese 1s

called exact at A, if Ima, , = Ker g (as subobjects of Ai)'

The seguence is exact if it is exact at each Ai'

a a
Proposition 9, A M B B C is exact in C if and only if c*, B > A

. . 0
is exact in C .

Proof. (We have here written A® for A as a morphism in EE).

Exactness in £ means that Ker (coker A ) = Ker b, while exactness
in Qi means that Ker (coker p°) = Ker ho, i.e. Coker (ker p) =
= Coker A in C. These two conditions are equivalent (use § 3,

exercise 1).

Examples
o
0 >A—>B 1is exact if and only if a is a monomorphism,

A%8 .0 is exact if and only if o 1is an epimorphism,
An exact sequencs of the form O- A-ﬁ B ReC -0 1is called

a short exact sequence (abbreviated s.e.s.). Exactness here means:

1) A is a monomorphism and p is an epimorphism;
2) Im A = Ker u ® A = ker p ® o = coker A .
One often writes B/AR for C.

Proposition 10. (Short 5 lemma) Suppose the diagram

A

0 = A 8t s¢ > 0
«) el o
0 > Al =B w3 0
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is commutative with exact rows.: Then:
i) If o and vy are monomorphisms, then B is a monomorphism,.
ii) Similarly for epimorphisms,.
iii) Similarly for isomorphisms.
Proof. Consider i), If g :+ X - B is given such that g = o,
then ypg =p'pBE= 0. But y is a monomorphism, so ug = o.
& therefore factors over A = ker . as & = AE', Then AT a £1 =
=g A E' = BE =0, and since A'a is a monomarphism we conclude
that ¢!

ii) now follows by duality, while iii) is obtained by combining

1)

0o, and g = o, Consequently @ is a monomorphism,

i) and ii).
We will introduce a useful eguivalence relation on the set of

S.28.5. betwsen two given objects A and C:

0 = A j>.? =i == 0
” K k
é W

0 >» A = B! ==.( =

The two sequences of this diagram are called equivelent if thers
exists B: B — B' such that the diagram commutes. If B exists,
then it is an isomorphism by Prop. 10, so this really is an equivalence

relatione.

Proposition 11, The following properties of a s.2.s,

0 A}; BE» C—-> 0 are equivalent:

a) It is equivalent to the s.e.s.
0-»A-AG@C— C - 0.
b) B is a retraction, i.e. there exists &€: C — B such that MKE = 1.

c) A is a coretraction, i.s. there exists m: 8 = A such that

Definition. A sequence satisfying thess conditions is called split.
Proof. It is understood that the morphisms in (a) should be the
injection A— A@®EC and the projection A C —* C; the exactness is

obvious. By duality it suffices to prove the equivalence of (a) and (b).



25,

(a) = (b): If B oexists, put & = gp's Then pE = ppu' = pu' = 1.
(b) = (a): If & exists, put
holds, for Bu =Ap'u +Epu=A + 0o =) and up= pAp' + pEp =0 + p = ¢

Ap! + Ep, Then commutativity

W
13

u p
0z A= A@C /= C—=0
N pv t uf
£ |
N !
0 —=>A = B >C >0
A W

Exercisess

1. Show that the category of abelian torsion groups is abelian.
2. Show that the category of torsion-free abelian groups satisfies
AB 1 and AB 2 but not AB 3, (Hint: if as A— B, then
Coker = B / GZET where ETET is the smallest pure subgroup
of B containing a(A); cf. [14], § 7).
3., Show that if oz A - B is a morphism in an abelian category, then

the sequence
0 >Kera— A3 B - Coker o = 0
is exact.
4, Given A% BB C in an abelian category, show thats:
a epimorphism = Coker fa = Coker B

g monomorphism = Ker fo = Ker a.

Appendix I.A: Universal epimorphisms.

Let C be any category. Consider a pullback diagram

ot

P o—
Br \LB
A r—=

in C. In § 5 it was proved that if & is = monomorphism, then so

is also «'., It is not certain, however, that « is ao gpimorphiem
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implies that o is an epimorphism, We therefsre make the following

Definition. An epimorphism as: A — C is a universal epimorphism if

e S —— ‘ . _w'——

Ax-B exists for any B: B—- L and a': AxCB-e B is an epimorphism.
Important examples of non-universal epimopphisms sccur in

algebraic geomstry (the category of preschesmes) and by duality there-

fore also in the dual of the category of commytative rings (see Appendix

I.C for an example).

Propositione In an abelian category all epimorphisms ere universal.

Proof. Consider the pullback diagram above with o egimorphic, and

suppose &£: B - X 1is such that Ea' = o. We mecall from § 5 that
P = Ker(ap1'- sz).

p
\l Py 3
AxB =B _}X
s " b= aPy = BPy
| JEPOROUI— c”
o

Also note that the sequence 0 - P — AxB—- C - 0 is exact. The
assumption o = Egq' = EPoA therefore gives EPy = NI for some
ns C - X. Now na = TKap1 - sz)u1 =§p, u; = 0, s n =0 and

hence E = 0.

tet C be an abelian category, A consequemce of the propasition
is that we may construct the pullback of a s.eese 0= A—>B—C—0

with respsct to a morphism C' — C. For this we consider the diagram

v

al
0 = A = P >C'—=0
f
b
0 = A =8 =C —=0
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where the right square is a pullback, and a' is induced by the

two morphisms o3 A-— B and e: A—C'. The left square is then
commutative by construction. In particular o' is a menomorphism,
and it remains to see that a' = ker B, But if E: X-— P is such
that B!E = o, then <vy'€ factors over o as y'E =ah. a'A and

E give the same results when going down to B or to C', so |

£ = q'A by the property of pullbacks. The upper row .of the-diagram
is thus a s.e.s. which is called the pullback of the lower segusnce

with respect to Ye

Appendix I.,8: Unions in abelian categories,

Let C be an abelian category. If (Ai)I is a family of

subaob jects éf an bbject A, and if ® Ai exists, then we define
I
the union (or the sum) #f the family (Ai)I as the imagse of the

morphism (E)Ai'* A  induced by the inclusions Ai-a A. It is denoted
I

by U A, (or = Ai)' We will look in more detail at the special
I I

case A1 U-A2 c A,

Consider the diagram

Ap M Ay £ —= %

. ~ 2 p%4(;¢;

‘ \\jﬁ //ZE/GZ A= UgBy = UyBy
B1'| H,_,A’l@AZ x, .

S
A1 Y ph‘-__ \\_i u Az
=
%q

with the canonical morphisms,

Proposition 1. The diagram has the following propertiess

(i) the seguence

A u
0 - A n Ay A,]@Az—» A, U A, >0

is exact.

(ii) The outer square is both a pullback and a pushaut disgram.
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Proof. (i): We want to prove that A = ker H. First note that by

definition we have a, = 1) Ugy Oy = B Upy and that gives

b= @ py +ay Py Now suppose KE = o for some &3 X - A,j @AZ.

Then a1p1E = - az pZE. It is quite clear that the outer sqguare is

a pullback, so there exists &': X — A1 n A2 with 515‘ = p1E ‘and
Y - o L | B = = P

BE' = = py€. Then AE' = uB.Z u,BE8 = (upy + u,p)E = & ce

desired. It is also clear that &' is unique,

(ii) It has already been remarked that it is a pullback diagram, The

sasy verification of the pushout property is left to the readsr.

Proposition 2. Let (Ai)? be a finite family of subobjects of A:

n n
The canonical morphism G;Ai‘* U Ai is an isomorphism if and only if
1 1

Ay n( U Aj) = 0 for each i.
JAL
Proof. By induction we are easily reduced to the case n = 2., The

assertion is then an immediate consequence of Prop. 1 (i).

Proposition 3. (Second Noether isomorphism theorem). Let A1 and A2

be subcbjects of A. The diagram above induess a commutative diagram

O———3A1r1A2 = A1 }A1/A1r1A2 =0

Y 1t ‘.'

e : i « |

i

ey ~. .

0 = A, >R, UA,—>AR,U A2/A2-.--—-—->D.

1

Proof. Since o and a are monomorphisms, the induced morphism
o A1/A1n A, = A1U A2/A2 is a monomorphism (the 5 lemma). To see
that o" is an epimorphism, consider any & A1U A2/A2-ﬂ X such
that Ea" = o, By composition we obtain zeroc morphisms A1 i ¢

and A2-+ X, and since the left sguare is a pushout, unicity of
factorizations implies that A1U A, = A1U AZ/AZ'* X is zero. Hence

E-':D.
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Appendix I,C: Commutative rings,

Let k be a commutative ring with 1. Let (k-Alg) denote the
category of commutative k-algebras with 1, with the k-algebra
homomorphisms as morphisms. By taking k = integers we obtain the
category of commutative rings as a special case.

It is essential that we include the zero ring {0} in (k-Alg),
where it becomes a final object. The category also has an initiai
6bject; namely the ring k itself,

It is easily verified that the monomorphisms in (k=Alg) are the
injective homomorphisms, and that every surjective homomorphism is
an epimorphism. But there are lot of epimorphisms which are not

sur jective. E.g. we have:

Proposition 1. If A 1is a k-algebra and S is a multiplicatively

closed subset of A, then the canonical homomorphism u: A — 5‘1A

is an epimorphism,.

Proof. For the definition of 5s”7A we refer to [3]. Suppose
£, S-1A-» B are morphisms such that Eu = nu. For every E'E S-1A

we then have E(2) = g(a) £(s)7 = n(a) n(e)” = (%), so £ =n.

