
Chapter 11
Nonlinearly Perturbed Birth-Death-Type
Models

Dmitrii Silvestrov, Mikael Petersson and Ola Hössjer

Abstract Asymptotic expansions are presented for stationary and conditional quasi-
stationary distributions of nonlinearly perturbed birth-death-type semi-Markovmod-
els, as well as algorithms for computing the coefficients of these expansions. Three
types of applications are discussed in detail. The first is amodel of population growth,
where either an isolated population is perturbed by immigration, or a sink population
with immigration is perturbed by internal births. The second application is epidemic
spread of disease, in which a closed population is perturbed by infected individuals
from outside. The third model captures the time dynamics of the genetic composition
of a population with genetic drift and selection, that is perturbed by various mutation
scenarios.
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11.1 Introduction

Models of perturbed Markov chains and semi-Markov processes attracted attention
of researchers in the mid of the 20th century, in particular the most difficult cases
of perturbed processes with absorption and so-called singularly perturbed processes.
An interest in these models has been stimulated by applications to control, queuing
systems, information networks, and various types of biological systems. As a rule,
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Markov-type processes with singular perturbations appear as natural tools for math-
ematical analysis of multi-component systems with weakly interacting components.

In this paper,we present newalgorithms for construction of asymptotic expansions
for stationary and conditional quasi-stationary distributions of nonlinearly perturbed
semi-Markovbirth-death processeswith afinite phase space.Weconsidermodels that
include a positive perturbation parameter that tends to zero as the unperturbed null
model is approached. It is assumed that the phase space is one class of communicative
states, for the embeddedMarkov chains of pre-limiting perturbed semi-Markov birth-
death processes, whereas the limiting unperturbedmodel either consists of one closed
class of communicative states, or of one class of communicative transient internal
states that has one or both end points as absorbing states.

These new algorithms are applied to several perturbed birth-death models of bio-
logical nature. The first application is population size dynamics in a constant envi-
ronment with a finite carrying capacity. It is assumed that one individual at a time is
born, immigrates or dies, see, for instance, Lande, Engen and Saether [26]. In order
to study the impact of immigration or births, it is possible to either view the immi-
gration rate as a perturbation parameter of an isolated population, or the birth rate
as a perturbation parameter of a sink population in which no individuals are born.
The first analysis depends heavily on the ratio between the birth and death rates for
the null model, whereas the second analysis involves the corresponding ratio of the
immigration and death rates.

The second application is epidemic spread of a disease, reviewed, for instance, in
Hethcote [14] andNåsell [34]. Here one individual at a time gets infected or recovers,
and recovered individuals become susceptible for new infections. We perturb an
isolated population with no immigration, by including the possibility of occasional
infected immigrants to arrive, and obtain a special case of the population dynamics
model with occasional immigration.

The third application is population genetic models, treated extensively in Crow
and Kimura [7] and Ewens [9]. We focus in particular on models with overlapping
generations, introduced by Moran [27]. These Moran type models describe the time
dynamics of the genetic composition of a population, represented as the frequency
distribution of two variants of a certain gene. It is assumed that one copy of the
gene is replaced for one individual at a time, and the model includes genetic drift,
mutation, and various types of selection. Themutation rates between the two variants
are perturbed, and the analysis depends heavily on the mutation rates and selection
scheme of the unperturbed model.

The general setting of perturbed semi-Markov birth-death processes used in the
paper can be motivated as follows: First, it makes it possible to consider models
where inter-event times have more general non-geometric/non-exponential distribu-
tions. Second, the semi-Markov setting is a necessary element of the proposedmethod
of sequential phase space reduction, which yields effective recurrent algorithms for
computing asymptotic expansions. Third, the proposed method has a universal char-
acter. We are quite sure that it can be applied to more general models, for example,
to meta-population models with several sub-populations possessing birth-death-type
dynamics.
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In this paper, we present asymptotic expansions of the second order and give
explicit formulas for the coefficients of these expansions. The coefficients of such
asymptotic expansions have a clear meaning. The first coefficients describe the
asymptotic behaviour of stationary and quasi-stationary probabilities and their con-
tinuity properties with respect to small perturbations of transition characteristics of
the corresponding semi-Markov birth-death processes. The second coefficients deter-
mine sensitivity of stationary and quasi-stationary probabilities with respect to small
perturbations of transition characteristics.

However, it is worth to note that the proposed method can also be used for con-
structions of asymptotic expansions of higher orders, which also can be useful and
improve accuracy of the numerical computations based on the corresponding asymp-
totic expansions, especially, for the models, where actual values of the perturbation
parameter are not small enough to neglect the high order terms in the corresponding
asymptotic expansions.

We refer here to the book by Gyllenberg and Silvestrov [13], where one can find
results on asymptotic expansions for stationary and quasi-stationary distributions for
perturbed semi-Markov processes, that created the background for our studies. Other
recent books containing results on asymptotic expansions for perturbed Markov
chains and semi-Markov processes are Korolyuk, V.S. and Korolyuk, V.V. [23],
Stewart [42, 43], Konstantinov, Gu, Mehrmann and Petkov [22], Bini, Latouche
and Meini [4], Koroliuk and Limnios [24], Yin and Zhang [48, 49], Avrachenkov,
Filar and Howlett [3], and Silvestrov, D. and Silvestrov, S. [41]. Readers can find
comprehensive bibliographies of this research area in the above books, the papers
by Silvestrov, D. and Silvestrov, S. [39], Petersson [36], the doctoral dissertation of
Petersson [37], and book Silvestrov, D. and Silvestrov, S. [41].

The paper includes 8 sections. In Sect. 11.2, we give examples of perturbed pop-
ulation dynamics, epidemic and population genetic models, which can be described
in the framework of birth-death-type Markov chains and semi-Markov processes. In
Sect. 11.3, we introduce a more general model of perturbed semi-Markov birth-death
processes, define stationary and conditional quasi-stationary distributions for such
processes and formulate basic perturbation conditions. In Sect. 11.4, we illustrate this
framework for the biological models of Sect. 11.2. In Sect. 11.5, we present time-
space screening procedures of phase space reduction for perturbed semi-Markov
processes and recurrent algorithms for computing expectations of hitting times and
stationary and conditional quasi-stationary distributions for semi-Markov birth-death
processes. In Sect. 11.6, we describe algorithms for construction of the second order
asymptotic expansions for stationary and conditional quasi-stationary distributions
of perturbed semi-Markov birth-death processes. In Sect. 11.7, we apply the above
asymptotic results to the perturbed birth-death models of biological nature defined
in Sect. 11.2, and present results of related numerical studies. In Sect. 11.8, we give
concluding remarks and comments.
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11.2 Examples of Perturbed Birth-Death Processes

In this section, we consider a number of examples of perturbed birth-death processes
that represent the time dynamics of a biological system, such as size variations of a
population with a finite carrying capacity, the spread of an epidemic, or changes of
the genetic composition of a population.

We let η(ε)(t) ∈ X = {0, . . . , N } denote the value of the process at time t ≥ 0,
with N a fixed (and typically large) positive integer that corresponds to the size or
maximal size of the population. The perturbation parameter ε ∈ (0, ε0] is typically
small. It either represents an immigration rate for an almost isolated population, or
the mutation rate of a population in which several genetic variants segregate.

We assume that η(ε)(t) is a piecewise constant and right-continuous semi-Markov
process, with discontinuities at time points

ζ (ε)
n = κ

(ε)
1 + · · · + κ(ε)

n , n = 0, 1, . . . . (11.1)

At inner points (0 < η(ε)(t) < N ) the process changes by one unit up or down. This
either corresponds to birth or death of one individual, recovery or infection of one
individual, or a change of the population’s genetic decomposition.At boundary points
(η(ε)(t) ∈ {0, N }), any jump out of the state space is projected back to X, so that, for
instance, a “jump” from 0 ends at 0 or 1.

The time κ(ε)
n between the n:th and (n + 1):th jumps of η(ε)(t) will be referred to

as the n:th transition time. Its distribution function

F (ε)
i (t) = P{κ(ε)

n ≤ t/η(ε)(ζ
(ε)
n−1) = i} (11.2)

only depends on the state i ∈ X from which a jump occurs.
In this section, we consider two examples of transition time distributions (11.2).

The first one is geometric,

F (ε)
i ∼ Ge [λi (ε)] =⇒ F (ε)

i (t) = 1 − [1 − λi (ε)]
[t] , (11.3)

where [t] is the integer part of t and 0 < λi (ε) ≤ 1 represents the probability that a
jump occurs in one time step. The second example corresponds to a continuous time
Markov process, with an exponential transition time distribution

F (ε)
i ∼ Exp [λi (ε)] =⇒ F (ε)

i (t) = 1 − e−λi (ε)t , (11.4)

with 0 < λi (ε) < ∞ the rate at which a jump occurs. It is convenient to decompose

λi (ε) = λi,−(ε) + λi,+(ε) (11.5)

as a sum of two terms, where λi,−(ε) represents the probability of death in one time
step in (11.3), or the rate at which a death occurs in (11.4) (i → i − 1 when i > 0,
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0 → 0 when i = 0). Similarly, λi,+(ε) is the probability or rate of a birth event
(i → i + 1 when i < N , N → N when i = N ). For both models (11.3) or (11.4),
η(ε)

n = η(ε)(ζ (ε)
n ), n = 0, 1, 2, . . . is an embedded discrete timeMarkov chain, with

transition probabilities

pi,+(ε) = 1 − pi,−(ε) = λi,+(ε)

λi (ε)
(11.6)

of jumping upwards or downwards.
It is assumed that X is one single class of communicative states for each ε > 0.

The behaviour of the limiting ε = 0 model will satisfy one of the following three
conditions:

H1 : The ε = 0model has one classX of communicative states,
H2 : The ε = 0model has one absorbing state 0 and one class

0X = X \ {0} of communicative transient states,
H3 : The ε = 0model has two absorbing states 0 and N , and one

class 0,NX = X \ {0, N } of communicative transient states.

(11.7)

These three perturbation scenarios can be rephrased in terms of the birth and death
rates (11.5) as follows:

H1 : λ0,+(0) > 0, λN ,−(0) > 0,
H2 : λ0,+(0) = 0, λN ,−(0) > 0,
H3 : λ0,+(0) = 0, λN ,−(0) = 0.

(11.8)

This will be utilised in Sects. 11.2.1–11.2.3 in order to characterise the various
perturbed models that we propose.

11.2.1 Perturbed Population Dynamics Models

Let N denote the maximal size of a population, and let η(ε)(t) be its size at time t .
In order to model the dynamics of the population, we introduce births, deaths, and
immigration from outside, according to a parametric model with

λi,+(ε) = λi

[
1 − α1

(
i

N

)θ1
]

+ ν

[
1 −

(
i

N

)θ2
]

(11.9)

and

λi,−(ε) = μi

[
1 + α2

(
i

N

)θ3
]

. (11.10)
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For a small population (i 	 N ), we interpret the three parameters λ > 0, μ > 0
and ν > 0 as a birth rate per individual, a death rate per individual, and an immi-
gration rate, whereas αk, θk are density regulation parameters that model decreased
birth/immigration and increased death for a population close to itsmaximal size. They
satisfy θk > 0, α1 ≤ 1, and α1, α2 ≥ 0, where the last inequality is strict for at least
one of α1 and α2. A more general model would allow birth, death, and immigration
rates to vary non-parametrically with i .

The expected growth rate of the population, when 0 < i < N , is

E
[
η(ε)(t + Δt) − η(ε)(t)|η(ε)(t) = i

] = Δt
[
λi,+(ε) − λi,−(ε)

]
= Δt

{
λi

[
1 − α1

(
i
N

)θ1
]

+ ν
[
1 − (

i
N

)θ2
]

− μi
[
1 + α2

(
i
N

)θ3
]}

,

whereΔt = 1 in discrete time (11.3), andΔt > 0 is infinitesimal in continuous time
(11.4). When θ1 = θ2 = θ3 = θ , this expression simplifies to

E
[
η(ε)(t + Δt) − η(ε)(t)|η(ε)(t) = i

]
= Δt

{
λi

[
1 − α1

(
i
N

)θ
]

− μi
[
1 + α2

(
i
N

)θ
]}

+ν
[
1 − (

i
N

)θ
]

= Δt ·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(λ − μ)i
[
1 − α1λ+α2μ

λ−μ

(
i
N

)θ
]

+ν
[
1 − (

i
N

)θ
]
, if λ 
= μ

−μi(α1 + α2)
(

i
N

)θ + ν
[
1 − (

i
N

)θ
]
, if λ = μ.

(11.11)

We shall consider two perturbation scenarios. The first one has

H2 : ν = ν(ε) = ε, (11.12)

whereas all other parameters are kept fixed, not depending on ε. It is also possible to
consider more general nonlinear functions ν(ε), but this will hardly add more insight
to how immigration affects population dynamics.