The product in (k-Alg) is just the ordinary direct product.
The category alsc has pullbacks.

Proposition 2. (k-Alg) has pushouts,

Proof. Suppose we are given k-algebra homomorphisms pg: A - B

and y: A- C. B and C may in a natural way be considersed as
A-madules, and we form B @QA C which is a k-module., It becomes a
k-algebra if multiplication is defined as (b&c)-(b'®ec') =

bb' ® cc'. The canonical maps B—»8&% , C and C - B ®, € are

k-algebra homomorphisms. It is now easily verified that the diagram
A ——=rC
B——%B@A C

is a pushout diagram in (k-Alg).
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In particular we have that the coproduct of the k-algebras B
and € is B @)k Lo Even when B and C are non-zero it may happen
that their cbproduct is zeros Esg. we may take k = Z and B = Q,
C = 2/2Z¢ This example alsc shows that the monomorphism Z — Q is
not a universal monomorphism.

The epimorphisms in (k=-Alg) have been stutied extensively in later
years-[ZD]i Here we will only note the following connection between

epimorphisms and coproductss

Proposition 3. A - B is an epimorphism in (k-Alg) if and only if
in B@AB one has 1(Xb = b(x}1 for every b € B,

Proof. Consider the pushout diagram

o
A > B
o l’ g
B —8®, 8
B

where ¢« is the given morphism. If « is an epimorphism, then
B =pB' On the other hand, if B = ' then it follcws easily from the
pushout property that o is an epimorphisme B =f' 1is equivalent to

the condition that 1&b = b & 1 for all b.

Exercisess

1. Show that A — B is an epimorphism in (k-Alg) if and only if the
map B®A B— B, given by bX b' —bb', is an isomorphism.

2., Show that every faithfully flat epimorphism of k-algebras is an

isomorphism.
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Chapter II, Functors,

§ 1. Basic definitiaons.

We will now define what might be considered as the morphisms in the
"category of categories", namely the functors betweeh categories, If we
stick to the original definition of a category as a set with a parﬁially
defined binary composition, it is guite clear what a functor sheould be.

Let € and D be two categories.

Definition. A function T: C - D is a fungtor if
F 1z T(ga) = T(8) T(a) whenever the composition Bo is defined in C,

F 2: If e is an identity in £, then T(e) 4is an identity in D.

For every object A of L we write T(A) for the object of D
corresponding to the identity T(1A); thus 1T(A) = T(1A). If at A— B
is a morphism in C, then T(a) = T(15 « 1,) = T(1g) T(a) T(1A) =
= 1T(B) T(a) 1T(A)' It follows that T(a) must be a morphism T(A) - T(B).
Hence T induces a function HomC(A,B)-a HomD(T(A), T(B)) for each

pair (A,B).

In practice, a functor T: C —» D is often obtained the other way
round, as a collsction of functisns:
gb (L) = ob (D),
Hom. (A,8) - Homy (T(A), T(B)), all (A,8),
and the axioms F 1, F2 then take ths form
F1's T(Ba) = T(B) T(a) when Boa is defined;

LY =
F2ts 7(1,) = Tr(a)"
A functor T: € - D is called faithful if the induced maps

1]

Hom (A,B) = Hom (T(A), T(B)) are injective, and is full if they are
surjective. T is an imbedding if it is faithful and takes distinct
objects into distinct objects, i,e. the function T: C - D is injective.

T is an isomorphism if there is a functor S: D — L such that

T8 = 1D’ ST = 1C' The notion of isomorphism is however too restrictive,
and it is more gdequate to consider two categories as "essentially the

same" if there is what is called an equivalence between themy T is an
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equivalence if it is full and faithful and if for every object M in

D there exists an object A of L such that M and T(A) are
isomorphic, (It will be found in ch. 3 that this really is an equivalence
relation between categdries).

When L and D both are preadditive categories, we call a functor
T+ C —»D additive if
F 3 T{a +a') = T(a) + T(«!) for a, a'd A - B,

In that case T induces a group hamomOrphism
Hom(A,B) — Hom(T(A), T(B)), =211 (A,B).

Exampless

1. For each universe U we may define a category Qf(Cat) as follows:
objects: U-small categories,
morphismss functors,
composition: composition of functors in the obvious way,

This is clearly a U=-category.

2, If L and D are categories with only one identity (i.e. semigroups),
a functor £ —» D is just a semigroup homomorphism. When C and
D furthermore are preadditive (i.e. rings), an additive functor is
the same as a ring homomorphism.

3, If L and D are preordered sets, then a functor L - D 1is an
order-preserving function,.

4. The "forgetful" functor (Ab) — (Ens) which takes an abelian group to
its underlying set.

5. There exists an imbedding F: (Ens) — (Ab), where F(A) = the free
abelian group on the set A, and F(a) = the induced homomorphism
obtained by linear extension from the basis.

6. For every U-small category £ there exists an imbedding
T: L - U - (Ens) with
T (A) = {E: X = A}

T (a): € >»af& for o: A — B.

7. If C is a subcategory of D, then the inclusion map C —-D is a
functor which is an imbedding. This functor is full if and only if
£ is a full subcategory of D.

Conversely, if T: £ —» D is an imbedding, then ([ is isomorphic

to a subcategory of D.
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8, If T: C =D is a full imbedding, we may consider the full
subcategory D' of D consisting of those objects which are
isomorphic to objscts of the form T{(A)., T induces an equivalence
between L and D',

9, Let C be the category of affine algebraic varietiss over a fixed
ground field k. The functer which te each variety assoclates its
coordinate ring defines an equivalence between QO and the category
of finitely generated ctmmutative kialgebras without zero-divisors

[19]. :

1% A functor EP-»‘Q is often called a géntrauvariant functor from

C to QL Ordinary functors € — D are tréditionally called

covariant functors.

When dealing with "functors of several variables" it is most
convenient to use product categories. Let (Ci)I be a set of categories.

The product category 1 Ei is defined as the set theoretical product of
I
the sets Ei’ with binary composition defined component-wises; the

category axioms C 1 - 3 are easily verified. We then have:
ob (1 gi) =1 0b (C;)
Hom ;o ((Ai)I, (Bi)I) = I Hom. (Ai’ Bi)'

=i =i
If each of the categories Ei is preadditive, then clearly also I] Ei
is preadditive., If svery Ei is abelian, then it is easily seen that
also II Ei is abelian. (In general, kernels, products, images etc. in
the product category are obtained by taking them in sach component
category).

Let us in particular consider the case of a product category
c, xE,» Let T: C, xC,—>D bea functor, For fixed cbjects A in

=1 2 =1
C and B in C we obtain "partial" functors:

=1 =2
T,: £, > D defined as T, (x) = T (x,8B)

T1 (a) = T (a! 15)’
T,t £~ 2 defined as T, (vy) = T(A,Y)

T, () = T(1,, B
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T is a functor & T1 and Tz are functors (for any choice of A and

B) and for any morphisms o: A — A' in 21 and f: B - B' 1in gz,

the following diagram is commutatives

T (AyB) ————= T (A,B")

T (A',B) ——==T (Ar,B")

The Hom functors

Let C be a U -category. (It should be noted here that given any
category C there exists a universe U such that L is a Qrcategory).
We want to show that Hom may be considered as a functor
t x £ -y - (Ens).

For a fixed object A we define a functor hf €U - (Ens) as:
hA(B) = Hom (A,B),
for p: B - B', hP (g): Hom (A,B) — Hom (A,B') is E s BE
hA is clearly a functor, Similarly for a fixed B there is a functor
hB: Ei-a U - (Ens):
hg (A) = Hom (A,B),
for a: A' — A, hB(a): Hom (A,B) — Hom(A',B) is Ew Ea

Civen both o: A* - A and f: B— B' we cobtain a diagram

Hom (A,B) —————>>Hom(A,B")

|

Hom (A',B) ———= Hom (A',B')

which is commutative since both ways give § + B Ea It follows that

hA and hB are partial functors of a functor

Hom: C° x C - U - (Ens).
When C is preadditive, Hom is an additive functor

c® x £ —U - (Ab).

Exercises:
tet T: C > D be a functor. Shouw thats

1. T preserves retractions and coretractions.
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2, If T 4is faithful and o« is a morphism in € such that T(a) is
a monomorphism, then o« is a monomorphism,

3. Show that if (Ei)I is a family of U - small categories and I € U,
then ?'Ei is a product for the family in U - (Cat).

§ 2. Exactness propertises of additive functors.

Throughout this § we assume that £ and D are abelian catggories

(generalizations to arbitrary categaries will be studied in ch. 3),

Lemma, Every additive functor T: £ —» D preserves zero objects and
zera morphisms,

Proof. Consider any zero morphism o: A =B in C. Then T(o) = T(o + o) =
= T(o) + T{(o) implies T(o) = o, se T preserves zero morphisms,
Since a zero object is characterized by the property that its identity

morphism is zero, it follows that T preserves zero objects.

Proposition 1., A functor T: C —» D is additive if and only if it

preserves finite products.

Proof. Suppose T is additive and consider a product diagram

/ Pq Py -
A T TS AxBe—— 8B
Y1 Y2

where pju; = 6ij and u,p, * UyP, = 1« Then T(pj)T(ui) =
T(pjui) = §;; and T{u)7(p,) + T(u,)T(p,) = T(upy + u,p,) = T(1) = 1.
1t follows from ch. 1, Prop. 5 that T carries the given diagram into
a product diagram.

The converse statement follows from the description of addition of

morphisms given at the end of ch. 1, § 6.
Note that the proof also gives:

Corollary. An additive functor preserves split exactness of short exact

sequences.
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I the following, let T: C— D be an additive functor,

Proposition 2. The following propsrties of T are equivalent:

a) If 0= A—=B- C— 0 is a s.e.s. in L, then 0 — T(A) - T(B) - T(C)
is exact in D.
bY T preserves kernels, i.e. T(ker a) = ker T(a) for any morphism «

in Eo
Definition. A functor T with these properties is left exact.
Proof. Note that a sequence 0 — A S B-ﬁ C is exact if and only if

a = ker B. Hence it is clear that (a) is a special case of (b).

a) = b): Let a3 A - B in L. There is a commutative diagram

0 0
Imao
P
="
/7 N\,
Ker « Coker «

7 ™

where the obliquse sequences are exact. From this we obtain
0

l

0 —>T (Ker a) —=>T (R)—=T (Im a)

NG

T (8)

0

with exact row and column. This gives T (ker o) = ker T (a)

(using exercise 4 of che 1, § 7).

Corollary, A left exact functor preserves monomorphisms.

There is of course a dual notion of right exact functor. Prop. 2 and

its dual together give:
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Proposition 3. The following properties of T are equivalent:

a) T preserves kernels and cokernels.

b) T carries s.2.5. into s.2.s.

c) T carries arbitrary exact sequences into exact sequences,
Definition. A functor T with these properties is gxact.

Proof., It only remains to prove a) = c). If A%8%c is exact in C,

then ker {coker a) = ker . (a) then implies
ker (coker T(a)) = T (ker (coker a)) = T (ker g) = ker T (B), so

T (&) - T(B) = T(C) is exact.

Examples:
1. Let £ be a subcategory of D (both categories still being abelian).

L. is sald tc be an abelian wubcategory of D if the inclueion
functor is additive and cexact. Clearly this is equivalsnt to .saying
that the preadditive structure of L is induced from that of D,
and that if g is a morphism of £ then its kernel and cekernel in
D are actually objects in C.

2. The functors hhs C - (Ab) and hgs c® » (Ab) are both left exact,

as follows directly from the definition of kernel and cokernel,

Definition. An object P of C is called projective if hP is an

exact functor. Dually, an object E is called injective if hE is
exacte

P is projective if and only if for every epimorphism §: B — B! and
morphism ¢'s P — B' there exists o3 p - B such that B¢ = ¢'; dually

for injectives.

P 0 ——>A! = A
/! /
/ 7
/ /
/ /
/A V/ Iz
B—> B'—>0 E

Proposition 4. An object P is projective if and only if every Ss+Bs5e

0> A-8—->P -0 splits.
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Proof, If P is projective, then 1p: P—- P may be lifted to a morphism
P - B such that 1p = P—- B— P, Hence B— P is a retraction.
Conversely, suppose every epimorphism B - P is a retraction. If
gs B - B' 1is an epimorphism and ¢: P = B' is given, we look at the

pullback diagram

A-—-——-—'-—-yl?

g——=> 8?

B

where alse o is an epimorphism by the Prop. of Appendix 1.A. Hence
there exists &t P = A such that o«f =.1. Then ¢&: P - B has the
property that B¢& = o¢oE= @, as desired.

Proposition 5. i) A coproduct G)Ai is a projective object if and only

if sach Ai is projective.
ii) A product 1 Bi is an injective sbject if and only if each Bi is
injective. L

Proof. Easye.

The category is said to "have enough projectives" if every object is a
guotient object of a projective object; dually, it "has enough injectives®
if every object is a subobject of an injective object., The existence
of enough prouectives or enough injectives is of course of value when
one wants to carry on homological algebra in the category.

Let us finally consider faithful functors in the additive case,
Since Ts C — D has been assumed additive, it is clear that it is

faithful if and only if T(«) # o for every non-zero morphism o« in C.

Proposition 6. Suppose T 1is exact. T 1is then faithful if and only if

T (A) =0 =A=0.

Proof. If T is faithful and T(A) = 0, then T (1A) =o0o=T (DA A)’ S0
)

1, = o and A = 0. Converse:s if a # o, then Ima # 0, so T (Ima) # 0

by hypothesis. But T (Im a) = Im T(x) by exactness, hence T(a) # o.
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Definition. An object A in C is called a geperator for C if hA

is faithful, and a cogenerator for C if hA is faithful.

A is a generator & for every non-zero ot B — C, also

Hom (A,B) — Hom (A,C) is # o, i.e. there exists ¢: A— B such that
ap £ 0. Prop. 6 gives:

Proposition 7. A projective object P is a generator if and only if

there exists a non-zeroc morphism P - A for gach A #£ O.

Propositicn 84 Suppose L[ is a U-category and has U-coproducts. An

object G 4is a generator if and only if for each object A there is

an epimorphism GI-ﬂ A for seame I € U.

Proof. Put I = Hom (G,A) and let o: c! - A be defined by the family
(@ILYEI where QY =yt G - A, (The notation GI was introduced in
che 1, § 4). ¢ is an epimorphism & og # o for every non-zero

w: A— B & for every non-zero o: A — B there exists y: G — A such

that avy # 0. From this the conclusion is immediate.

Corollary. If € is a U-category with U-coproducts and a projective

generator, then £ has enough projectives,
Exercises
Show that if an abelian category has snough projectives and a ganerator,

then it has a projective generator.

§ 3. Projective and injective modules.

In this § we will study in somewhat more detail the projective and

the injective objects in the category of right modules over a ring A.

Proposition 9. A right A-module P is projective if and only if P is

a direct summand of a free module.
Proof., = ¢ Write P as a guotient of a free module and apply Prop. 4.

&: Suppose P@®K =F with F a free module, If B: L - M 1is an

gpimorphism and e: P — M is given, we may extend ¢ to o@'s F - I,
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8.gs by putting ¢@'(K) = 0., Let (xi)I be a basis for F, and choose
Y; € L such that ﬁ(yi) = ¢'(xi). A well-defined morphism s P — L
is then obtained by letting X; P Yo and B¢ = ¢a

Corollary. There are enough projective objects in Mad (A)e

The préceding description of projective modulesshould be compared with

the following characterization of generators:

Proposition 10. A right A-module P is a generator if and only if A

is a direct summand of a direct sum of copies of B,

Proof. Quite easily seen to be a consequence of Prop. B,

Examples.
1, If A is a principal ideal domain, then every submodule of a free

module is free ([8], p. 134) and hence every projective module is
free. In particular this applies to the category (Ab).

2. Every finitely generated free module is a projective generator,

3., The ring Z/6Z may be decomposed as 2/6z = (3)()(5}.'Each of these

two ideals is a cyclic projective module which is not free.

It is a little more complicated to establish the sxistence of enough
injective modules, Let us first consider the cass of Z-modules (g stands

for the integers, 4 for the rationals).

Proposition 11. An abelian group G is injective if and anly if it is

divisible (i.e. G = nG for every integer n # o).

Proof. Suppose G is injective, and x € G is arbitrary. The diagram

? o(nm) = mx

may be completed with ¢': Z -G so that ¢'(n) = x. Then x =n ' (1)

and so x 1is divisible by n.
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To prove the converse statement, we assume L to be divisible

and consider

0—=L —>N

9

[ep]

Using a conventional Zornis lemma type of argument, we are reduced
to the case when ¢ may not be extendend further to a subgroup of M,
and then want to prove L =M. If x € M but x¢& L, then we must
clearly have L n Zx # (0). Let n be the smallest integer > 0 such
that nx € L. Choose ge& G such that g¢{(nx) = ng. If we put
o'(y + mx) = ¢(y) + mg for y € L, then it is sasily verified that

¢' is a well-defined proper extension of ¢. This is a contradiction,

Lemma @/z is an injective cogensrator for (Ab).

Proof. g/; is clearly divisible, so it is injective by the proposition.
By Prop. 6° it remains to show that there exists a non-zero morphism

G —» §/Z for each abelian group G # (0), and since &/Z 1is injective

it even suffices to do this for cyclic G. But every cyclic group may

be imbsdded in &/Z.

Proposition 12. Mod (A). has an injective cogenerator, and therefore

has enough injectives.

Proof. For any right A-module M and abelian group G we have natural
isomorphisms HomA(m, Hom., (A,G)) = Hom,, (m® AA’G) = Hom,, (m,G), where

A and M are considered as Z - A - bimodules and Hom, (A,G) is a
right A-module by letting ga: a' + p(ea'). (CF. [17], ch. V. 3 for
details)., If we in particular choose G = 8/Z, then Hom,, (e , G) is

an exact and faithful functor, which composed with the forgetful

functor Mod(A). - (Ab), which also is exact and faithful, gives

the functor HomA(- ’ Hornz (A,G)). It follows that the later functor also
is exact and faithful, i.e. HomZ(A, Q/z) 4is an injective cogenerator for

Mod (A). N
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Proposition 13. An injective right A-module is a cogenerator if and

only if it contains an isomorphic copy of each simple right A-modyle,
Proof. If E is an injective cogenerator and S is simple, then there
exists a non-zero morphism S — E which trivially must be a
monomorphisme

To prove the converse assertion, we note that every cyclic quule
has a simple quotient module, since every ideal is contained in a.

maximal ideal. We then argue as in the preceding lemma.