The unperturbed ε = 0 model corresponds to an isolated population that only
increases through birth events. For small ε, we can think of a population that resides
on an island and faces subsequent extinction and recolonisation events. After the
population temporarily dies out, the island occasionally receives new immigrants at
rate or probability ε. We shall find in Sect. 11.4.1 that for small migration rates ε,
the properties of the model are highly dependent on whether the basic reproduction
number

R0 = λ

μ
(11.13)

exceeds 1 or not.
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A second perturbation scenario has a birth rate

H1 : λ = λ(ε) = ε (11.14)

that equals ε, whereas all other parameters are kept fixed, not depending on ε. Again,
more general nonlinear functions λ(ε) can be studied, but for simplicity assume that
(11.14) holds. The unperturbed ε = 0 model corresponds to a sink population that
only increases through immigration, and its properties depend heavily on ν/μ.

11.2.2 Perturbed Epidemic Models

In order to model an epidemic in a population of size N , we let η(ε)(t) refer to
the number of infected individuals at time t , whereas the remaining N − η(ε)(t) are
susceptible. We assume that

λi,+(ε) = λi

(
1 − i

N

)
+ ν(N − i), (11.15)

and
λi,−(ε) = μi, (11.16)

where the first parameter λ(N − 1)/N ≈ 〈 is the total contact rate between each
individual and the other members of the population. The first term on the right
hand side of (11.15) may be written as the product of the force of infection λi/N
caused by i infected individuals, and the number of susceptibles N − i . The second
parameter of the model, ν, is the contact rate between each individual and the group
of infected ones outside of the population. The third parameter μ is the recovery
rate per individual. It may also include a combined death and birth of an infected
and susceptible individual. The model in (11.15)–(11.16) is an SIS-epidemic, since
infected individuals become susceptible after recovery. It is essentially a special case
of (11.9)–(11.10), with θ1 = θ2 = θ3 = 1, α1 = 1 and α2 = 0, although immigration
is parameterised differently in (11.9) and (11.15).

Assume that the external contact rate

H2 : ν = ν(ε) = ε (11.17)

equals the perturbation parameter, whereas all other parameters are kept fixed, not
dependingon ε. The unperturbed ε = 0model refers to an isolated populationwithout
external contagion. The epidemic will then, sooner or later, die out and reach the only
absorbing state 0.

Weiss and Dishon [46] first formulated the SIS-model as a continuous time birth-
death Markov process (11.4) without immigration (ε = 0). It has since then been
extended in a number of directions, see, for instance, Cavender [5], Kryscio and
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Lefévre [25], Jacquez and O’Neill [18], Jacquez and Simon [19], Nåsell [29, 30] and
Allen and Burgin [2]. The quasi-stationary distribution of η(ε)(t) is studied in several
of these papers. In this work, we generalise previously studied models of epidemic
spread by treating discrete and continuous time in a unified manner through semi-
Markov processes.

The expected growth rate of the null model ε = 0 satisfies

E
[
η(0)(t + Δt) − η(0)(t)|η(0)(t) = i

] = Δt · ri

(
1 − i

K (0)

)
, (11.18)

if 0 < i < N , when the basic reproduction ratio R0 = λ/μ exceeds 1. This implies
that the expected number of infected individuals follows Verhulst’s logistic growth
model (Verhulst [45]), with intrinsic growth rate r = μ(R0 − 1), and a carrying
capacity K (0) = N (1 − R−1

0 ) of the environment.

11.2.3 Perturbed Models of Population Genetics

Let N be a positive even integer, and consider a one-sex population with N/2 indi-
viduals, each one of which carries two copies of a certain gene. This gene exists in
two variants (or alleles); A1 and A2. Let η(ε)(t) be the number of gene copies with
allele A1 at time t . Consequently, the remaining N − η(ε)(t) gene copies have the
other allele A2 at time t . At each moment ζ (ε)

n of jump in (11.1), a new gene copy
replaces an existing one, so that

η(ε)(ζ (ε)
n ) =

⎧⎨
⎩

η(ε)(ζ (ε)
n −) + 1, if A1replaces A2,

η(ε)(ζ (ε)
n −), if Akreplaces Ak,

η(ε)(ζ (ε)
n −) − 1, if A2replaces A1.

(11.19)

In discrete time (11.3), we define λi j (ε) as the probability that the number of A1

alleles changes from i to j when a gene copy is replaced, at each time step. In
continuous time (11.4), we let λi j (ε) be the rate at which the number of A1 alleles
changes from i to j when a gene copy replacement occurs. Let x∗∗ refer to the
probability that the new gene copy has variant A1 when the fraction of A1-alleles
before replacement is x = i/N . We further assume that the removed gene copy is
chosen randomly among all N gene copies, with equal probabilities 1/N , so that

λi j (ε) =
⎧⎨
⎩

x∗∗(1 − x), j = i + 1,
(1 − x∗∗)x, j = i − 1,
1 − x∗∗(1 − x) − (1 − x∗∗)x, j = i.

(11.20)

Notice that in order to make η(ε)(t) a semi-Markov process of birth-death type that
satisfies (11.6), we do not regard instances when the new gene copy replaces a gene
copy with the same allele as a moment of jump, if the current number i of A1 alleles
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satisfies 0 < i < N . That is, the second line on the right hand side of (11.19) is only
possible in a homogeneous population where all gene copies have the same allele
A1 or A2, and therefore λi i (ε) is not included in the probability or rate λi (ε) to leave
state i in (11.5), when 0 < i < N .

The choice of x∗∗ will determine the properties of the model. The new gene copy
is formed in two steps. In the first step, a pair of genes is drawn randomly with
replacement, so that its genotype is A1A1, A1A2 and A2 A2 with probabilities x2,
2x(1 − x) and (1 − x)2 respectively. Since the gene pair is drawn with replacement,
this corresponds to a probability 2/N that the two genes originate from the same
individual (self fertilisation). A gene pair survives with probabilities proportional
to 1 + s1, 1 and 1 + s2 for these three genotypes, where 1 + s1 ≥ 0 and 1 + s2 ≥ 0
determine the fitnesses of genotypes A1A1 and A2 A2 relative to that of genotype
A1A2. This is repeated until a surviving gene pair appears, from which a gene copy
is picked randomly. Consequently, the probability is

x∗ = 1 · (1 + s1)x2 + 1
2 · 2x(1 − x)

(1 + s1)x2 + 2x(1 − x) + (1 + s2)(1 − x)2
(11.21)

that the chosen allele is A1. In the second step, before the newly formed gene copy
is put into the population, an A1 allele mutates with probability u1 = P(A1 → A2),
and an A2 allele with probability u2 = P(A2 → A1). This implies that

x∗∗ = (1 − u1)x∗ + u2(1 − x∗). (11.22)

By inserting (11.22) into (11.20), and (11.20) into (11.6) we get a semi-Markov
process of Moran type that describes the time dynamics of two alleles in a one-sex
population in the presence of selection and mutation. A special case of it was origi-
nally introduced byMoran [27], and some of its properties can be found, for instance,
in Karlin and McGregor [20] and Durrett [8]. The model incorporates a number of
different selection scenarios. A selectively neutral model corresponds to all three
genotypes having the same fitness (s1 = s2 = 0), for directional selection, one of
the two alleles is more fit than the other (s1 < 0 < s2 or s1 > 0 > s2), an under-
dominant model has a heterozygous genotype A1A2 with smaller fitness than the
two homozygous genotypes A1A1 and A2 A2 (s1, s2 > 0), whereas overdominance
or balancing selection means that the heterozygous genotype is the one with highest
fitness (s1, s2 < 0).

In continuous time (11.4), the expected value of the Moran model satisfies a
differential equation
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E
[
η(ε)(t + Δt) − η(ε)(t)|η(ε)(t) = N x

] = Δt
[
λi,+(ε) − λi,−(ε)

]
= Δt [x∗∗(1 − x) − x(1 − x∗∗)]
= Δt (x∗∗ − x)

= Δt [(1 − u1 − u2)x∗ + u2 − x]

= Δt
[
(1 − u1 − u2)

x+s1x2

1+s1x2+s2(1−x)2
+ u2 − x

]
=: Δt

[
N−1m(x) + o(N−1)

]
,

(11.23)

whenever 0 < x < 1, with Δt > 0 infinitesimal. The discrete time Moran model
(11.3) also satisfies (11.23), interpreted as a difference equation, with Δt = 1. In
the last step of (11.23), we assumed that all mutation and selection parameters are
inversely proportional to population size;

u1 = U1/N ,

u2 = U2/N ,

s1 = S1/N ,

s2 = S2/N ,

(11.24)

and introduced an infinitesimal drift function

m(x) = U2(1 − x) − U1x + [(S1 + S2)x − S2] x(1 − x).

The corresponding infinitesimal variance function v(x) = 2x(1 − x) follows simi-
larly from (11.24), according to

V
[
η(ε)(t + Δt)|η(ε)(t) = N x

] = Δt
[
λi,+(ε) + λi,−(ε) + O(N−1)

]
= Δt

[
x∗∗(1 − x) + x(1 − x∗∗) + O(N−1)

]
= Δt

[
2x(1 − x) + O(u1 + u2 + |s1| + |s2|) + O(N−1)

]
=: Δt

[
v(x) + O(N−1)

]
.

(11.25)

Assume that N is fixed, whereas the perturbation parameter ε varies. We let the two
selection parameters s1 and s2, and hence also the rescaled selection parameters S1
and S2, be independent of ε, whereas the rescaled mutation parameters satisfy

U1 = U1(ε) = C1 + D1ε,

U2 = U2(ε) = C2 + D2ε,
(11.26)

for some non-negative constants C1, D1, C2, D2, where at least one of D1 and D2 is
strictly positive. It follows from (11.8) and (11.20) that the values of 0 ≤ C1, C2 < 1
will determine the properties of the unperturbed ε = 0 model, according to the three
distinct scenarios

H1 : C1 > 0, C2 > 0,
H2 : C1 > 0, C2 = 0,
H3 : C1 = 0, C2 = 0.

(11.27)
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The null model ε = 0 incorporates two-way mutations A1 → A2 and A2 → A1 for
Perturbation scenarioH1,with no absorbing state, it has one-waymutations A1 → A2

for Perturbation scenario H2, with i = 0 as absorbing state, and no mutations for
Perturbation scenario H3, with i = 0 and i = N as the two absorbing states.

11.3 Nonlinearly Perturbed Semi-Markov Birth-Death
Processes

In this section, we will generalise the framework of Sect. 11.2 and introduce a model
of perturbed semi-Markov birth-death processes, define stationary and conditional
quasi-stationary distributions for such processes and formulate basic perturbation
conditions.

11.3.1 Perturbed Semi-Markov Birth-Death Processes

Let (η(ε)
n , κ(ε)

n ), n = 0, 1, . . . be, for every value of a perturbation parameter ε ∈
(0, ε0], where 0 < ε0 ≤ 1, a Markov renewal process, i.e., a homogeneous Markov
chain with the phase space X × [0,∞), where X = {0, 1, . . . , N }, an initial dis-
tribution p̄(ε) = 〈p(ε)

i = P{η(ε)
0 = i, κ(ε)

0 = 0} = P{η(ε)
0 = i}, i ∈ X〉 and transition

probabilities, defined for (i, s), ( j, t) ∈ X × [0,∞),

Q(ε)
i j (t) = P{η(ε)

1 = j, κ(ε)
1 ≤ t/η(ε)

0 = i, κ(ε)
0 = s}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F (ε)
0,±(t)p0,±(ε) if j = 0 + 1±1

2 , for i = 0,

F (ε)
i,±(t)pi,±(ε) if j = i ± 1, for 0 < i < N ,

F (ε)
N ,±(t)pN ,±(ε) if j = N − 1∓1

2 , for i = N ,

0 otherwise,

(11.28)

where: (a) F (ε)
i,±(t), i ∈ X are distribution functions concentrated on [0,∞), for every

ε ∈ (0, ε0]; (b) pi,±(ε) ≥ 0, pi,−(ε) + pi,+(ε) = 1, i ∈ X, for every ε ∈ (0, ε0].
In this case, the random sequence η(ε)

n is also a homogeneous (embedded)Markov
chain with the phase space X and the transition probabilities, defined for i, j ∈ X,

pi j (ε) = P{η(ε)
1 = j/η(ε)

0 = i} = Q(ε)
i j (∞)

=

⎧⎪⎪⎨
⎪⎪⎩

p0,±(ε) if j = 0 + 1±1
2 , for i = 0,

pi,±(ε) if j = i ± 1, for 0 < i < N ,

pN ,±(ε) if j = N − 1∓1
2 , for i = N ,

0 otherwise.

(11.29)



200 D. Silvestrov et al.

We assume that the following condition holds:

A: pi,±(ε) > 0, i ∈ X, for every ε ∈ (0, ε0].
Condition A obviously implies that the phase space X is a communicative class

of states for the embedded Markov chain η(ε)
n , for every ε ∈ (0, ε0].

We exclude instant transitions and assume that the following condition holds:

B: F (ε)
i,±(0) = 0, i ∈ X, for every ε ∈ (0, ε0].