Exercises:

1, Let A be an integral domain. Show that:

i) every injective module E is divisible (i.e¢ E = aE for each
a#oin A).

ii) The class of divisible modules is closed under direct sums and
quotients.

2. Let L be the category of abelian torsion groups. Show thats

i) L is an abelian subcategory of (Ab).
ii) C has a genperator and an injective cogenerator, but no
projective objects # O.

3, Let A be a right noetherian ring and let £ be the full
subcategory of Mod (A). consisting of the finitely generated
modules. Show that:

i) € is an abelian subcategory of fMod (A)as &
ii) C has enough projectives.

§ 4. Functor categories.

tet C and D be two arbitrary categories. We will define a new
category, whase objects are the functors from C to D, and whose

morphisms are ths "natural transformations™ of functors.

Definition., Let S,T: C — D be two functors. A natural transformation
m: S—= T is obtained by taking for each object A in C a morphism
urt S(A) - T(A) in D, so that for every morphism a3 A B in C,
the following diagram commutess
M4
5 (A ——— =T (R)

s () T (a)

s (8) —— = T (8B)
g
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Two natural transformations &: R—= S5, mn: S— T between functors
R, S, T: C - D may be composed in an evident way to give a natural
transformation mE R — T. This composition is associative. For e?ery
functor T: £ - D there is an identity transformation 1T= T Ts It
is clear that in this way we obtain a category Fun (C, D), whose
objects are functors C — D and where Hom (S, T) is the set of
natural trensformations S — T (we will usually write Nat (S, T)
instead of Hom (5, T)).

If § is U-smell and D is a U=category, then Fun (C, D) is

a U-category, because Nat (S, T)c " Hom,y (s(n), T(Aj).

The isomorphisms in Fun (C, D) are called natural eguivalences;
clearly n: S —» T is a natural equivalence if and only if np is an
isomorphism in D for sach A.

It may be said as a general rule that the category Fun(g, D)
inherits the good properties of D. We give some examples of thiss
1) If D has zero objects, then so has obviously Fun (C, D).

2) If D is preadditive, then so is Fun (g, D).
For let E, m: S— T be natural transformations. Then &+ n is
given as (& + n)A = £, + nye One verifies that this makes
Nat (S, T) an abelian group.

3) If D has finite products, then so has Fun (L, D).

Let T1,..., T, be functors 0 — D. Define a new functor

T as

T (A) = T, (A)x oes X T (n),

T (a) = T4 (@)X eee X T, (¢) for at A - B,
One verifies that T = T1x S Tn'

4) If D has kernels or cokernels, thon so has Fun (g, D).
Let m: S - T be a natural transformation. Define
a functor K: C— D as
K (A) = Ker Ny e
K (¢) = induced by S{a), for o: A — B.
Na
K(R) ———=5(A) ——=T(A)

|
k(o) ! l s() \L
V/

K(B) ——= s(B) ——=T(B)
g

One verifies that K S is a kernel for n.
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Prmposition 14. If D is an abelian category, then also Fun (c, D) is

abelian,

Proof.AB 1 and 2 are clear from the remarks above. AB 3 is alsc guite

clear since it holds "pointuwise".

Diagram categories:

As a simple example, consider diagrams of the general form
A B —=C in D. A "morphism" between two such diagrams A =B C
and A!' = Bt — C' is definekd to be a triple of morphisms A — AY,

B —-B8', C—>C' such that the diagtam

commutes. The set of diagrams of this form then makes up a category.

A better way of handling such "diagram categories" is to consider
them as particular cases of functor categories. In the actual example
we let I be the category consisting of just three objects a, b, ¢
and morphisms a: a— b, B: b— c, Ba: a —c plus the identities, A
diagram A — B - C may be viewed as a functor 1 - D. A morphism between
diagrams is just a natural transformation of such functors, Hence the
category of diagrams is isomorphic to the functor category Fun (L,'g).

In a similar way one can handle more complicated diagrams, '
including diagrams with commutativity relations (but not with exactness

conditions!). For example, a commutative diagram

O & o

| |

rz-(-—-—:«:

is a functor to D from the category

f

Ba =08y =¢
+ identities,

<2

0 G
4
f

o
w

N

[e
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On the other hand, every functor category Ffun (C, D) may be
considered (though somewhat artificially) as a diagram category. For
this reason we will not develop any special theory of diagram catégories
(the reader is referred to [18], p. 42, for a treatment of diagra@

categories and commutativity relations),
Additive functors:

Suppose both £ and D are preadditivé categories. The full subcategory
of Fun (G, D) consistifng of ths additive functors is denoted by

ﬁgm (Q, D)i This catégotfy also inherits properties from Di EeQe, if

D has kernels then if m: S —= T is a morphism in Hom (Q, Q), the
functor K that was constructed in 4) above will be additive and a

kernel for ® also in Hom (C, D). We clearly have:

Proposition 15 If C is preadditive and D is abelian, then Hom (&, D)

is an abelian subcategory of Fun (L, D).
Module categories:

Let A be a ring, i.e. a preadditive category with only one
identity {which we denote by 1)e If D is an arbitrary preadditive

category, an object T in Hom (A, D) is called a left A-object in D.

T determines an object B in D by the rule T(1) = 14, and
for each ¢ €A, a morphism T(a): B — B with the
propertiess
T (Ba) = T(B) T(a)
T (a+ B) = T7(a) + T(B).
Hence T induces a ring homomorphism A — Homg (B, B). Conversely, every
pair (8B,n), where B 1is an object of D and W} a homomarphism
we A — Homg (8, B) of rings with identities, determines uniguely a
left A-object in D.
Dually, we call Hom (n°, D) the category of right A-objects

in D.
Let us now consider the particular case of D = (Ab).
Let (8, p) be a left A-object in (Ab). Urite p(a) x = ax.

Then we have
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Ix = X
(B dx = Blax)
(¢ + B)x = ax + PBx

a(x + y) = 04X + Ay,
so K endows B with a structure of left A-module, It is clear that we
cen identify the notions of left A-object in (Ab) and left A-module.

It remains to consider the morphisms in Hom (A, D) for arbitrary
D. Let T =(B;p) and 5 = (C; p') be left A<objects in D. A
natural transformation mns T— 5§ corresponds to a morphism B - C such

that for each « € A, the diagram

iy

B
c@) ) e

B——>C

commutes. In case D = (Ab) this means that B - C is an A-linear

map. Hence we may identify

mod, (A) = Hom (A, (Ab))
Mod (A), = Hom (A%, (AB)).

Exercises:

Llet B, C and D be categories.

1. Let n: S » T be a morphism in Fun (L, D). Show that if =0, is a
monomorphism for each object A in L, then m is a monomorphism.
Show that the converse holds when D is abelian. |

2, Let D be abelian. Show that a sequence 0 =R =S5 > T- 0 in
Fun (C, D) is exact if and only if 0 — R(A) - 5(A) » T(A) - O
is exact for each object A in C.

3, Define a functor E: Fun (C, D) x L -»D as E(T, A) = T(A), etc.

The partial functor EA for fixed A 1is the gvaluation fugctor‘at A,

Show that:
i) if D is preadditive, then E, is additive;

ii) if D is abelian, then E, is exact.

4, Show that there are canonical isomorphisms of categories

~

Fun (B, Fun (C,D)) = Fun (B x G, D) = Fun (€, Fun (B, D)).

If B, C and D are preadditive, then a similar result holds

_

for Hom,
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§ 5, Representabla functors,

As we saw in the preceding §, the category Fun (C, (Ena)) has
many of the good properties of the category (Ems). It is therefore an
interesting fact that there is a full imbedding of £ into Fun (CO,(Ens))g

This is a corollary of the following more general theorem:

Theorem 16 (Yoneda), Let C be a U-category. For esvery abject A in

L and every functor T: Eé-q_gy(Ens) there is a bijection

8 Nat (hA,T)-a T(AR)

A,T?
which is natutal in A and T.

If C is preadditive and T: QO - U < (Ab) is an additive functor, then
gA,T is a group iscmorphism,

Proof. To define 8 we note that a natural transformation n: h,— T
in particular determines a map n,: hA(A)-ﬂ T(A), and we put

QA,T (n) = UM (1A)' An inverse B8' of 8 1is constructed as follows:
if x € T(A), then 8'(x)—~ T is defined as

B'(x)g: @ =T (@) (x) for o 8 —A.

The rest of the proof consists of a number of mechanical verifications..
1) 8'(x) is a natural transformation:

For every f: B — C we have a diagram

Q(x)B
h, (8) > T(8)
T(8)
h, (€) b = T(C)
D’(x)C

which should be commutative. Starting with o € hA(C) and passing over
the NWU cornsr gives Q‘(X)B (ap) = T(ap) (x), while the SE route
gives T(p) G‘(x)c(x) = T(p) T(a)(x) = T (op) (x)s Thus the diagram
commutes,
2) 8' 8 = ida:s
For arbitrary n: hA'* T and o B—- A we have
(8' 8 (ﬂ))B @) = (8" ny (1A))B () = T(a) ny (15) = ng (a)s
where the last equality follows from the commutativity of the diagram



A
hy (A) =T (A)
T(a)
h, (B) =T (B)
A WB

3) B8 8" = id.:
For any x € T(A) we get 8 8'(x) = Q'(x)A (1A) =T (1A) (x) = x.
4) Naturality in A:
Given any g3 B— A, we have to show that the diagram
8

A, T

Nat (hA, T) = T(A)

Nat (hg, T) ; > 7(8)
QB,T

commutes, wherse the left map is induced by ha = Hom (e, a )t hB-e hA'
A

= nB(ha)B (18) = ng Hom (1B,a) (18) = g (), while the NE route gives

T(a) gA,T (n) = T(a) Np (1A) = nB(a) as in (2).

Start with mn: h, - T. GSW route gives gB,T (n-ha) = Gy-ha)B (18) =

5) Naturality in T:
Given any natural transformation g: 5 — T, we have to show that

the diagram

8

Nat (h,, S) A5 S s(n)
|
\
Nat (h., T) =T(A)
A 0, T

commutes. Starting with n: hA-» S, the NE route takes mn to
EA(gA,S(”)) = EA(nA (1A)) = (g-n)A (1A)’ while the SW route takes 7

to 8, ¢ (&n) = (&n)y (1,00

6) In the additive case, is clearly a group homomorphism. This

%, T
concludes the proof of the theorem.
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Let us now considsr an important special case of the Yoneda theorem,

namely that in which T = h for some object B. The theorem asserta

that there is an isomorphisi 8: Nat (hA’ hB)- Hom (A,B). Its inv?rse

8 was constructed in the proof as taking «o: A -+ B to the natural
transformation g (¢) with 9-1 (a)C: Hom (C,A) — Hom (C,B) givea as

y > o ye We will write ha for o1 (@), and obtain

Corollary, For every U-category £ there is a full imbedding

C - Fun (g", U-(Ens)) given by A= hys @ = h e Uhen C is preadditive,

there is a full imbedding C —-Hom (C°, U - (Ab)).

Definition. A functor T: C° — (Ens) is representable if there exists

a natural equivalence n: hA—4 T for some A,

The functor A - hA defines an equivalence between £ and the full
subcategory of Fun (ED, (Ens)) consisting of the representable

functors,
By the Yoneda theorem, a natural equivlaence s hA‘* T corresponds

to an slement x = nA(qA) € T(A), and uwe say that the pair (A,x)

represents T. The representing pair is essentially unique, i.e. if
both (A,x) and (B,y) represent T, then there exists an isomorphism

ot A— B such that T(a): x+ y. Note that n may be reconstructed
from (A,x) as na(a) = T(a) (x) for a: B — A,
M4
Hom (A,A) ———= T(A)

T(a)

Hom (B,A) >T(8)
g
The natural transformation % is a natural equivalence if and only if

ﬂB is bijective for each B, so we have the follouwing characterization

of representing pairs:
Let T: EF-% (Ens). T is then represented by (A,x), where
x € T(A), if and only if for every B8 the map

Ng: Hom (B,A) » T(B), given as a —T(a) (x), is bijective.
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Example:
Let £: X— Y be a morphism in C. Define T: c® - (Ens) as
T(C) = {p: C— Xl2g =0},
T(y): T(C') —» T(C) as ¢ oY for y: C—-C',
It is easily seen that T is represented by a pair (A,x) if
and only if A = Ker £ and x = ker E.

% £
X > Y E x =0

A .
4 p
B

PN

N

7 T(a)x = x«

There is of course a dual theory for covariant functors T: C - (Ens).
The Yoneda theorem then asserts that there is a bijection

A
Nat (h", T) —» T(A). It is left for the reader to make explicit

the dual conditions for representability of T.

Exerciges:
Let C be a U-category.
1. Redefine final objects in £ by means of representability of a
suitable functor C° — (Ens).
2, Let U c V be universes. Show that:
i) U-(Ens) 1is a full subcategary of V-Ens).
ii) There is a full imbedding
I: Fun (c®, U - (Ens)) — Fun (€°, Y-(Eps)).
1ii) F: C° - U-(Ens) is representable if and only if
IF: go-* y~-(Ens) 1is representable (hence representability

does not depend on the choice of universe).

Appendix II.A: Pro jectives and injectives in arbitrary categories.

In § 2 we introduced the notions of projective and injective
objects for abelian categories. In the case of an arbitrary category

L the corresponding definitions are:

Definition. An object P 1is pro jective if for each epimorphism
a: A > B and morphism @3 p—- B, there exists p's P> A such that

og' = Qe Injective objects are defined dually.
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Proposition 5 is valid also in this general casse. It is also
clear that if P is projective, then every epimorphism A - P is a
retraction.

We may also define generators and cogenerators for C. It will
be useful, however, to introduce somewhat more general notions than

was gone in § 2.

Definition. A set of abjects {Gi}I is a family of generators for
C if for every pair of distinct marphisms «,B: A — B there exlsts
p: G, — A fotr some L € I such that op # B+ Cogenerators are
déPined dually.

If {Gi}I is a family of generators for L and if L1G; exists,

then obviously lJ.Gi will be a generator for L. Prop. 8 Iholds also
I
for arbitrary categories.

Exampless

1. Every object in (Ens) is projective, mhile.every non-empty set is
injective., Every non-empty set is alsc a generator and sets having
more than one element are cogenerators.

2. The projective objects in (Gr) are the retracts of free groups.
But since esvery subgroup of a free group is free, the projective
groups are just the free groups. On the other hand, every injective

group may be shown to be trivial, i.e. to be {1} {71

Appendix II.B: Group objects in categories.

It often happens that in a given category L one wants to consider
objects with an additional algebraical sblructurs. Fag. in (TOp) ong
has the topological groups, topological rings etce Ye will hera study
the group objects in a category C. Let F: (Gr) -» (Ens) be the
forgetful functor.

~ 0
Definition. A group ob ject in C 1is a functor G: L — (Gr) such

that F G is representable,
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This means that there is a representing object G €L such

that for each X € C one Has a group structure on
G(X) = he(X) = Hom(X,G),

and if X — Y 4is a motphism in C;. then the induced map
Hom (Y,G) = Hom(X,G) is a group homomorphism.

An equivalent way of expressing this is to say that a group opject
in € 1is an object G € C together with a natural transformation’

y: h, x h, - h, satisfying the conditions of associativity etc.

G G G
Let us now assume that C has finite products. Then hG X hg
is represented by G x G, and «: hG X hG-» hG corresponds by the
Yoneda theorem to a morphism pu: G x G - G. The associativity condition

then bescomes:

1T x p
1) CxGxG > G x G
b ox 1 J} j 1) commutes.
/
C xG > G
i

The condition that translations to the right and to the left should be

invertible takes the form:

¢4

2) The two morphisms G x G ——_——2G x G defined by
B
T, = B ﬂ1ﬁ = T,
|20 = Ty mh =k
L

are isomorphisms; where Tys Tyt G x GG are the two canonical
pro jections,
If C has a final object, then (2) may be reformulated in various ways,
SEB 8.0 [5] or [18]}
The group objects of £ form in a natural way a category Eﬁr'

Examples:
1. (Ens) is just the category of groups.
GT
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Se

4,
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If C is an additive category, then Eﬁr is isomorphic to C.
For every object in £ is a group object, with the corresponding
ps G x G - G given by the sum of the two canonical projectionss
On the other hand, every group object structure on G € C musé

coincide with the given additive one.

Proof. Suppose ps: G x G —» G defines a group object structure on

C and let o#* B denote the corresponding group multiplication in

Hom (X,G).

One obtains o *B= plaB) = p((0yo) + (0,B)) = pla,o0) + p(o,B) =
= axo0+0%B = a+ B, since it is easily verified that ox,é
is the identity element for the operation *%.

(Top)Gr is the category of topolegical groups, with the continuous
homomorphisms as morphisms.

In algebraic geometry one studiss group objects in the category of

schemes,
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Chapter I11s Adjoint functors and limits.

It is a common situation in various branches of mathematics

that one hes a pair of categories and functors

which are interrelated by natural bijections
M5 HDmQ (A, T(B)) — Homg (s{(n;., B)

r

for objects ACQ and BED. This is what is ealled an "adjoint"
situation, and in this chapter we will study some of its proper-

ties and implications,

All eategorikes appearing in this echapter are assumed to be

U-categories.

§ 1. Adjoint functors.

Definitinn. Let there be given categories and functors

5

£ &7/ Db .

T

T 1is said to be a right adjoint of S (and symmetrically §

is a left adjoint of T) if there is a natural sequivalence

n:HomE(’.T(' ))—*Homp_(s('), © )

of bifunctors C° x D — (Ens).
In particular this implies that the functor

Hom (s(-), B) : EO - (Ens) is representable for each BED ,

with T(B) as the representing object, More precisely we hawe, as
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we recall from the theory of representable functors, that
Hom,, (s( + ), B) is represented by a pair (T(B), EB), whers

g € Hom (ST(B),B) and is obtained by the formula

g5 = (e, '1(a)) 0

Naturality in B implies that we obtain a natural transfaormation

£: ST —»10.

We also recall from the general theory that Ny g may be
’

. B
readnstructed from EB as

ﬂA,B( o) = hg(s(a))(Ey) =&, ° s(x) for azA—T(B). (2)
r(8),6
Hom(T(B),T(B)) - > Hom(ST(B),B)
|
hT(B)(a) 1 YQB(S(a))
W

Hom(S(A),B)

Hom(A,T(B)) —
Na,B

~

It is worth noting that the naturality of 71 is an automatic

eonsequence of (2), or more precisely:

S,
Progvosgtion 1., Suppose we are given functors Qﬂf_jfg and a

T
natural transformation E&: ST -*16.
Define -

g Hom(A,T(B)) — Hom(S(A),B)

t4

as o) = E_ ¢+ 5(a), If <N is bijective for 21l A,B

'ﬂA’B( ) B ( ) A,B J b s
then n, makes T into a right adjoint of 5.
Proof. We only have to show naturality of ﬂA B in A and B.