Let us now introduce a semi-Markov process,

η(ε)(t) = η
(ε)

ν(ε)(t), t ≥ 0, (11.30)

where ν(ε)(t) = max(n ≥ 0 : ζ (ε)
n ≤ t) is the number of jumps in the time interval

[0, t], for t ≥ 0, and ζ (ε)
n are sequential moments of jumps for the semi-Markov

process η(ε)(t). This process has the phase space X, the initial distribution p̄ =
〈pi = P{η(ε)(0) = i}, i ∈ X〉 and transition probabilities Q(ε)

i j (t), t ≥ 0, i, j ∈ X.

Due to the specific assumptions imposed on the transition probabilities p(ε)
i j , i, j ∈

X in relation (11.29), one can refer to η(ε)(t) as a semi-Markov birth-death process.
If F (ε)

i,±(t) = I(t ≥ 1), t ≥ 0, i, j ∈ X, then η(ε)(t) = η
(ε)
[t] , t ≥ 0 is a discrete time

homogeneous Markov birth-death chain embedded in continuous time.
If F (ε)

i j (t) = (1 − e−λi (ε)t ), t ≥ 0, i, j ∈ X (here, 0 < λi (ε) < ∞, i ∈ X), then
η(ε)(t), t ≥ 0 is a continuous time homogeneous Markov birth-death process.

Let us define expectations of transition times, for i, j ∈ X,

ei j (ε) = Ei {κ(ε)
1 I (η

(ε)
1 = j)} =

∫ ∞

0
t Q(ε)

i j (dt) (11.31)

=

⎧⎪⎪⎨
⎪⎪⎩

e0,±(ε) if j = 0 + 1±1
2 , for i = 0,

ei,±(ε) if j = i ± 1, for 0 < i < N ,

eN ,±(ε) if j = N − 1∓1
2 , for i = N ,

0 otherwise,

(11.32)

and
ei (ε) = Eiκ

(ε)
1 = ei,−(ε) + ei,+(ε). (11.33)

Here and henceforth, the notationsPi andEi are used for conditional probabilities
and expectations under the condition η(ε)(0) = i .

We also assume that the following condition holds:

C: ei,±(ε) < ∞, i, j ∈ X, for ε ∈ (0, ε0].
It is useful to note that conditions B and C imply that all expectations ei (ε) ∈

(0,∞), i ∈ X.
In the case of discrete time Markov birth-death chain, ei (ε) = 1, i ∈ X, whereas

in the case of continuous time Markov birth-death process, ei (ε) = λ−1
i (ε), i ∈ X.
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Conditions A–C imply that the semi-Markov birth-death process η(ε)(t) is, for
every ε ∈ (0, ε0], ergodic in the sense that the following asymptotic relation holds,

μ
(ε)
i (t) = 1

t

∫ t

0
I (η(ε)(s) = i)ds

a.s.−→ πi (ε) as t → ∞, i ∈ X. (11.34)

The ergodic relation (11.34) holds for any initial distribution p̄(ε) and the stationary
probabilitiesπi (ε), i ∈ Xdonot depend on the initial distribution.Moreover,πi (ε) >

0, i ∈ X and these probabilities are the unique solution of the following system of
linear equations,

πi (ε)e
−1
i (ε) =

∑
j∈X

π j (ε)e
−1
j (ε)p ji (ε), i ∈ X,

∑
i∈X

πi (ε) = 1. (11.35)

11.3.2 Perturbation Conditions for Semi-Markov
Birth-Death Processes

Let us assume that that the following perturbation conditions hold:

D: pi,±(ε) = ∑1+li,±
l=0 ai,±[l]εl + oi,±(ε1+li,±), ε ∈ (0, ε0], for i ∈ X, where:

(a) |ai,±[l]| < ∞, for 0 ≤ l ≤ 1 + li,±, i ∈ X; (b) li,± = 0, ai,±[0] > 0, for 0 <

i < N ; (c) l0,± = 0, a0,±[0] > 0 or l0,+ = 1, a0,+[0] = 0, a0,+[1] > 0, l0,− = 0,
a0,−[0] > 0; (d) lN ,± = 0, aN ,±[0] ≥ 0 or lN ,+ = 0, aN ,+[0] > 0, lN ,− = 1,
aN ,−[0] = 0, aN ,−[1] > 0; (e) oi,±(ε1+li,±)/ε1+li,± → 0 as ε → 0, for i ∈ X.

and

E: ei,±(ε) = ∑1+li,±
l=0 bi,±[l]εl + ȯi,±(ε1+li,±), ε ∈ (0, ε0], for i ∈ X, where:

(a) |bi,±[l]| < ∞, for 0 ≤ l ≤ L + li,±, i ∈ X; (b) li,± = 0, bi,±[0] > 0, for
0 < i < N ; (c) l0,± = 0, b0,±[0] > 0 or l0,+ = 1, b0,+[0] = 0, b0,+[1] > 0,
l0,− = 0, b0,−[0] > 0; (d) lN ,± = 0, bN ,±[0] > 0 or lN ,+ = 0, bN ,+[0] > 0,
lN ,− = 1, bN ,−[0] = 0, bN ,−[1] > 0; (e) ȯi,±(ε1+li,±)/ε1+li,± → 0 as ε → 0, for
i ∈ X.

It is useful to explain the role played by the parameters li,± in conditionsD and E.
These parameters equalise the so-called length of asymptotic expansions penetrating
these conditions.

The length of an asymptotic expansion is defined as the number of coefficients
for powers of ε in this expansion, beginning from the first non-zero coefficient and
up to the coefficient for the largest power of ε in this expansion.

The asymptotic expansions penetrating conditionsD andE can be rewritten in the
following form, pi,±(ε) = ∑1+li,±

l=li,± ai,±[l]εl + oi,±(ε1+li,±), ε ∈ (0, ε0] and ei,±(ε) =∑1+li,±
l=li,± bi,±[l]εl + ȯi,±(ε1+li,±), ε ∈ (0, ε0], for i ∈ X. According to conditions D
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and E, these asymptotic expansions have non-zero first coefficients. Therefore, all
asymptotic expansions penetrating conditionsD andE have the length 2. As we shall
see, this makes it possible to represent the stationary and conditional quasi-stationary
probabilities in the form of asymptotic expansions of the length 2.

Note that conditionsD andE imply that there exists ε′
0 ∈ (0, ε0] such that the prob-

abilities pi,±(ε) > 0, i ∈ X and the expectations ei,±(ε) > 0, i ∈ X for ε ∈ (0, ε′
0].

Therefore, let us just assume that ε′
0 = ε0.

The model assumption, pi,−(ε) + pi,+(ε) = 1, ε ∈ (0, ε0], also implies that the
following condition should hold:

F: ai,−[0] + ai,+[0] = 1, ai,−[1] + ai,+[1] = 0, for i ∈ X.

We also assume that the following natural consistency condition for asymptotic
expansions penetrating perturbation conditions D and E holds:

G: bi,±[0] > 0 if and only if ai,±[0] > 0, for i = 0, N .

There are three basic variants of the model that correspond to (11.7) and (11.8).
For the more general setup of semi-Markov chains in this section, we formulate this
a bit differently and assume that one of the following conditions holds:

H1 : a0,+[0] > 0, aN ,−[0] > 0.

H2 : a0,+[0] = 0, aN ,−[0] > 0.

H3 : a0,+[0] = 0, aN ,−[0] = 0.

The case a0,+[0] > 0, aN ,−[0] = 0 is analogous to the case where condition H2

holds and we omit its consideration.
Condition D implies that there exist limε→0 pi,±(ε) = pi,±(0), i ∈ X and, thus,

there also exist limε→0 pi j (ε) = pi j (0), i, j ∈ X. Condition E implies that there
exist limε→0 ei,±(ε) = ei,±(0), i ∈ X and, thus, there also exist limε→0 ei j (ε) =
ei j (0), i, j ∈ X.

The limiting birth-death type Markov chain η(0)
n with the matrix of transition

probabilities ‖pi j (0)‖ has: (a) one class of communicative states X, if condition
H1 holds, (b) one communicative class of transient states 〈1,N 〉X = X \ {0} and an
absorbing state 0, if conditionH2 holds, and (c) one communicative class of transient
states 〈1,N−1〉X = X \ {0, N } and two absorbing states 0 and N , if conditionH3 holds.

In this paper, we get, under conditions A–G and Hi (for i = 1, 2, 3), asymptotic
expansions for stationary probabilities, as ε → 0,

πi (ε) =
1+l̇i∑
l=l̇i

ci [l]εl + oi (ε
1+l̇i ), i ∈ X, (11.36)

where: (a) l̇i = 0, i ∈ X and the limiting stationary probabilities πi (0) > 0, i ∈
X, if condition H1 holds, (b) l̇i = I (i 
= 0), i ∈ X and π0(0) = 1, πi (0) = 0, i ∈
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〈1,N 〉X, if condition H2 holds, and (c) l̇i = I (i 
= 0, N ), i ∈ X and π0(0), πN (0) >

0, π0(0) + πN (0) = 1, πi (0) = 0, i ∈ 〈1,N−1〉X, if condition H3 holds.
This implies that there is sense to consider so-called conditional quasi-stationary

probabilities, which are defined as,

π̃i (ε) = πi (ε)

1 − π0(ε)
= πi (ε)∑

j∈ 0X
π j (ε)

, i ∈ 〈1,N 〉X, (11.37)

in the case where condition H2 holds, or as,

π̂i (ε) = πi (ε)

1 − π0(ε) − πN (ε)
= πi (ε)∑

j∈ 0,NX
π j (ε)

, i ∈ 〈1,N−1〉X, (11.38)

in the case where condition H3 holds.
We also get, under conditionsA–G andH2, asymptotic expansions for conditional

quasi-stationary probabilities,

π̃i (ε) =
1∑

l=0

c̃i [l]εl + õi (ε), i ∈ 〈1,N 〉X, (11.39)

and, under conditions A–G and H3, asymptotic expansions for conditional quasi-
stationary probabilities,

π̂i (ε) =
1∑

l=0

ĉi [l]εl + ôi (ε), i ∈ 〈1,N−1〉X. (11.40)

The coefficients in the above asymptotic expansions are given by explicit formulas
via coefficients in asymptotic expansions given in initial perturbation conditions D
and E.

As it was mentioned in the introduction, the first coefficients πi (ε) = ci [0],
π̃i (0) = c̃i [0] and π̂i (0) = ĉi [0] describe the asymptotic behaviour of stationary and
quasi-stationary probabilities and their continuity properties with respect to small
perturbations of transition characteristics of the corresponding semi-Markov pro-
cesses. The second coefficients ci [1], c̃i [1] and ĉi [1] determine sensitivity of station-
ary and quasi-stationary probabilities with respect to small perturbations of transition
characteristics.

We also would like to comment the use of the term “conditional quasi-stationary
probability” for quantities defined in relations (11.37) and (11.38). As a matter of
fact, the term “quasi-stationary probability (distribution)” is traditionally used for
limits,

q j (ε) = lim
t→∞Pi {η(ε)(t) = j/η(ε)(s) /∈ A, 0 ≤ s ≤ t}, (11.41)

where A is some special subset of X.



204 D. Silvestrov et al.

A detailed presentation of results concerning quasi-stationary distributions and
comprehensive bibliographies of works in this area can be found in the books by
Gyllenberg and Silvestrov [13], Nåsell [34] and Collet, Martínez and SanMartín [6].
We would also like to mention the paper by Allen and Tarnita [1], where one can
find a discussion concerning the above two forms of quasi-stationary distributions
for some bio-stochastic systems.