’

Let y: A' = A be a morphim in L and consider the diagram
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Hom(A,T(B)) —s  Hom{S(A),B)

N

Hom(A',T(B)) = > Hom(S(A'),B)
AY,B

Starting with a :A — T(B) and going the way over the NE caorner,
we get o~ Eg - S(e) + &g s(a) » S(y) = Eg 5( ay). Going
instead over the SW corner we get o+ oyt EB * s(ay, so
the diagram commutes,

To verify naturality in B, let g:B - B' and consider the

diagram

Hom(A,T(B)) ——>  Hom(S(A),sT(B)) ——— Hom(S(A),B)

I, l

Hom(A,T(B')) — Hom(S(A),5T(B')) ——> Hom(S(A),B")

where the horizontal arrows in the right gquare are induced by
EB and EB" Since £ is a natural transformation, this square
commutes, The left square also commutes sinee § is a functor.
Thus the whole diagram commutes and we have naturality in B,

It follows from the theory of representable functors that
a right adjoint of S5 is uniquely determined (up to natural
equivalence). We also remark that representability of Hom(s5(*),B)

is sufficient for the existence of a right adjoint af 5, indeed:

Proposition 2. The following statements are equivalent for a

functor § ¢+ C — D:
(a) S has a right adjoint.

(b) The functor Homy (s(+),B) is representable for each aobject B.



57,

Proof. (a) = (b) is clear. To prove (b) = (a), choosexfor each

object B in D a representing object T(B) with a natural equivalence

gy ¢ Hom (=, T(B)) =~ Homy (5 ( - ),8).

D

£ 2]
e enly have to verify functoriality in B. So let B: B —B'
be any morphism in D. B induces a natural transfidrmation

¢+ Hom(S(-),B) — Hom(S(-),B') and thereby gives a commutative

diagram
{:!
Hom ( », T (B)) ————> Hom (S ( * ), B)
| I
g
Hom ( *, T (B')) — > Hom (5 ( * ), B')

where the left arrow is simply defined as mé?¢¢8. By the
Yuneda theorem it is induced by a morphism T( §:T(B) — T(8'),
which is uniquely determined by B. It is easy to see that the
unicity implies that T may be considered as a functor, By its
construction, T is a right adjoint of 5.

The preceding results may be dualized by instead considering
S as a left adjoint of T. We then obtain a natural transformation
L1, =T8S, defined as CA = nA,S(A)-1 (1S(A))' n'1 may be

reconstructed from { as
-1 . .
nA,B (B) = T(B) CA foar PB: S(A) —B.

There is an interesting relation between the two natural

transformations & ¢ ST - 1 and § ¢ 1 — TSs$

Proposition 3. Let T be a right adjoint of S : C— D. The

following two diagrams are commutative:
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Ts(a) ()

5(A) > S5(A) T(B) —— 7 T(B)
\ S 7
s(ty) \ / () Cree /(%)

N
STS(A) TST(B)

Praof. By the formula (2) and the definition of & we have
ES(A)S( %) = nA,S(A)(CA) = 1S(A)' Commutativity of the second
diagram follows by duality.

Propogsition 4. Let £ and D be preadditive categories and let T

be a right adjoint of S ¢ L - D. Then T is an additive functor

if and only if § is additive.

Proof, We will show that § is additive if and only if nA,B
is a group isomorphism, Them by symmetry we will have that T
is additive if and only if rh,B_1 is a group ispmorphism, and
coy assertion will be proved., If S is additive, then for

ags a, A »T(B) we get n(a, + a,) = E_S(o, + a,) =
- o = o
= &5(0) + §8(a,) = n(a,) + n(a,).
Conversely, assume nA B is additive., For a morphism
H
' - - g =
Y:A - A we have T)(QA'Y) = ES(A)S(C‘AY) = ES(R)S( A)S(Y) = S(Y)
by (2) and Prop. 3, It follows that additivity of m implies
additivity of S.

Examples:

1. Let B and B be two rings and consider modules LA, EMB and
NB (i.e. L is a right A-module, M is an A-B-himodule and
N is a right B-module). The tensor product LQE}AM becomes
asright B-module by putting (x@ y)b = x&jyb for bEB.

Similarly HomB(M,N) becomes a right A-module by defini- g

-y
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pa(x) = @(ax) for sA, M andg: M —N. Ue have a natural

equivalence of functors

Hom, (L @aﬂm, N) — Hom (L, HomB(m,N))
by ([17 ], p. 144). This means precisely that x
Q§Am : Mod (A).— Mod (B). is a left adjoint of

Hom, (m, +) : Mod (B). —=Mod (A}..

Let ¢ : A— B be a ring homomorphism. Ye may consider B as an

A-B-bimodule by defining ab = ¢(a)b for &4CA, bEB, But B may

equally well be considered as a B-A-bimodule. Define functors

*
Q@

A~ L ..v—)
Mod (R). (—*—> fiod (B).

— Py

as
¢*(m) = m(z)AB (extension of scalars)
oy (N) = N (restrietion of scalars:
' xa = xg(a) for a€A, xEN)
p (M) = HomA(B,M) (vhere B is a B-A-bimodule).
1

B f
m*“is then a left adjoint of o while ¢ is easily verified

to be a right adjoint of gy .

G

Consider the functors (Ab) __ — (Ens), where G is the
(

forgetful functor and F is thg gonstruction of free abelian

groups on sets {ch. 2y §1). G is a right adjoint of F.

The loap space functor Qs (Top)O —»(Top)ovis a right
adjoint of the suspension functor ({217, p. 41).
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Exercises:

1. Let T be a right adjoint of 8:C — D. Show that T is
faithful if and only if EB : ST(B) - B is an epimorphism
for every B.

S
2. Suppose we have functors Ewg_;;ig and natural transf6érmations
E s ST-1and £ ¢ 1 - TS. T 8how that if the two diagrams
displayed in Prop. 3 are commutative, then T is a right adjoint

of 5.

§ 2. Equivalences.

Arn eguivalence was defined in ch. 2 as a functor S5:L —D
which is full and faithful and such that every B&D is isomorphic
to some S(A). This definition is not very satigfactory since it
lacks in symmetry, but it has certain computational advantages.
The fuollowing result gives a more complete picture of the proper-

ties of an equivalence.

Proposition 5. The following statements are equivalent for a

functor S : L —» D:
(a) S is an equivalence (in the sense above).

(b) There exist T : D— L ancnnatural equivalences

1C-ﬁ TS and 12 —-5T.

—

(c) There exists T : D— L which is both a left and a right
adjoint of S, and such that thezcanonical natural tranefor-

mations 1C-a TS5 and 1D-a ST are natural equivalences.
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Proof. (c) = (b) trivially.
(b) =(a): The natural eguivalence 1 — TS gives for every
morphism A - A' in C a commutative diagram

A — TSﬁA)

(1)

”

At ——————> TS(A")

which shows that S is faithful. By symmetry also T is faithful.
A morphism B: S(A) - S(A') induces conversely o: A - A' so that
(1) commutes, But then also Ts(a) = T(B), and B = S(a) since T
is faithful, Thus § is full. Finafiy there exists for mvery
object BED an isomorphism B ¥ ST(B). Hence 5 is an equivalence.
(a) = (c): If S is an equivalence, we can for each BED find

an object T(B)EC and an isomorphism £, ST(B) = B. A morphism
gt B —»B' in D induces a morphism EB' BEB : 5T(B) —ST(B'),

and since S is full and faithful there is a unigue morphism

T(B) = T(B'), denoted by T(B), such that ge,'1 BE = sT(B). Ue

thus have the commutative diagram

%5
sT(B) > B
|
(2) ST(B) B
J
sT(g') —> B!
Eg

It is-easy to see that T in this uay becnrmes a funchtor, and
E: ST — 1 a natural equivalence.
For each AEC we get in particular an isomorphism
QS(A) : 5T5(A) — 8(A), and since S ig:zfull and faithful we may
write ES(A) = S(CA'1) for a unique isomorphism 1% : A = TS(A).
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To prove that & 1is natural in A, consider the diagram

A
A
A —>  T15(A)
(3) o T5(a)
Al ——~E;T——} TS(A")

for any morphism o in C. Applying § to this diagram we get a
commutative diagram by the definition of § and naturality of E&.
Since S is faithful, (3) must then be commutative: Hence
£: 1 —-7TS is a natural equivalence.

To-prove that T is a right adjoint of S we use Prop. 1

and defiae

M,8 Hom (A,T(B)) — Hom (S(A),B)

as (a) = &g s(a). Since g, is an isomorphism and S is

!

A,B

full and faithful, n
A,B

adjoint of S. To prove that T is a left adjoint of S we similarly
apply Pruf. 1% to 5-1 : 1 ST.

will be bijective. So T is & right

§ 3, Limits and colimits.

Before introducing the quite general notions of limits
and colimits, we should recall the "Elassical” definitions of
inverse and direct limits of sets.