11.4 Examples of Stationary Distributions

In this section, we will revisit the examples of Sect. 11.2 and illustrate how to com-
pute, approximate and expand the various stationary and conditional quasi-stationary
distributions that were introduced in Sect. 11.3. Since all the models of Sect. 11.2
have a geometric or exponential transition time distribution (11.3)–(11.4), and since
the transition probabilities satisfy (11.28), it follows that the stationary distribution
(11.34)–(11.35) has a very explicit expression,

πi (ε) ∝
{
1, i = 0,
λ0,+(ε)·...·λi−1,+(ε)

λ1,−(ε)·...·λi,−(ε)
, i = 1, . . . , N ,

(11.42)

for 0 < ε ≤ ε0, with a proportionality constant chosen so that
∑N

i=0 πi (ε) = 1.
Our goal is to find a series representation of (11.42). Since themodels of Sect. 11.2

are formulated in terms of the death and birth rates in (11.5), we will assume that
these rates admit expansions

λi,±(ε) =
Li,±∑
l=0

gi,±[l]εl + oi,±(εL+li,±) (11.43)

for ε ∈ (0, ε0], and then check the regularity conditions of Sect. 11.3 that are needed
to hold. From Eqs. (11.3)–(11.4), (11.6), and (11.31), we deduce that

ei,±(ε) = 1

λi (ε)
· λi,±(ε)

λi (ε)
. (11.44)

Inserting (11.43) into (11.44), we find that

gi,−[0] + gi,+[0] > 0 (11.45)

must hold for all i ∈ X in order for the series expansion of ei,±(ε) to satisfy condition
EL . It therefore follows from (11.6) that pi,±(ε) will satisfy perturbation condition
DL , with L + li,+ = L + li,− = min(Li,−, Li,+), and
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ai,±[0] = gi,±[0]
gi,−[0] + gi,+[0] . (11.46)

Because of (11.45) and (11.46), we can rephrase the three perturbation scenariosH1

– H3 of Sect. 11.3.2 as

H1 : g0,+[0] > 0, gN ,−[0] > 0,
H2 : g0,+[0] = 0, gN ,−[0] > 0,
H3 : g0,+[0] = 0, gN ,−[0] = 0,

(11.47)

in agreement with (11.8). Under H2, the exact expression for the conditional quasi-
stationary distribution (11.37) is readily obtained from (11.42). It equals

π̃i (ε) ∝ λ1,+(ε) · . . . · λi−1,+(ε)

λ1,−(ε) · . . . · λi,−(ε)
(11.48)

for i ∈ 0X and 0 < ε ≤ ε0, with the numerator equal to 1 when i = 1, and a pro-
portionality constant chosen so that

∑N
i=1 π̃i (ε) = 1. As ε → 0, this expression con-

verges to

π̃i (0) ∝ λ1,+(0) · . . . · λi−1,+(0)

λ1,−(0) · . . . · λi,−(0)
. (11.49)

If scenario H3 holds, we find analogously that the conditional quasi-stationary dis-
tribution (11.38) is given by

π̂i (ε) ∝ λ1,+(ε) · . . . · λi−1,+(ε)

λ1,−(ε) · . . . · λi,−(ε)
(11.50)

for i ∈0,N X, with a limit

π̂i (0) ∝ λ1,+(0) · . . . · λi−1,+(0)

λ1,−(0) · . . . · λi,−(0)
. (11.51)

11.4.1 Stationary Distributions for Perturbed Population
Dynamics Models

For the population dynamics model (11.9) of Sect. 11.2.1, we considered two per-
turbation scenarios. Recall that the first one in (11.12) has a varying immigration
parameter ν(ε) = ε, whereas all other parameters are kept fixed. Since λ0,−(ε) = 0
andλ0,+(ε) = ε, it follows that g0,−[0] = g0,+[0] = 0, and therefore formula (11.45)
is violated for i = 0. But the properties of η(ε) remain the same if we put λ0,−(ε) = 1
instead. With this modification, formula (11.47) implies that condition H2 of
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Sect. 11.3.2 holds, and hence the ε → 0 limit of the stationary distribution in (11.34)
and (11.42) is concentrated at state 0 (π0(0) = 1).

Let τ (ε)
0 be the time it takes for the population to get temporarily extinct again, after

an immigrant has entered an empty island. It then follows from a slight modification
of Eq. (11.90) in Sect. 11.5.2 and the relation λ0,+(ε) = ε, that a first order expansion
of the probability that the island is empty at stationarity, is

π0(ε) = 1/λ0,+(ε)

1/λ0,+(ε) + E1(τ
(ε)
0 )

= 1/ε

1/ε + E10(ε)
= 1 − E10(ε)ε + o(ε). (11.52)

This expansion is accurate when the perturbation parameter is small (ε 	 1/E10(ε)),
otherwise higher order terms in (11.52) are needed. The value of E10(ε) will be
highly dependent on the value of the basic reproduction number R0 in (11.13). When
R0 > 1, the expected time to extinction will be very large, and π0(ε) will be close
to 0 for all but very small ε. On the other hand, (11.52) is accurate for a larger range
of ε when R0 < 1, since E10(ε) is then small.

In order to find useful approximations of the conditional quasi-stationary distri-
bution π̃i (ε) in (11.48), we will distinguish between whether R0 is larger than or
smaller than 1. When R0 > 1, or equivalently λ > μ, we can rewrite (11.11) as

E
[
η(ε)(t + Δt) − η(ε)(t)|η(ε)(t) = i

] = Δt · Nm

(
i

N

)
, (11.53)

where
m(x) = r x + ε

N
−

[
r x(0)−θ · x + ε

N

]
xθ (11.54)

is a rescaled mean function of the drift, r = μ(R0 − 1) is the intrinsic growth rate,
or growth rate per capita, of a small population without immigration (ε = 0), and

x(0) =
(

R0 − 1

α1R0 + α2

)1/θ

.

We assume that α1 and α2 are large enough so that x(0) < 1. A sufficient condition
for this is α1 + α2 = 1. The carrying capacity K (ε) = N x(ε) of the environment
is the value of i such that the right hand side of (11.53) equals zero. We can write
x = x(ε) as the unique solution of m(x) = 0, or equivalently

xθ = r x + εN−1

r x(0)−θ x + εN−1
,

with x(ε) ↘ x(0) as ε → 0. The conditional quasi-stationary distribution (11.48)
will be centred around K (ε). In order tofind a good approximation of this distribution,
we look at the second moment
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E
{[

η(ε)(t + Δt) − η(ε)(t)
]2 |η(ε)(t) = i

}
= Δt

[
λi,+(ε) + λi,−(ε)

]
= Δt · Nv

(
i
N

)
,

of the drift of η(ε), with

v(x) = λx(1 − α1xθ ) + ε

N
(1 − xθ ) + μx(1 + α2xθ ). (11.55)

When N is large, we may approximate the conditional quasi-stationary distribution

π̃i (ε) ≈ ∫ i+
i− f (ε)(k)dk

= ∫ i+
i− f (0)(k)dk + ∫ i+

i−
d f (ε)(k)

dε

∣∣∣
ε=0

dk · ε + o(ε),
(11.56)

by integrating a density function f (ε) on [0, N ] between i− = max(0, i − 1/2) and
i+ = min(N , i + 1/2). This density function can be found through a diffusion argu-
ment as the stationary density

f (ε)(k) ∝ 1
Nv( k

N )
exp

(
2

∫ k
K (ε)

Nm(
y
N )

Nv( y
N )

dy
)

∝ 1
v( k

N )
exp

(
2

∫ k
K (ε)

m(
y
N )

v( y
N )

dy
) (11.57)

of Kolmogorov’s forward equation, with a proportionality constant chosen so that∫ N
0 f (ε)(k)dk = 1 (see, for instance, Chap. 9 of Crow andKimura [7]). A substitution
of variables x = y/N in (11.57), and a Taylor expansion ofm(x) around x(ε) reveals
that the diffusion density has approximately a normal distribution

f (ε) ∼ N

(
K (ε), N

v [x(ε)]

2|m ′ [x(ε)] |
)

. (11.58)

Expansion (11.56) is valid for small migration rates ε, and its linear term quantifies
how sensitive the conditional quasi-stationary distribution is to a small amount of
immigration.

It follows from (11.53) that the expected population size

E
[
η(0)(t + Δt) − η(0)(t)|η(0)(t) = i

] = Δt · ri

[
1 −

(
i

K (0)

)θ
]

(11.59)

of an isolated population varies according to a theta logistic model (Gilpin and Ayala
[12]), which is a special case of the generalised growth curve model in Tsoularis
and Wallace [44]. The theta logistic model has a carrying capacity K (0) of the
environment to accommodate new births. When θ = 1, we obtain the logistic growth
model of Verhulst [45]. Pearl [35] used such a curve to approximate population
growth in the United States, and Feller [10] introduced a stochastic version of the
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logistic model in terms of a Markov birth-death process (11.4) in continuous time.
Feller’s approach has been extended for instance by Kendall [21], Whittle [47], and
Nåsell [31, 33]. In particular, Nåsell studied the quasi-stationary distribution (11.41)
of η(ε), with A = {1, . . . , N }. In this paper the previously studied population growth
models are generalised in two directions; we consider semi-Markov processes and
allow for theta logistic expected growth.

When 0 < R0 < 1, or equivalently 0 < λ < μ, we rewrite (11.11) as

E
[
η(ε)(t + Δt) − η(ε)(t)|η(ε)(t) = i

]
= Δt ·

[
ν − ri − (ν + ri x̃−θ )

(
i
N

)θ
]
,

(11.60)

where r = (1 − R0)μ quantifies per capita decrease for a small population with-
out immigration, and x̃ = [(1 − R0)/(α1R0 + α2)]

1/θ is the fraction of the maximal
population size at which the per capita decrease of an isolated ε = 0 population has
doubled to 2r . For large N , we can neglect all O(N−θ ) terms, and it follows from
(11.49) that

π̃i (ε) ≈ 1

log(1 − R0)
· Ri

0

i
+ c̃i [1]ε + o(ε),

for i = 1, . . . , N .
Recall that the second perturbation scenario (11.14) has a varying birth rate 〈(ε) =

ε, whereas all other parameters are kept fixed, not depending on ε. In view of (11.47),
it satisfies condition H1 of Sect. 11.3.2. Suppose N is large. If ν = o(N ), it follows
from (11.42) that the stationary distribution for small values of ε is well approximated
by

πi (ε) ≈ (ν/μ)i

i ! e−ν/μ + ci [1]ε + o(ε)

for i = 0, . . . , N , a Poisson distribution with mean ν/μ, corrupted by a sensitivity
term ci [1]ε due to births. If ν = V N , the carrying capacity of the environment is
K (ε) = N x(ε), where x = x(ε) is the value of i/N in (11.60) such that the right
hand side vanishes, i.e. the unique solution of the equation

r x + V xθ + r x̃−θ xθ+1 = V,

with r = r(ε) = μ − ε. The stationary distribution (11.42) is well approximated by a
discretised normal distribution (11.56)–(11.58), but with a mean drift function m(x)

obtained from (11.60), and a variance function v(x) derived similarly.
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11.4.2 Stationary Distributions for Perturbed Epidemic
Models

For the epidemic models of Sect. 11.2.2, we considered one perturbation scenario
(11.18), with a varying external contact rate ν(ε) = ε. When the basic reproduction
model R0 = μ/μ exceeds one, the expected growth rate follows a logistic model
(11.18) when ε = 0, which is a special case of the theta logistic mean growth curve
model (11.59), with θ = 1. When R0 < 1, we similarly write the expected popu-
lation decline as in (11.60), with θ = 1. Since the SIS model is a particular case
of the population dynamic models of Sect. 11.2.1 (Nåsell, [34]), the stationary and
conditional quasi-stationary distributions are approximated in the same way as in
Sect. 11.4.1.

11.4.3 Stationary Distributions for Perturbed Models of
Population Genetics

For the population genetics model of Sect. 11.2.3, we recall there were three different
perturbation scenarios (11.27). For all of them, the rescaled mutation rates U1(ε) =
NP(A1 → A2) and U2(ε) = NP(A2 → A1) between the two alleles A1 and A2 are
linear functions of ε.

The stationary distribution is either found by first inserting (11.20) into (11.5),
and then (11.5) into (11.42), or, for large N , it is often more convenient to use a
diffusion approximation,

πi (ε) ≈
∫ xi,+

xi,−
f (ε)(x)dx . (11.61)

It is obtained by integrating the density function

f (ε)(x) ∝ 1
v(x)

exp
(
2

∫ x
1/2

m(y)

v(y)
dy

)
∝ (1 − x)−1+U1 x−1+U2 exp

[
1
2 (S1 + S2)x2 − S2x

] (11.62)

between xi,− = max [0, (i − 1/2)/N ] and xi,+ = min [1, (i + 1/2)/N ]. This den-
sity is defined in terms of the infinitesimal drift and variance functions m(x) and
v(x) in (11.23)–(11.25), with a constant of proportionality chosen to ensure that∫

f (ε)(x)dx = 1. See, for instance, Chap. 9 of Crow and Kimura [7] and Chap.7 of
Durrett [8] for details.

For H1, we use this diffusion argument to find an approximate first order series
expansion

πi (ε) ≈
∫ xi,+

xi,−
f (0)(x)dx +

∫ xi,+

xi,−

d f (ε)(x)

dε

∣∣∣∣
ε=0

dx · ε + o(ε)
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of the stationary distribution by inserting (11.26) into (11.61)–(11.62). The null
density f (0)(x) is defined by (11.62), with C1 and C2 instead of U1 and U2. For a
neutral model (S1 = S2 = 0), the stationary null distribution is approximately beta
with parameters C1 and C2, and expected value C2/(C1 + C2). A model with S1 >

0 > S2 corresponds to directional selection, with higher fitness for A1 compared
to A2. It can be seen from (11.62) that the stationary null distribution is further
skewed to the right than for a neutral model. A model with balancing selection or
overdominance has negative S1 and S2, so that the heterozygous genotype A1A2 has
a selective advantage. The stationary null distribution will then have a peak around
S2/(S1 + S2). On the other hand, for an underdominant model where S1 and S2 are
both positive, the heterozygous genotype will have a selective disadvantage. Then
S2/(S1 + S2) functions as a repelling point of the stationary null distribution.

For scenarioH2, the null model has one absorbing state 0. In analogywith (11.52),
we find that the series expansion of the stationary probability of no A1 alleles in the
population is

π0(ε) = 1 − E1(τ
(ε)
0 ) · D2ε

N
+ o(ε)

when D2 > 0, for small values of the perturbation parameter. Here D2ε/N is the
probability that a mutation A2 → A1 occurs in a homogeneous A2 population, and
τ

(ε)
0 is the time it takes for the A1 allele to disappear again.
Because of the singularity at i = 0 for small ε, we avoid the diffusion argument

andfind the conditional quasi-stationary distribution (11.37) directly byfirst inserting
(11.20) into (11.5), and then (11.5) into (11.48)–(11.49). After some computations,
this leads to

π̃i (ε) ≈ c̃1[0]i−1
(
1 − i−1

N

)C1−1
exp

[
1
2 (S1 + S2)

i−1
N

i
N − S2

i−1
N

]
+ c̃1[1]ε + o(ε)

(11.63)

for i = 1, . . . , N , where c̃1[0] is chosen so that∑N
i=1 π̃i (0) = 1, and c̃1[1]will addi-

tionally involve D1 and D2. If D2 = 0, we have that π0(ε) = 1 for all 0 < ε ≤ ε0, so
that the conditional quasi-stationary distribution (11.37) is not well defined. How-
ever, the time to reach absorption is very large for small U1 > 0. It is shown in
Hössjer, Tyvand and Miloh [17] that η(ε) may be quasi-fixed for a long time at the
other boundary point i = N , before eventual absorption at i = 0 occurs.

For scenario H3, the null model is mutation free, and the asymptotic distribution

Pj (0; i) = lim
t→∞Pi (η

(0)(t) = j)

is supported on the two absorbing states ( j ∈ {0, N }), and it is dependent on the state
i at which the process starts. For a neutral model (s1 = s2 = 0), we have that

PN (0; i) = 1 − P0(0; i) = i

N
. (11.64)
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A particular case of directional selection is multiplicative fitness, with 1 + s1 =
(1 + s2)−1. It is mathematically simpler since selection operates directly on alleles,
not on genotypes, with selective advantages 1 and 1 + s2 for A1 and A2. It follows
for instance from Sect. 6.1 of Durrett [8] that

PN (0; i) = 1 − P0(0; i) = 1 − (1 + s2)i

1 − (1 + s2)N
(11.65)

for multiplicative fitness. Notice that P0(0; i) and PN (0; i) will differ from π j (0) =
limε→0 π0(ε) at the two boundaries. Indeed, by ergodicity (11.34) for each ε > 0,
the latter two probabilities are not functions of i = η(0)(0). From (11.61)–(11.62),
we find that

πN (0) = 1 − π0(0) ≈ D2

exp
[− 1

2 (S1 − S2)
]

D1 + D2
. (11.66)

Similarly as in (11.63), we find after some computations that the conditional quasi-
stationary distribution (11.38) admits an approximate expansion

π̂i (ε) ≈ ĉ1[0]i−1
(
1 − i−1

N

)−1
exp

[
1
2 (S1 + S2)

i−1
N

i
N − S2

i−1
N

]
+ ĉ1[1]ε + o(ε)

(11.67)

for i = 1, . . . , N − 1, where ĉ1[0] is chosen so that
∑N−1

i=1 π̂i (0) = 1, and ĉ1[1]
will additionally involve D1 and D2. Notice that the limiting fixation probabilities
in (11.66) are functions of the mutation probability ratio D1/(D1 + D2), but the
limiting conditional quasi-stationary distribution π̂i (0) in (11.67) does not involve
any of D1 or D2.

11.5 Reduced Semi-Markov Birth-Death Processes

In this section, we present a time-space screening procedure of phase space reduction
for perturbed semi-Markov birth-death processes and recurrent algorithms for com-
puting expectations of hitting times and stationary and conditional quasi-stationary
distributions for such processes.

11.5.1 Phase Space Reduction for Semi-Markov Birth-Death
Processes

Let us assume that N ≥ 1. Let 0 ≤ k ≤ i ≤ r ≤ N and define the reduced phase
space 〈k,r〉X = {k, . . . , r}. Note that, by the definition, 〈0,N 〉X = X. Let us also assume
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that the initial distribution p̄(ε) is concentrated on the phase space 〈k,r〉X, i.e. p(ε)
i =

0, i /∈ 〈k,r〉X.
Let us define the sequential moments of hitting the reduced space 〈k,r〉X, by the

embedded Markov chain η(ε)
n ,

〈k,r〉ξ (ε)
n = min(k > 〈k,r〉ξ (ε)

n−1, η
(ε)
k ∈ 〈k,r〉X), n ≥ 1, 〈k,r〉ξ (ε)

0 = 0. (11.68)

Now, let us define the random sequence,

(〈k,r〉η(ε)
n , 〈k,r〉κ(ε)

n ) =
⎧⎨
⎩

(η
(ε)
0 , 0) for n = 0,

(η
(ε)

〈k,r〉ξ (ε)
n

,
∑〈k,r〉ξ (ε)

n

l= 〈k,r〉ξ (ε)
n−1+1

κ
(ε)
l ) for n ≥ 1.

(11.69)

This sequence is a Markov renewal process with a phase space 〈k,r〉X × [0,∞),
the initial distribution p̄(ε), and transition probabilities defined for (i, s), ( j, t) ∈
X × [0,∞),

〈k,r〉 Q(ε)
i j (t) = P{ 〈k,r〉η(ε)

1 = j, 〈k,r〉κ(ε)
1 ≤ t/ 〈k,r〉η(ε)

0 = i, 〈k,r〉κ(ε)
0 = s}. (11.70)

We define a reduced semi-Markov process by

〈k,r〉η(ε)(t) = 〈k,r〉η(ε)

〈k,r〉ν(ε)(t), t ≥ 0, (11.71)

where 〈k,r〉ν(ε)(t) = max(n ≥ 0 : 〈k,r〉ζ (ε)
n ≤ t) is the number of jumps in the time

interval [0, t], for t ≥ 0, and 〈k,r〉ζ (ε)
n = 〈k,r〉κ(ε)

1 + · · · + 〈k,r〉κ(ε)
n , n = 0, 1, . . . are

sequential moments of jumps, for the semi-Markov process 〈k,r〉η(ε)(t).
In particular, the initial semi-Markov process η(ε)(t) = 〈0,N 〉η(ε)(t).
It is readily seen that 〈k,r〉η(ε)(t) is also a semi-Markov birth-death process, i.e. the

time-space screening procedure of phase space reduction described above preserves
the birth-death structure of the semi-Markov birth-death process η(ε)(t).

11.5.2 Expectations of Hitting Times for Reduced
Semi-Markov Birth-Death Processes

Let us now introduce hitting times for semi-Markov birth-death process η(ε)(t). We
define hitting times, which are random variables given by the following relation, for
j ∈ X,

τ
(ε)
j =

ν
(ε)
j∑

n=1

κ(ε)
n , (11.72)

where ν
(ε)
j = min(n ≥ 1 : η(ε)

n = j).
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Let us denote,
Ei j (ε) = Eiτ

(ε)
j , i, j ∈ X. (11.73)

As is known, conditions A–C imply that, for every ε ∈ (0, ε0], expectations of
hitting times are finite, i.e,

0 < Ei j (ε) < ∞, i, j ∈ X. (11.74)

We also denote by 〈k,r〉τ (ε)
j the hitting time to the state j ∈ 〈k,r〉X for the reduced

semi-Markov birth-death process 〈k,r〉η(ε)(t).
The following theorem, which proof can be found, for example, in Silvestrov and

Manca [38], plays the key role in what follows.

Theorem 11.1 Let conditions A–C hold for the semi-Markov birth-death process
η(ε)(t). Then, for any state j ∈ 〈k,r〉X, the first hitting times τ

(ε)
j and 〈k,r〉τ (ε)

j to the
state j , respectively, for semi-Markov processes η(ε)(t) and 〈k,r〉η(ε)(t), coincide,
and, thus, the expectations of hitting times Ei j (ε) = Eiτ

(ε)
j = Ei 〈k,r〉τ (ε)

j , for any
i, j ∈ 〈k,r〉X and ε ∈ (0, ε0].

11.5.3 Sequential Reduction of Phase Space for
Semi-Markov Birth-Death Processes

Let us consider the case, where the left end state 0 is excluded from the phase space
X. In this case, the reduced phase space 〈1,N 〉X = {1, . . . , N }.

We assume that the initial distribution of the semi-Markov process η(ε)(t) is con-
centrated on the reduced phase space 〈1,N 〉X.

The transition probabilities of the reduced semi-Markov process 〈1,N 〉η(ε)(t) have,
for every ε ∈ (0, ε0], the following form, for t ≥ 0,

〈1,N 〉 Q(ε)
i j (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (ε)
1,+(t)p1,+(ε) if j = 2, i = 1,

〈1,N 〉F (ε)
1,−(t)p1,−(ε) if j = 1, i = 1,

F (ε)
i,±(t)pi,±(ε) if j = i ± 1, 1 < i < N ,

F (ε)
N ,±(t)pN ,±(ε) if j = N − 1∓1

2 , i = N ,

0 otherwise,

(11.75)

where

〈1,N 〉F (ε)
1,−(t) =

∞∑
n=0

F (ε)
1,−(t) ∗ F (ε)∗n

0,− (t) ∗ F (ε)
0,+(t) · p0,−(ε)n p0,+(ε). (11.76)



214 D. Silvestrov et al.

This relation implies, for every ε ∈ (0, ε0], the following relation for transition
probabilities of the reduced embedded Markov chain 〈1,N 〉η(ε)

n ,

〈1,N 〉 p(ε)
i j =

⎧⎪⎪⎨
⎪⎪⎩

〈1,N 〉 p1,±(ε) = p1,±(ε) if j = 1 + 1±1
2 , i = 1,

〈1,N 〉 pi,+(ε) = pi,±(ε) if j = i ± 1, 1 < i < N ,

〈1,N 〉 pN ,+(ε) = pN ,±(ε) if j = N − 1∓1
2 , i = N ,

0 otherwise,

(11.77)

and the following relation for transition expectations of the reduced embedded semi-
Markov process 〈1,N 〉η(ε)(t),

〈1,N 〉e(ε)
i j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈1,N 〉e1,+(ε) = e1,+(ε) if j = 2, i = 1,
〈1,N 〉e1,−(ε) = e1,−(ε)

+ e0(ε) · p1,−(ε)

p0,+(ε)
if j = 1, i = 1,

〈1,N 〉ei,±(ε) = ei,±(ε) if j = i ± 1, 1 < i < N ,

〈1,N 〉eN ,±(ε) = eN ,±(ε) if j = N − 1∓1
2 , i = N ,

0 otherwise.

(11.78)

Note that, by Theorem11.1, the following relation takes place, for i, j ∈ 〈1,N 〉X
and every ε ∈ (0, ε0],

Eiτ
(ε)
j = Ei 〈1,N 〉τ (ε)

j . (11.79)

Analogously, the right end state N can be excluded from the phase space X. In
this case, the reduced phase space 〈0,N−1〉X = {0, . . . , N − 1}.

As was mentioned above, the reduced semi-Markov processes 〈1,N 〉η(ε)(t) and
〈0,N−1〉η(ε)(t) also have a birth-death type.

Let 0 ≤ k ≤ i ≤ r ≤ N . The states 0, . . . , k − 1 and N , . . . , r + 1 can be sequen-
tially excluded from the phase space X of the semi-Markov process η(ε)(t).

Let us describe the corresponding recurrent procedure.
The reduced semi-Markov process 〈k,r〉η(ε)(t) can be obtained by excluding the

state k − 1 from the phase space 〈k−1, j〉X of the reduced semi-Markov process
〈k−1,r〉η(ε)(t) or by excluding state r + 1 from the phase space 〈k,r+1〉X of the reduced
semi-Markov process 〈k,r+1〉η(ε)(t).

The sequential exclusion of the states 0, . . . , k − 1 and N , . . . , r + 1 can be real-
ized in an arbitrary order of choice of one of these sequences and then by excluding
the corresponding next state from the chosen sequence.

The simplest variants for the sequences of excluded states are 0, . . . , k − 1, N , . . .,
r + 1 and N , . . . , r + 1, 0, . . . , k − 1.

The resulting reduced semi-Markov process 〈k,r〉η(ε)(t) will be the same and it
will have a birth-death type.

Here, we also accept the reduced semi-Markov process 〈i,i〉η(ε)(t) with one-state
phase space 〈i,i〉X = {i} as a semi-Markov birth-death process.
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This process has transition probability for the embedded Markov chain,

〈i,i〉 p(ε)
i i = 〈i,i〉 pi,+(ε) + 〈i,i〉 pi,−(ε) = 1, (11.80)

and the semi-Markov transition probabilities,

〈i,i〉 Q(ε)
i i (t) = 〈i,i〉F (ε)

i,+(t) 〈i,i〉 pi,+(ε) + 〈i,i〉F (ε)
i,−(t) 〈i,i〉 pi,−(ε).