A direct system of sets is a family (Ai) of sets, indexed

by a partially ordered set I which is directed (i.e. for every
pair i, j in I, there exists k€ I such that i <k, j < k), =d

maps aij : Ai-4 Aj whenever i £ j, such that
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The direct limit of this system is defined as lim A, = L—lA./N
— 1 I 1

where ~ identifies two elements if they "finally coincide", i.e.

if x € Ai and y € A,, then x ~ y if there egists k such that

i <k, j £k and aik(x) = ajk(y). Note that ~ really is an

equivalence relation.

Aniinverse system is obtained just by reversing the arrous,

i.e.

aij : Aj —;Ai whenever i < jo The inverse limit of such a
system describes the “far past" of elements and is a subset aof
A, namely 1&@ A, = {(si)I | if i <j, then aij(xj) = xi} cg A
For more details about direct and inverse limits of sets,

spaces or groups, ses (8], Ch. 8.

The inverse limit l%y Ai has the followinguuniversal mapping
property (which in fact characterizes it uniquely up to isomorphisms):
there is a canonical family of maps Ei H {%@ Ai-e Ai which is
compatible, i.e. if 1 £ j then aij Ej = gi, and for any object
B and compatible family of maps ¢i t: B — Ai’ there exists a
unique map B : B —’%%T Ai such that £. B = N for all i. There
is a similar characterization of direct limits, These universal
mapping properties should af course be used when defining limits
and colimites in the general case.

Let C be a U-category (as usual) and let I be a U-small
category (which might be thought of as an "index category").

We want to define thes limit for functors I — L. As a first step

we introduce a functor k : C — Fun (L,C) as:

if C is an object of G, thaéﬁkc : I - C is defined to

be the constant functor given by

C for i€0b(l)

1

ke(2)

L]

e for i€Mor(l);

if ot C - D is a morphism in C,then k(o) ke = kp

(V)

is the obvious natural traneféemmation, i.e.

k(a)i = o for all i€db(l).

We now define the limit functor lim : Fun{(1,C)— C as being

a right adjoint of k. So if G : I — C is any functor, then its

1imit (sometimes called its projective 1imit) lim © is deturninad
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up to isomorphisms by the formula
HomE (c, J#Ln G) ¥ Nat (kC,G).

This may also be expressed by saying that %&T G represents
the functor C 3 Nat (kC,G). Recalling the characterization of
representing paits given in Ch. 2, § 5, we may desgribe limits

in the following explicit fashion:

given G ¢ I —»C , a limit for G is an object %ip GinC
together with a family of morphisms E; ¢ %&p G~ G(i) which is
compatible, i.e. for every A: i = j in I one has G(A)Ei e % ,
such that each compatible family ¢i s B - G(1) may be uniquely

factored over (gi)l.

&
lim 6 — S G6(4)
— < >
~ /
~

If the limit functor é&p : Fun (I,C) -»C exists, then C
is said to "have I-limits". Similarly C is said to "have finite
limits" if it has I-limits for all finite I, and £ is said to be
U-complete if it has I-limits for all U-small categories I,

If C is a preadditive category, then it follouws fram Prop. 4
that éiT is an additive functor, since k obviously is additive.

The colimit functor lim s Fun (I, C) - C is obtained by

dualization as being a left adjoint of k, lWe consequently have

Hom (ljin G, C) ®Nat (G, kC)

and a corresponding explicit description of lim G, which is

indicated by the diagram

G(4i) S lim G
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Examples:

1. Let I be a discrete category, i.e., the only morphisms are
the ijdentities. If G : I = C, then 1im G = _ ' §(i) and
= — ob L

1im G = JEiI 6(i).

2. Let I be a directed category, i.e. a partially ordered set
such that for each pair i,j there exists k with i < k,

j Lk. A functor G : 1 — € is called a direct system in C

and lim G is a direct limit, while a functor G : 10-* C is

an inverse system in C and lim G is an inverse limit.
AN
3, tet I be the directed category

i
\\\ﬂ1< (+ identities)
/

o

and G ¢ I »C. Then 1im G = G(i)x G(j) and 1im G = G(k).

Proposition 6. A U-category C is U-complete if and only if

C has equalizers and U-products.

E;ggﬁ. Since equalizers are particular instances of pullbegks, it
follows from the preceding examples that if C is Y-complete,
then it has equalizers and U~products.
The converse follows from the fact that if 1 € U and
G : 1 —C, then the limit of G is given by the formula

=

®
lim G = Equ n G(i) ' G (target X ) (1)
= i€0bl o MEI //

(1f A i jﬁj ig a morphism in I, then j is called the targst of

A while i is the source of A). @ is defined by the canonical

projectians Dg G(i) — G(target A ), using the universal

property of the second W>. ¢ is similarly defined by the compo-

sitions
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T G(i) —— © (source A ) ——>G (target A ).
6b I proj. G(a)

It is easy to see that the formula above really gives the limit:
define & : Equ (...)=T (i) - G{j) by composing the
canonicalJmorpriSms The family (& ) is clearly compatible, and
it is easy to verify that it has the required universal
property.

The dual formula for the colimit is:

N s ||
lim G = Coequ ¥ L G (saurce A ) . . G(i) (2)
\ e o i€onL
with ¢ defined by canonical injections G(source A }*[_J (i),
. - ‘ | .
and ¢ defined by G (source A ) c(0) G ttarget A ) i:j.‘i G(i).

In particular we have that the categories U - (Ens) and

U - (Ab) are U-complete and U-cocomplete. Limits are for both
categories given by

Lim & = { (x)eT6() | (A (x;) = x; for each A: 1§}
The explicit formulas for colimits are somewhat complicated when

considered over arbitrary 1. We will therefore impose extra

conditions on I.

Definition. A category I is called pseudo-directed if it satisfies:

PD 1. For any objects i,j thers exists a diagram

k

i

BD 2. For every diagram i J there exists n: j = k such that

= A

nmAh = M.

Ue extend the classical terminology somewhat by calling
every limit (colimit) over a pseudo-directed category an

inverse (direct) limit. As it turns out, this is really no genuine

generalization of the classical potions (appendix A).

A pseudo~directed category I satisfies the following meaker

axioms
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BPD 3., Every diagram

If 1 satifies PD 3 and G : I -+ (Ens), then

il G(i) / ~

l&y @ = 061

where x ~y (x€G(i), yeG(j)) if and only if there exists a

diagram

i \\\QJ )
7

oo

with G(A) (x) = G(r) (y).

Proof. The relation ~ is an egquivalence relatirn: it is trivielly
reflexive and symmetric, and it is easy to see that PD3 makes

it transitive. The family of eimposed maps

6(i) =Ll a(s) ey~
is clearly compatible, and one verifies its universality.

If 1 does not satisfy PD3, one has to define ~ in a more
intricate way to make it an eguivalence relation (see {1 ).
If 1 is pseudo-directed, the formula above also gives colimits

for group valued systems:
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Proposition 7. Let G : I - (Ab) and suppose I is pseudo-directed.

Let F ¢ (Ab) —» (Ens) be the forgetful functor, Then
F (1im G) = lim FG,

Proof. Consider the diagram

G(i)
Yi \

/ \Y
ey —2 0 &rew)
A 1 .
\Pg (x' \

Lim FG o _C :}l_z'_;m G
B'

where the gbjects in the left column are in (Ens) and those
in the right column are in (Ab), and where « is the canonical
map. The compatible family of maps Hin induces a map

a': lim FG — 1im G. We assert that a' is surjective. Ta see

this it suffices to show that HA is surjective. Now we have

1ip 6 = & o(i) / 1m (@ = ¢)
i
with 9 and ¢ defined as in formula (2). An element x € lim G
A
is thus represented by a finite sum £ ®, € (E)E(i). Using
o

=1
PD 1 we may find a diagram @

1 N 4 n

N K
J

in I, and we put y = G(Ka) (xi Y € G(j)

and y = ¢ y . We obtain (¢ - ¢% T x. =% x. -% y =
o i i o
o o
£X; - Y, s0in lim G we have x = y € Im Ho,

o
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We will then define a group gtructure on the set liy FG
so that each hyi becomes a group homomorphism. Let X, y € lim FG

be represented by x, y € G(i) (PD1 is used here). Put

X +y=x+ y. Ue only have to verify that this is well-defined,

for the group exioms are then clearly satisfied and th are
homomorphisms. 5o suppose x and y also are represented by x'

and y' in G(i'). There exist diagrams

i\!.\/i' i\g\'/i-

such that x and x' have the same image in G(j), while y and
y' have the same image in G(j'). Because of PD3 there exist

j - ky j' = k such that the left side square of

i it

l/x\\y/ff
P W\
J J'
W

commutes. By PD2, k may be chosen so that also the right hand

square commutes. Then x and x' (resp. y and y') have the

same image in G(k), and x + y = x' + y'.

Now the compatible family of group homomorphisms hyi
induces a homomorphism @ : lim G - lim FG such that
Bluay ; = Ayy- Then B'a’ Ay = Bra v, = Ay;» and by unicity
we obtainf'a’ = 1. Since we have already seen that a' is sur-
jective, it follows that o' is bijective.

Limits in functor categories:

Our purpose is to show that if [ is U-small and D is a
U-complete U-category, then Fun (0,D) is also U-complete and
its limits may be computed "point-wise". Let G 3 1 — Fun (g,g),
where I is U-small. fFor gach object A of L, define =a functor’

G, ¢ I15—-D as
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6, (1) = 6(i) (A)

1l

1

GA(A) G(?\)A (verify functoriality!).

A morphism a : A — B in £ induces a natural fransformation

o = GA - Gy as o, = G(i) (o) : GA(i)-—a GB(i).

We assert that 1im G is the functor C — D given as:
A

%&T G (A) = ﬁiﬂ GA for each A,
Lim 6(( %) = lim « for o: A —B.
et —

To verify this we must show that if F : L = D is defined as
F(A) = 1lim Gpo Fla) = 1im g then F is a functor (which is
rather evident) and the family af natural transformations

{F - G6(i)} ie1

property. But this is quite clear since it holds for each

is compatible and has the necessary universal

abject A of C. The conclusion is that limits may be computed
"point-wise"; in special cases this has been noted already
in Ch. II, § 4 (products, kernels etc.). The result may be

explicitly formulated as:

Propositicn B, Let I and C be U-amall categories, If D is a

—

U-complete U+category, then so is Fun(Cy D).~ If-G : I - Fun(L, D),
then 1im G is the composed functor ‘
e
G. %&E

£ > Fun (L, DY o

where G (A)
G, (a)

S,
a .

If € and D are preadditive, a similar result halds for Hom (C, D).

Thié result may in particular be applied.tu the rategories

Fun. (L, Y - (Ens)) and Hom (€, U-~ (Ab)).
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Exercises:

€. Show that there exist natural bijections:
]é-_'_n G) = H Hom (C’ G('))’
Hom (1im G, C) ® 1lim Hom (G(*), C)

— E—

1. Let G ¢+ 1 —
Hom (C,

(cf. ch. 1, § 4, ex. 2).

1

2. Show that if (C, )I is a femily of objects, then J—Lc
is the direct limit of the coproducts %l-C for Flnlte

subsets J of I. (In particular, if C is abelian, then C

is cocomplete if and only if it has direct limits).

§ 4. Preservation properties of limits.

Let T : C— D be & functor. T is said to preservs

(pr commute with) limits if for esvery G : I— C such that

1jm G exists, one has T (lim G) = Lim TG (it is then under-
stood that if Ei : %&T G— G(i) is the canonical morphism, then
T(Ei) should be the canonical morphism a&T TG—- TG(i)). There

is a similar terminology in cass T only preserves special
classes of limits, e.g. kernels, products, finite limits or
inverse limits. Dually for colimits.

Example: The forgetful functor (Ab) — (Ens) preserves limits

and pseudo-directed colimits (Prop. 7).

Proposition 9. Suppose C is U-complete. T : [— D preserves

U-limits if and only if it preserves equalizers and Y-products.

Proof, Immediate from the formula for limits given in the proof

of Prop. 6.

Proposition 10. Suppose C and D are additive categoriss and

T:E—-D is a functor. Then :
(

i) T is additive if and only if it preserves finite products.
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(ii) T preserves finite limits if and only if it is additive

and preserves kernels.

Praof. (i): Same as for ch. 2, Prop. 1. (ii) follows then

immediately.

From the definition of limit and colimit we aobtain the

following basic result:

Proposition 11. A right adjoint functor preserves limits, while

a left adjoint functor preserves colimits.

Proof. Let T be a right adjoint of § ¢+ € = D, and supposse

: I —D is a functor such that lim G exists. For any ab ject
of C we then have Homg (c, T(%iT g)) = Hom2 (s(c), %iT G) =
Nat (kS(C)’ G) ® Nat (kC’ TG) as is easily verified., By the

definition of limits, this means that lim TG exists and that

n o o

in fact T (lim G) = lim TG. Dually for left adjoints.
(Lim G) = Lin y J

Corollary 1. The functor %&m s Fun (l, C)= C preserves limits,

while the corresponding functor l;g preserves colimits,

Corollary 2. Suppose £ and D are additive categories and the

functor T ¢ C - D is either 2 right or a left adjoint, T is

then necessarily additive.

Proof. Use Prop. 10 (i).

Cotatlary 3. An equivalence pressrves limits and colimits.

Examples:
1. Since the tensor product is a left adjoint, we infer from

Prop. 11 that it is right exact and preserves direct limits.

2. The forgetful functor (Ab) — (Ens) is a right adjoint and
therefore preserves limits (as was noted already in the

preceding §).
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3,  The functor h° : C — (Ens) defined as hB(c) = Hom (B,C)
(ch. 2, § 1) preserves limits (exercise 1 in the preceding
§). Similarly hg QD-» (Ens) defined as hB(C) = Hom (C,8)
preserves limits, i.e. takes colimits in L to limits in

(Ens).

Arbitrary limits or colimits are obviously in general

not exact, but we have:

Theorem 12. If I is pseudo-directed, then lim : Fun(l,(Ens))- (Ens)
and lim : Fun(1,(Ab)) — (Ab) preserve finite limits.
(This is usually stated as: Pseudo-directed colimits are exact

in (Ens) and (Ab}).

Proof. It suffices to show that lim preserves pullbacks. So
let F, G, H be three functors I — (Ens) with a pullback F Xy G.

Write P = 1lim F x lim G. For each i € I we have a diagram

lim H

=1

Fx, G(i) (i)

TN e

F ( i ) ‘——'-—-———"==-nﬁ-=—_—_.-.___>, H ( J. )

where both the inner and the outer square are pullback diagrams.
U] is induced by the pullbaeck property of the inner square.

In order to show that P = 1im FxHG, consider any compatible

Family ¢ ¢ FxHG(i) - B8 (i€l) and show its uniqus factorization
over (rk). So we try to define a morphism ¢ : P—- B in ths
following way. If =x€P, then x = (§i, §j) € lim F x 1im G with
ii represented by x, € F(i), ;J by y.é€ G(j). By PD1 we

J
may assume i = j. Since xs and yi have the same image in

lim H, there exist two arrows A, 4 : i - i' in 1 such that
-

H(A)x = H(p)y. Using PD2 we may therefore write x as x = &k’ §k)



74,4

with (xk, yk) € F(k) xH(k)G(k) for some k € I. We nouw put

$(x) = (bk(xk, yk).dJ is well-defined becuase the family (¢i)

is compatible, and it is alsao clear that ¢ is the unigue

marphism such thatdn& = ¢1.
We now consider the (Ab) case. Since we already knouw

that &}m is right exact, it suffices to consider preservation

of monomarphisms. Let n: F -G be a monomorphism in the

functor category and suppose Xx € ;im F is mappsed to zero

by 1£p n: lim F—lim G. x is represented by some

x; € F(i) by Prop. 7. ni(xi) maps canonically to zero in

lim G, so there exists A : i — j such that G() ( q(xi)) = 0.

But G(A) no= Ny F(A), so F(A) X; = 0. It follows that

x = 0.

F(i) — Sy lim F
\F(j)/‘
ﬂl 'nj ! %im n
o
G
()
\% //,/;7 ’ “w\\§$ J/
G(i) > lim

Corollary. Pseudo-directed colimits are exact in Mod (A). .

proof. The proof for (Ab) works also in Mod(A)., or alter-n

natively use the exercise belou.

Exercises:

1. Show that if C is U-small, Anod D is an I-complete
abelian U-category where 1-limits are exact, then
Fun (C, D) has exact I-limits. Similarly for

)

Hom (C, when C is preadditive.
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2. Show that Th. 12 in the (Ab) case may be generalized to

1 satisfyihg only pPD2 and PD3. (Hint: write 1 1is

a disjoint union of pseudo-directed categories).

Appendix I1II. A. Pseudo-directed categories.

Definition. Let 1 and J bs pseudo-directed categories.
A functor & : I —» 3 1is cofinal (although "final" would be
more appropriate) if

1. For every j€ J there exists i &€ 1 and a morphism

2. If jegj and i € I, and there ars two morphisms

i 3 &(i), then there exists a morphism i - i' in 1

such that the composed morphisms j33 a(i') are

equal.

The reason for studying cofinal functors is the following

result:

Proposition 1. Let 1 and J be U-small pseudo-directed

categories,and & : 1 —» J cofinal. If F : J— £ is a
functor where £ is a cocomplete U-category, then the

canonical morphism 1lim F® — lim f is an isomarphism.

I
proof. We construct an inverse morphism lim F —1lim F&
in the following way. For j € 3 we choose;‘g morbhig;
j - ®(i) by using (1) for & . This gives a morphism
F(j) »F ®(i) = 1im F & . Ue have to verify that this family

is compatible. IFIj«a j' in J , then ue get a diagram

where i" exists by PD1 for L. By using (2) for &, we may
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assume the dihgram commutative by taking i" big enough.

So the family F(j) —1im F® is compatible, and hence induces

a morphism le F - ;amIFQ ., It is an easy exercise to show

that this morghism isIthe inverse of the canonical morphism.
Note that by duality we get a similar result for

inverse limits.

Proposition 2. (P. Deligne) Let ] be a U-small pseudo-directed

category. Then there exists a U-small directed category L

and a cofinal functor 1 - J.

Proof. Let 1 the set of finite subcategories of J having
a unique final object, and let it be partially ordered by
inclusion, I is certainly U-small, and we will verify that
it is directed. Let H and H' be objects of 1, with fipnal

ob jects ey and E By PD1 there exists j €J and a diagram

(*) R

Let H" be the subcategory of 3 obtained by taking the
union of H, H' and the diagram (¥*) . In H" there may

exist diagrams of the type

oy eH
AN
e

for he Hn H'. Since there exist only a finite number of such
diagrams, we may use PD2 and take j big enough to become a
final object in H".

1 is thus directed. Let & : I —» 1 be ths functor given

by Hi>e,. & is obviously cofinal.
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