= Pi {τ (ε)
i ≤ t}. (11.81)

The following relations, which are, in fact, variants of relations (11.77) and
(11.78), express the transition probabilities 〈k,r〉 p(ε)

i j and the expectations of tran-

sition times 〈k,r〉e(ε)
i j for the reduced semi-Markov process 〈k,r〉η(ε)(t), via the tran-

sition probabilities 〈k−1,r〉 p(ε)
i j and the expectations of transition times 〈k−1,r〉e(ε)

i j for
the reduced semi-Markov process 〈k−1,r〉η(ε)(t), for 1 ≤ k ≤ r ≤ N and, for every
ε ∈ (0, ε0],

〈k,r〉 p(ε)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈k,r〉 pk,±(ε) = 〈k−1,r〉 pk,±(ε)

if j = k + 1±1
2 , i = k,

〈k,r〉 pi,±(ε) = 〈k−1,r〉 pi,±(ε)

if j = i ± 1, k < i < r,
〈k,r〉 pr,±(ε) = 〈k−1,r〉 pr,±(ε)

if j = r − 1∓1
2 , i = r,

0 otherwise,

(11.82)

and

〈k,r〉e(ε)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈k,r〉ek,+(ε) = 〈k−1,r〉ek,+(ε)

if j = k + 1, i = k,

〈k,r〉ek,−(ε) = 〈k−1,r〉ek,−(ε)

+ 〈k−1,r〉ek−1(ε) · 〈k−1,r〉 pk,−(ε)

〈k−1,r〉 pk−1,+(ε)

if j = k, i = k,

〈k,r〉ei,±(ε) = 〈k−1,r〉ei,±(ε)

if j = i ± 1, k < i < r,
〈k,r〉er,±(ε) = 〈k−1,r〉er,±(ε)

if j = r − 1∓1
2 , i = r,

0 otherwise,

(11.83)

where
〈k,r〉ei (ε) = 〈k,r〉ei,+(ε) + 〈k,r〉ei,−(ε). (11.84)

The transition probabilities 〈k,r〉 p(ε)
i j and the expectations of transition times 〈k,r〉e(ε)

i j

for the reduced semi-Markov process 〈k,r〉η(ε)(t) can also be expressed via the transi-
tion probabilities 〈k,r+1〉 p(ε)

i j and the expectations of transition times 〈k,r+1〉e(ε)
i j for the

reduced semi-Markov process 〈k,r+1〉η(ε)(t), for 0 ≤ k ≤ r ≤ N − 1 in an analogous
way.
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11.5.4 Explicit Formulas for Expectations of Hitting Times
for Semi-Markov Birth-Death Processes

By iterating the recurrent formulas (11.82)–(11.83) and their right hand analogues,
we get the following explicit formulas for the transition probabilities 〈k,r〉 p(ε)

i j and

the expectations of transition times 〈k,r〉e(ε)
i j for the reduced semi-Markov process

〈k,r〉η(ε)(t) expressed in terms of the transition characteristics for the initial semi-
Markov process η(ε)(t), for 0 ≤ k ≤ r ≤ N and, for every ε ∈ (0, ε0],

〈k,r〉 p(ε)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈k,r〉 pk,±(ε) = pk,±(ε)

if j = k + 1±1
2 , i = k,

〈k,r〉 pi,±(ε) = pi,±(ε)

if j = i ± 1, k < i < r,
〈k,r〉 pr,+(ε) = pr,±(ε)

if j = r − 1∓1
2 , i = r,

0 otherwise.

(11.85)

and

〈k,r〉e(ε)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈k,r〉ek,+(ε) = ek,+(ε)

if j = k + 1, i = k,

〈k,r〉ek,−(ε) = ek,−(ε) + ek−1(ε) · pk,−(ε)

pk−1,+(ε)

+ · · · + e0(ε) · p1,−(ε)···pk,−(ε)

p0,+(ε)···pk−1,+(ε)

if j = k, i = k,

〈k,r〉ei,+(ε) = ei,±(ε)

if j = i ± 1, k < i < r,

〈k,r〉er,+(ε) = er,+(ε) + er+1(ε) · pr,+(ε)

pr+1,−(ε)

+ · · · + eN (ε) · pN−1,+(ε)···pr,+(ε)

pN ,−(ε)···pr+1,−(ε)

if j = r, i = r,
〈k,r〉er,−(ε) = er,−(ε)

if j = r − 1, i = r,
0 otherwise.

(11.86)

Recall that 〈k,r〉τ (ε)
j is the hitting time for the state j ∈ 〈k,r〉X for the reduced

semi-Markov process 〈k,r〉η(ε)(t).
By Theorem11.1, the following relation takes place, for i, j ∈ 〈k,r〉X and, for

every ε ∈ (0, ε0],
Eiτ

(ε)
j = Ei 〈k,r〉τ (ε)

j . (11.87)

Let us now choose k = r = i ∈ X. In this case, the reduced phase space 〈i,i〉X =
{i} is a one-state set. In this case, the process 〈i,i〉η(ε)(t) returns to the state i after
every jump. This implies that, in this case, for every ε ∈ (0, ε0],
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Eii (ε) = Eiτ
(ε)
i = Ei 〈i,i〉τ (ε)

i = 〈i,i〉ei (ε). (11.88)

Thus, the following formulas take place, for every i ∈ X and, for every ε ∈ (0, ε0],

Eii (ε) = ei (ε)

+ ei−1(ε)
pi,−(ε)

pi−1,+(ε)
+ ei−2(ε)

pi−1,−(ε)pi,−(ε)

pi−2,+(ε)pi−1,+(ε)

+ · · · + e0(ε)
p1,−(ε)p2,−(ε) · · · pi,−(ε)

p0,+(ε)p1,+(ε) · · · pi−1,+(ε)

+ ei+1(ε)
pi,+(ε)

pi+1,−(ε)
+ ei+2(ε)

pi+1,+(ε)pi,+(ε)

pi+2,−(ε)pi+1,−(ε)

+ · · · + eN (ε)
pN−1,+(ε)pN−2,+(ε) · · · pi,+(ε)

pN ,−(ε)pN−1,−(ε) · · · pi+1,−(ε)
. (11.89)

In what follows, we use the following well known formula for the stationary
probabilities πi (ε), i ∈ X, which takes place, for every ε ∈ (0, ε0],

πi (ε) = ei (ε)

Eii (ε)
, i ∈ X. (11.90)

It should be noted that such formulas for stationary distributions of Markov birth-
death chains are well known and can be found, for example, in Feller [11]. In context
of our studies, a special value has the presented above recurrent algorithm for getting
such formulas, based on sequential reduction of the phase space for semi-Markov
birth-death processes.

As far as explicit expressions for conditional quasi-stationary probabilities are
concerned, they can be obtained by substituting stationary probabilities πi (ε), i ∈ X

given by formula (11.90) into formulas (11.37) and (11.38).

11.6 First and Second Order Asymptotic Expansions

In this section, we give explicit the first and the second order asymptotic expan-
sions for stationary and conditional quasi-stationary distributions for perturbed semi-
Markov birth-death processes.

The results of the present section are based on the explicit formula (11.89) for
expected return times and the expressions which connect these quantities with sta-
tionary and conditional quasi-stationary distributions given respectively in formu-
las (11.90) and (11.37)–(11.38). We obtain the first and second order asymptotic
expansions from these formulas by using operational rules for Laurent asymptotic
expansions presented in Lemmas11.1 and 11.2 given below.
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It will be convenient to use the following notation,

�i, j,±(ε) = pi,±(ε)pi+1,±(ε) · · · p j,±(ε), 0 ≤ i ≤ j ≤ N . (11.91)

Using (11.91), we can write formula (11.89) as

Eii (ε) = ei (ε) +
i−1∑
k=0

ek(ε)
�k+1,i,−(ε)

�k,i−1,+(ε)
+

N∑
k=i+1

ek(ε)
�i,k−1,+(ε)

�i+1,k,−(ε)
, i ∈ X. (11.92)

In particular, we have

E00(ε) = e0(ε) +
∑
k∈ 0X

ek(ε)
�0,k−1,+(ε)

�1,k,−(ε)
, (11.93)

and

EN N (ε) = eN (ε) +
∑

k∈ NX

ek(ε)
�k+1,N ,−(ε)

�k,N−1,+(ε)
. (11.94)

We will compute the desired asymptotic expansions by applying operational rules
for Laurent asymptotic expansions in relations (11.92)–(11.94). In order for the
presentation to not be too repetitive, we will directly compute the second order
asymptotic expansions which contain the first order asymptotic expansions as special
cases. In particular, this gives us limits for stationary and conditional quasi-stationary
distributions.

The formulas for computing the asymptotic expansions are different depending on
whether conditionH1,H2 orH3 holds.We consider these three cases in Sects. 11.6.2,
11.6.3 and 11.6.4, respectively.

Each of these sections will have the same structure: First, we present a ma which
successively constructs asymptotic expansions for the quantities given in relations
(11.92)–(11.94). Then, using these expansions, we construct the first and the second
order asymptotic expansions for stationary (Sects. 11.6.2–11.6.4) and conditional
quasi-stationary distributions (Sects. 11.6.3–11.6.4).

11.6.1 Laurent Asymptotic Expansions

In this subsection, we present some operational rules for Laurent asymptotic expan-
sions given in Silvestrov, D. and Silvestrov, S. [39–41] which are used in the present
paper for constructions of asymptotic expansions for stationary and conditional quasi-
stationary distributions of perturbed semi-Markov birth-death processes.

A real-valued function A(ε), defined on an interval (0, ε0] for some 0 < ε0 ≤ 1,
is a Laurent asymptotic expansion if it can be represented in the following form,
A(ε) = ah Aε

h A + · · · + akAε
kA + oA(εkA), ε ∈ (0, ε0], where (a)−∞ < h A ≤ kA <
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∞ are integers, (b) coefficients ah A , . . . , akA are real numbers, (c) the function
oA(εkA)/εkA → 0 as ε → 0. Such an expansion is pivotal if it is known that ah A 
= 0.

The above paper presents operational rules for Laurent asymptotic expansions. Let
us shortly formulate some of these rules, in particular, for summation, multiplication
and division of Laurent asymptotic expansions.

Lemma 11.1 Let A(ε) = ah Aε
h A + · · · + akAε

kA + oA(εkA) and B(ε) = bhB ε
hB +

· · · + bkB ε
kB + oB(εkB ) be two pivotal Laurent asymptotic expansions. Then:

(i)C(ε) = cA(ε) = chC εhC + · · · + ckC εkC + oC(εkC ), where a constant c 
= 0, is
a pivotal Laurent asymptotic expansion and hC = h A, kC = kA, chC +r = cahC +r , r =
0, . . . , kC − hC ,

(ii) D(ε) = A(ε) + B(ε) = dhD εhD + · · · + dkD εkD + oD(εkD ) is a pivotal Lau-
rent asymptotic expansion and hD = h A ∧ hB, kD = kA ∧ kB, dhD+r = ahD+r +
bhD+r , r = 0, . . . , kD − hD, where ahD+r = 0, r < h A − hD, bhD+r = 0, r < hB −
hD,

(iii) E(ε) = A(ε) · B(ε) = ehE εhE + · · · + ekE εkE + oE (εkE ) is a pivotal Laurent
asymptotic expansion and hE = h A + hB, kE = (kA + hB) ∧ (kB + h A), ehE +r =∑r

l=0 ah A+l · bhB+r−l , r = 0, . . . , kE − hE ,
(iv) F(ε) = A(ε)/B(ε) = fhF εhF + · · · + fkF εkF + oF (εkF ) ia a pivotal Laurent

asymptotic expansion and hF = h A − hB, kF = (kA − hB) ∧ (kB − 2hB + h A),
fhF +r = 1

bh B
(ah A+r + ∑r

l=1 bhB+l · fhF +r−l), r = 0, . . . , kF − hF .

The following lemma presents useful multiple generalizations of summation and
multiplication rules given in Lemma11.1.

Lemma 11.2 Let Ai (ε) = ai,h Ai
εh A + · · · + ai,kAi

εkAi + oAi (ε
kAi ), i = 1, . . . , m be

pivotal Laurent asymptotic expansions. Then:
(i) D(ε) = ∑m

i=1 Ai (ε) = dhD εhD + · · · + dkD εkD + oD(εkD ) is a pivotal Lau-
rent asymptotic expansion and hD = min1≤l≤m h Al , kD = min1≤l≤m kAl , dhD+l =
a1,hD+l + · · · + am,hD+l , l = 0, . . . , kD − hD, where ai,hD+l = 0 for 0 ≤ l < h Ai −
hD, i = 1, . . . , m,

(ii) E(ε) = ∏m
i=1 Ai (ε) = ehE εhE + · · · + ekE εkE + oE (εkE ) is a pivotal Laurent

asymptotic expansion and
hE = ∑m

l=1 h Al , kE = min1≤l≤m(kAl + ∑
1≤r≤m,r 
=l h Ar ),

ehE +l = ∑
l1+···+lm=l,0≤li ≤kAi −h Ai ,i=1,...,m

∏
1≤i≤m ai,h Ai +li ,

l = 0, . . . , kE − hE .

11.6.2 First and Second Order Asymptotic Expansions for
Stationary Distributions Under Condition H1

In the casewhere conditionH1 holds, the semi-Markov process has no asymptotically
absorbing states. In this case, all quantities in relations (11.92)–(11.94) are of order
O(1) and the construction of asymptotic expansions are rather straightforward.
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In the following lemma we successively construct asymptotic expansions for the
quantities given in relations (11.92)–(11.94).

Lemma 11.3 Assume that conditions A–G and H1 hold. Then:

(i) For i ∈ X, we have,

ei (ε) = bi [0] + bi [1]ε + ȯi (ε), ε ∈ (0, ε0],

where ȯi (ε)/ε → 0 as ε → 0 and

bi [0] = bi,−[0] + bi,+[0] > 0, bi [1] = bi,−[1] + bi,+[1].

(ii) For 0 ≤ i ≤ j ≤ N, we have,

�i, j,±(ε) = Ai, j,±[0] + Ai, j,±[1]ε + oi, j,±(ε), ε ∈ (0, ε0],

where oi, j,±(ε)/ε → 0 as ε → 0 and

Ai, j,±[0] = ai,±[0]ai+1,±[0] · · · a j,±[0] > 0,

Ai, j,±[1] =
∑

ni +ni+1+···+n j =1

ai,±[ni ]ai+1,±[ni+1] · · · a j,±[n j ].

(iii) For 0 ≤ k ≤ i − 1, i ∈ 〈1,N 〉X, we have

�k+1,i,−(ε)

�k,i−1,+(ε)
= A∗

k,i [0] + A∗
k,i [1]ε + o∗

k,i (ε), ε ∈ (0, ε0],

where o∗
k,i (ε)/ε → 0 as ε → 0 and

A∗
k,i [0] = Ak+1,i,−[0]

Ak,i−1,+[0] > 0,

A∗
k,i [1] = Ak+1,i,−[1]Ak,i−1,+[0] − Ak+1,i,−[0]Ak,i−1,+[1]

Ak,i−1,+[0]2 .

(iv) For i + 1 ≤ k ≤ N , i ∈ 〈0,N−1〉X, we have

�i,k−1,+(ε)

�i+1,k,−(ε)
= A∗

k,i [0] + A∗
k,i [1]ε + o∗

k,i (ε), ε ∈ (0, ε0],

where o∗
k,i (ε)/ε → 0 as ε → 0 and

A∗
k,i [0] = Ai,k−1,+[0]

Ai+1,k,−[0] > 0,
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A∗
k,i [1] = Ai,k−1,+[1]Ai+1,k,−[0] − Ai,k−1,+[0]Ai+1,k,−[1]

Ai+1,k,−[0]2 .

(v) For i ∈ X, we have

Eii (ε) = Bii [0] + Bii [1]ε + ȯi i (ε), ε ∈ (0, ε0],

where ȯii (ε)/ε → 0 as ε → 0 and

Bii [0] = bi [0] +
∑
k∈ iX

bk[0]A∗
k,i [0] > 0,

Bii [1] = bi [1] +
∑
k∈ iX

(bk[0]A∗
k,i [1] + bk[1]A∗

k,i [0]).

Proof Since ei (ε) = ei,−(ε) + ei,+(ε), i ∈ X, part (i) follows immediately from con-
dition E.

For the proof of part (ii) we notice that it follows from the definition (11.91) of
�i, j,±(ε) and condition D that

�i, j,±(ε) =
j∏

k=i

(ak,±[0] + ak,±[1]ε + ok,±(ε)), 0 ≤ i ≤ j ≤ N .

By applying the multiple product rule for asymptotic expansions, we obtain the
asymptotic relation given in part (ii)where the coefficients Ai, j,±[0], 0 ≤ i ≤ j ≤ n,
are positive since condition H1 holds.

In order to prove parts (iii) and (iv)weuse the result in part (ii). For 0 ≤ k ≤ i − 1,
i ∈ 0X, this gives us

�k+1,i,−(ε)

�k,i−1,+(ε)
= Ak+1,i,−[0] + Ak+1,i,−[1]ε + ok+1,i,−(ε)

Ak,i−1,+[0] + Ak,i−1,+[1]ε + ok,i−1,+(ε)
, (11.95)

and, for i + 1 ≤ k ≤ N , i ∈ NX, we get

�i,k−1,+(ε)

�i+1,k,−(ε)
= Ai,k−1,+[0] + Ai,k−1,+[1]ε + oi,k−1,+(ε)

Ai+1,k,−[0] + Ai+1,k,−[1]ε + oi+1,k,−(ε)
. (11.96)

Using the division rule for asymptotic expansions in relations (11.95) and (11.96)
we get the asymptotic expansions given in parts (iii) and (iv).

Finally, we can use relation (11.92) to prove part (v). This relation together with
the results in parts (i), (iii) and (iv) yield
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Eii (ε) = bi [0] + bi [1]ε + ȯi (ε)

+
∑

k∈X\{i}
(bk[0] + bk[1]ε + ȯk(ε))

× (A∗
k,i [0] + A∗

k,i [1]ε + o∗
k,i (ε)), i ∈ X.

A combination of the product rule and the multiple summation rule for asymptotic
expansions gives the asymptotic relation in part (v). �

The following theorem gives second order asymptotic expansions for stationary
probabilities. In particular, this theorem shows that there exist limits for stationary
probabilities,

πi (0) = lim
ε→0

πi (ε), i ∈ X,

where πi (0) > 0, i ∈ X.

Theorem 11.2 Assume that conditions A–G and H1 hold. Then, we have the fol-
lowing asymptotic relation for the stationary probabilities πi (ε), i ∈ X,

πi (ε) = ci [0] + ci [1]ε + oi (ε), ε ∈ (0, ε0],

where oi (ε)/ε → 0 as ε → 0 and

ci [0] = bi [0]
Bii [0] > 0, ci [1] = bi [1]Bii [0] − bi [0]Bii [1]

Bii [0]2 ,

where Bii [0], Bii [1], i ∈ X, can be computed from the formulas given in Lemma11.3.

Proof It follows from condition E and part (v) of Lemma11.3 that, for i ∈ X,

πi (ε) = ei (ε)

Eii (ε)
= bi [0] + bi [1]ε + ȯi (ε)

Bii [0] + Bii [1]ε + ȯi i (ε)
.

The result now follows from the division rule for asymptotic expansions (iv), given
in Lemma11.1. �

11.6.3 First and Second Order Asymptotic Expansions for
Stationary and Conditional Quasi-stationary
Distributions Under Condition H2

In the case where condition H2 holds, the semi-Markov process has one asymptot-
ically absorbing state, namely state 0. This means that p0,+(ε) ∼ O(ε) and since
this quantity is involved in relations (11.92)–(11.94), the pivotal properties of the
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expansions are less obvious. Furthermore, since some terms now tends to infinity,
we partly need to operate with Laurent asymptotic expansions.

In order to separate cases where i = 0 or i ∈ 〈1,N 〉X we will use the indicator
function γi = I (i = 0), that is, γ0 = 1 and γi = 0 for i ∈ 〈1,N 〉X.

The following lemma gives asymptotic expansions for quantities in relations
(11.92)–(11.94).

Lemma 11.4 Assume that conditions A–G and H2 hold. Then:

(i) For i ∈ X, we have, ei (ε) = bi [0] + bi [1]ε + ȯi (ε), ε ∈ (0, ε0], where
ȯi (ε)/ε → 0 as ε → 0 and

bi [0] = bi,−[0] + bi,+[0] > 0, bi [1] = bi,−[1] + bi,+[1].

(ii) For 0 ≤ i ≤ j ≤ N, we have,

�i, j,+(ε) = Ai, j,+[γi ]εγi + Ai, j,+[γi + 1]εγi +1 + oi, j,+(εγi +1), ε ∈ (0, ε0],

where oi, j,+(εγi +1)/εγi +1 → 0 as ε → 0 and

Ai, j,+[γi ] = ai,+[γi ]ai+1,+[0] · · · a j,+[0] > 0,

Ai, j,+[γi + 1] =
∑

ni +ni+1+···+n j =1

ai,+[γi + ni ]ai+1,+[ni+1] · · · a j,+[n j ].

(iii) For 0 ≤ i ≤ j ≤ N, we have,

�i, j,−(ε) = Ai, j,−[0] + Ai, j,−[1]ε + oi, j,−(ε), ε ∈ (0, ε0],

where oi, j,−(ε)/ε → 0 as ε → 0 and

Ai, j,−[0] = ai,−[0]ai+1,−[0] · · · a j,−[0] > 0,

Ai, j,−[1] =
∑

ni +ni+1+···+n j =1

ai,−[ni ]ai+1,−[ni+1] · · · a j,−[n j ].

(iv) For 0 ≤ k ≤ i − 1, i ∈ 〈1,N 〉X, we have,

�k+1,i,−(ε)

�k,i−1,+(ε)
= A∗

k,i [−γk]ε−γk + A∗
k,i [−γk + 1]ε−γk+1

+ o∗
k,i (ε

−γk+1), ε ∈ (0, ε0],

where o∗
k,i (ε

−γk+1)/ε−γk+1 → 0 as ε → 0 and
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A∗
k,i [−γk] = Ak+1,i,−[0]

Ak,i−1,+[γk] > 0,

A∗
k,i [−γk + 1] = Ak+1,i,−[1]Ak,i−1,+[γk] − Ak+1,i,−[0]Ak,i−1,+[γk + 1]

Ak,i−1,+[γk]2 .

(v) For i + 1 ≤ k ≤ N , i ∈ 〈0,N−1〉X, we have,

�i,k−1,+(ε)

�i+1,k,−(ε)
= A∗

k,i [γi ]εγi + A∗
k,i [γi + 1]εγi +1

+ o∗
k,i (ε

γi +1), ε ∈ (0, ε0],

where o∗
k,i (ε

γi +1)/εγi +1 → 0 as ε → 0 and

A∗
k,i [γi ] = Ai,k−1,+[γi ]

Ai+1,k,−[0] > 0,

A∗
k,i [γi + 1] = Ai,k−1,+[γi + 1]Ai+1,k,−[0] − Ai,k−1,+[γi ]Ai+1,k,−[1]

Ai+1,k,−[0]2 .

(vi) For i ∈ X, we have,

Eii (ε) = Bii [γi − 1]εγi −1 + Bii [γi ]εγi + ȯi i (ε
γi ), ε ∈ (0, ε0],

where ȯii (ε
γi )/εγi → 0 as ε → 0 and

B00[0] = b0[0] > 0, B00[1] = b0[1] +
∑
k∈ 0X

bk[0]A∗
k,0[1],

Bii [−1] = b0[0]A∗
0,i [−1] > 0, i ∈ 〈1,N 〉X,

Bii [0] = b0[1]A∗
0,i [−1] + bi [0] +

∑
k∈ iX

bk[0]A∗
k,i [0], i ∈ 〈1,N 〉X.

Proof Let us first note that the quantities in parts (i) and (iii) do not depend on
p0,+(ε), so the proofs for these parts are the same as the proofs for parts (i) and (ii)
in Lemma11.3, respectively.

We now prove part (ii). Notice that it follows from conditions D and H2 that
pi,+(ε) = ai,+[γi ]εγi + ai,+[γi + 1]εγi +1 + oi,+(εγi +1), i ∈ X. Using this and the
definition (11.91) of �i, j,+(ε) gives
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�i, j,+(ε) = (ai,+[γi ]εγi + ai,+[γi + 1]εγi +1 + oi,+(εγi +1))

× (ai+1,+[0] + ai+1,+[1]ε + oi+1,+(ε))

× · · · ×
× (a j,+[0] + a j,+[1]ε + o j,+(ε)), 0 ≤ i ≤ j ≤ N .

An application of the multiple product rule for asymptotic expansions shows that
part (ii) holds.

Now, using the results in parts (ii) and (iii)we get, for 0 ≤ k ≤ i − 1, i ∈ 〈1,N 〉X,

�k+1,i,−(ε)

�k,i−1,+(ε)
= Ak+1,i,−[0] + Ak+1,i,−[1]ε + ok+1,i,−(ε)

Ak,i−1,+[γk]εγk + Ak,i−1,+[γk + 1]εγk+1 + ok,i−1,+(εγk+1)
,

and, for i + 1 ≤ k ≤ N , i ∈ NX,

�i,k−1,+(ε)

�i+1,k,−(ε)
= Ai,k−1,+[γi ]εγi + Ai,k−1,+[γi + 1]εγi +1 + oi,k−1,+(εγi +1)

Ai+1,k,−[0] + Ai+1,k,−[1]ε + oi+1,k,−(ε)
.

Notice that it is possible that the quantity in the first of the above equations tends
to infinity as ε → 0. Applying the division rule for Laurent asymptotic expansions
in the above two relations yields the asymptotic relations given in parts (iv) and (v).

In order to prove part (vi), we consider the cases i = 0 and i ∈ 〈1,N 〉X separately.
First note that it follows from relation (11.93) and the results in parts (i) and (iv) that

E00(ε) = b0[0] + b0[1]ε + ȯ0(ε)

+
∑
k∈ 0X

(bk[0] + bk[1]ε + ȯk(ε))(A∗
k,0[1]ε + A∗

k,0[2]ε2 + o∗
k,0(ε

2)).

Using the product rule and themultiple summation rule for asymptotic expansions
we obtain the asymptotic relation in part (vi) for the case i = 0.

If i ∈ 〈1,N 〉X, relation (11.92) implies together with parts (i), (iv) and (v) that

Eii (ε) = bi [0] + bi [1]ε + ȯi (ε)

+ (b0[0] + b0[1]ε + ȯ0(ε))(A∗
0,i [−1]ε−1 + A∗

0,i [0] + o∗
0,i (1))

+
∑

k∈ 0,iX

(bk[0] + bk[1]ε + ȯk(ε))(A∗
k,i [0] + A∗

k,i [1]ε + o∗
k,i (ε)).

Notice that the term corresponding to k = 0 is of order O(ε−1) while all other
terms in the sum are of order O(1). We can again apply the product rule and multiple
summation rule for Laurent asymptotic expansions and in this case, the asymptotic
relation in part (vi) is obtained for i ∈ 〈1,N 〉X. �

The following theorem gives second order asymptotic expansions for stationary
and conditional quasi-stationary probabilities. In particular, part (i) of this theorem
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shows that there exist limits for stationary probabilities,πi (0) = limε→0 πi (ε), i ∈ X,
where π0(0) = 1 and πi (0) = 0 for i ∈ 〈1,N 〉X.

Furthermore, part (ii) of the theorem shows, in particular, that there exist limits for
conditional quasi-stationary probabilities π̃i (0) = limε→0 π̃i (ε), i ∈ 〈1,N 〉X, where
π̃i (0) > 0, i ∈ 〈1,N 〉X.

Theorem 11.3 Assume that conditions A–G and H2 hold. Then:

(i) We have the following asymptotic relation for the stationary probabilities πi (ε),
i ∈ X,

πi (ε) = ci [l̃i ]εl̃i + ci [l̃i + 1]εl̃i +1 + oi (ε
l̃i +1), ε ∈ (0, ε0],

where l̃i = I (i 
= 0), oi (ε
l̃i +1)/εl̃i +1 → 0 as ε → 0, and

ci [l̃i ] = bi [0]
Bii [−l̃i ]

> 0, ci [l̃i + 1] = bi [1]Bii [−l̃i ] − bi [0]Bii [−l̃i + 1]
Bii [−l̃i ]2

,

where Bii [−1], i ∈ 〈1,N 〉X, Bii [0], i ∈ X, and B00[1], can be computed from
the formulas given in Lemma11.4.

(ii) We have the following asymptotic relation for the conditional quasi-stationary
probabilities π̃i (ε), i ∈ 〈1,N 〉X,

π̃i (ε) = c̃i [0] + c̃i [1]ε + õi (ε), ε ∈ (0, ε0],

where õi (ε)/ε → 0 as ε → 0 and

c̃i [0] = ci [1]
d[1] > 0, c̃i [1] = ci [2]d[1] − ci [1]d[2]

d[1]2 ,

where d[l] = ∑
j∈ 0X

ci [l], l = 1, 2.

Proof It follows from parts (i) and (vi) in Lemma11.4 that, for i ∈ X,

πi (ε) = ei (ε)

Eii (ε)
= bi [0] + bi [1]ε + ȯi (ε)

Bii [γi − 1]εγi −1 + Bii [γi ]εγi + ȯi i (εγi )
. (11.97)

We also have γi = I (i = 0) = 1 − I (i 
= 0) = 1 − l̃i . By changing the indicator
function and thenusing the division rule forLaurent asymptotic expansions in relation
(11.97), we obtain the asymptotic expansion given in part (i).

In order to prove part (ii) we first use part (i) for i ∈ 〈1,N 〉X to get

π̃i (ε) = πi (ε)∑
j∈ 0X

π j (ε)
= ci [1]ε + ci [2]ε2 + oi (ε

2)∑
j∈ 0X

(c j [1]ε + c j [2]ε2 + o j (ε2))
,
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and then we apply the multiple summation rule (i) for asymptotic expansions, given
in Lemma11.2, and the division rule for asymptotic expansions, given in
Lemma11.1. �

11.6.4 First and Second Order Asymptotic Expansions for
Stationary and Conditional Quasi-stationary
Distributions Under Condition H3

In the case where condition H3 holds, both state 0 and state N are asymptoti-
cally absorbing for the semi-Markov process. This means that p0,+(ε) ∼ O(ε) and
pN ,−(ε) ∼ O(ε) which makes the asymptotic analysis of relations (11.92)–(11.94)
even more involved.

In order to separate cases where i = 0, i ∈ 〈1,N−1〉X or i = N , we will use the
indicator functions γi = I (i = 0) and βi = I (i = N ).

The following lemmagives asymptotic expansions for quantities given in relations
(11.92)–(11.94).

Lemma 11.5 Assume that conditions A–G and H3 hold. Then:

(i) For i ∈ X, we have ei (ε) = bi [0] + bi [1]ε + ȯi (ε), ε ∈ (0, ε0], where
ȯi (ε)/ε → 0 as ε → 0 and

bi [0] = bi,−[0] + bi,+[0] > 0, bi [1] = bi,−[1] + bi,+[1].

(ii) For 0 ≤ i ≤ j ≤ N, we have

�i, j,+(ε) = Ai, j,+[γi ]εγi + Ai, j,+[γi + 1]εγi +1 + oi, j,+(εγi +1), ε ∈ (0, ε0],

where oi, j,+(εγi +1)/εγi +1 → 0 as ε → 0 and

Ai, j,+[γi ] = ai,+[γi ]ai+1,+[0] · · · a j,+[0] > 0,

Ai, j,+[γi + 1] =
∑

ni +ni+1+···+n j =1

ai,+[γi + ni ]ai+1,+[ni+1] · · · a j,+[n j ].

(iii) For 0 ≤ i ≤ j ≤ N, we have

�i, j,−(ε) = Ai, j,−[β j ]εβ j + Ai, j,−[β j + 1]εβ j +1 + oi, j,−(εβ j +1), ε ∈ (0, ε0],

where oi, j,−(εβ j +1)/εβ j +1 → 0 as ε → 0 and

Ai, j,−[β j ] = ai,−[0] · · · a j−1,−[0]a j,−[β j ] > 0,



228 D. Silvestrov et al.

Ai, j,−[β j + 1] =
∑

ni +···+n j−1+n j =1

ai,−[ni ] · · · a j−1,−[n j−1]a j,−[β j + n j ].

(iv) For 0 ≤ k ≤ i − 1, i ∈ 〈1,N 〉X, we have

�k+1,i,−(ε)

�k,i−1,+(ε)
= A∗

k,i [βi − γk]εβi −γk + A∗
k,i [βi − γk + 1]εβi −γk+1

+ o∗
k,i (ε

βi −γk+1), ε ∈ (0, ε0],

where o∗
k,i (ε

βi −γk+1)/εβi −γk+1 → 0 as ε → 0 and

A∗
k,i [βi − γk] = Ak+1,i,−[βi ]

Ak,i−1,+[γk] > 0,

A∗
k,i [βi − γk + 1]

= Ak+1,i,−[βi + 1]Ak,i−1,+[γk] − Ak+1,i,−[βi ]Ak,i−1,+[γk + 1]
Ak,i−1,+[γk]2 .

(v) For i + 1 ≤ k ≤ N , i ∈ 〈0,N−1〉X, we have

�i,k−1,+(ε)

�i+1,k,−(ε)
= A∗

k,i [γi − βk]εγi −βk + A∗
k,i [γi − βk + 1]εγi −βk+1

+ o∗
k,i (ε

γi −βk+1), ε ∈ (0, ε0],

where o∗
k,i (ε

γi −βk+1)/εγi −βk+1 → 0 as ε → 0 and

A∗
k,i [γi − βk] = Ai,k−1,+[γi ]

Ai+1,k,−[βk] > 0,

A∗
k,i [γi − βk + 1]

= Ai,k−1,+[γi + 1]Ai+1,k,−[βk] − Ai,k−1,+[γi ]Ai+1,k,−[βk + 1]
Ai+1,k,−[βk]2 .

(vi) For i ∈ X, we have

Eii (ε) = Bii [γi + βi − 1]εγi +βi −1 + Bii [γi + βi ]εγi +βi + ȯi i (ε
γi +βi ), ε ∈ (0, ε0],

where ȯii (ε
γi +βi )/εγi +βi → 0 as ε → 0 and

Bii [0] = bi [0] + bN−i [0]A∗
N−i,i [0] > 0, i = 0, N ,



11 Nonlinearly Perturbed Birth-Death-Type Models 229

Bii [1] = bN−i [1]A∗
N−i,i [0] + bi [1] +

∑
k∈ iX

bk[0]A∗
k,i [1], i = 0, N ,

Bii [−1] = b0[0]A∗
0,i [−1] + bN [0]A∗

N ,i [−1] > 0, i ∈ 〈1,N−1〉X,

Bii [0] = b0[1]A∗
0,i [−1] + bN [1]A∗

N ,i [−1] + bi [0]

+
∑
k∈ iX

bk[0]A∗
k,i [0], i ∈ 〈1,N−1〉X.

Proof We first note that the quantities in parts (i) and (ii) do not depend on pN ,−(ε),
so the proofs for these parts are the same as the proofs for parts (i) and (ii) in
Lemma11.4, respectively.

In order to prove part (iii) we notice that it follows from conditions D and H3

that pi,−(ε) = ai,−[βi ]εβi + ai,−[βi + 1]εβi +1 + oi,−(εβi +1), i ∈ X. From this and
the definition (11.91) of �i, j,−(ε) we get, for 0 ≤ i ≤ j ≤ N ,

�i, j,−(ε) = (ai,−[0] + ai,−[1]ε + oi,−(ε)) × · · · ×
× (a j−1,−[0] + a j−1,−[1]ε + o j−1,−(ε))

× (a j,−[β j ]εβ j + a j,−[β j + 1] + εβ j +1 + o j,−(εβ j +1)).

By applying the multiple product rule for asymptotic expansions we obtain the
asymptotic relation given in part (iii).

From parts (ii) and (iii) it follows that, for 0 ≤ k ≤ i − 1, i ∈ 〈1,N 〉X,

�k+1,i,−(ε)

�k,i−1,+(ε)
= Ak+1,i,−[βi ]εβi + Ak+1,i,−[βi + 1]εβi +1 + ok+1,i,−(εβi +1)

Ak,i−1,+[γk]εγk + Ak,i−1,+[γk + 1]εγk+1 + ok,i−1,+(εγk+1)
,

and, for i + 1 ≤ k ≤ N , i ∈ 〈0,N−1〉X,

�i,k−1,+(ε)

�i+1,k,−(ε)
= Ai,k−1,+[γi ]εγi + Ai,k−1,+[γi + 1]εγi +1 + oi,k−1,+(εγi +1)

Ai+1,k,−[βk]εβk + Ai+1,k,−[βk + 1]εβk+1 + oi+1,k,−(εβk+1)
.

Notice that in the above two relations it is possible that the corresponding quantity
tends to infinity as ε → 0.

The asymptotic relations given in parts (iv) and (v) are obtained by using the
division rule for Laurent asymptotic expansions in the above two relations.

We finally give the proof of part (vi). For the case i = 0, it follows from relation
(11.93) and parts (i) and (v) that
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E00(ε) = b0[0] + b0[1]ε + ȯ0(ε)

+ (bN [0] + bN [1]ε + ȯN (ε))(A∗
N ,0[0] + A∗

N ,0[1]ε + o∗
N ,0(ε))

+
∑

k∈ 0,NX

(bk[0] + bk[1]ε + ȯk(ε))(A∗
k,0[1]ε + A∗

k,0[2]ε2 + o∗
k,0(ε

2)).

The product rule and multiple summation rule for asymptotic expansions now
proves part (vi) for the case i = 0.

If i = N , it follows from relation (11.94) and parts (i) and (iv) that

EN N (ε) = bN [0] + bN [1]ε + ȯN (ε)

+ (b0[0] + b0[1]ε + ȯ0(ε))(A∗
0,N [0] + A∗

0,N [1]ε + o∗
0,N (ε))

+
∑

k∈ 0,NX

(bk[0] + bk[1]ε + ȯk(ε))(A∗
k,N [1]ε + A∗

k,N [2]ε2 + o∗
k,N (ε2)).

Again, we can use the product rule and multiple summation rule in order to prove
part (vi), in this case, for i = N .

For the case where i ∈ 〈1,N−1〉X, we use relation (11.92) and parts (i), (iv) and
(v) to get

Eii (ε) = bi [0] + bi [1]ε + ȯi (ε)

+
∑

k∈{0,N }
(bk[0] + bk[1]ε + ȯk(ε))(A∗

k,i [−1]ε−1 + A∗
k,i [0] + o∗

k,i (1))

+
∑

k∈ 0,i,NX

(bk[0] + bk[1]ε + ȯk(ε))(A∗
k,i [0] + A∗

k,i [1]ε + o∗
k,i (ε)).

Here we can note that the terms corresponding to k ∈ {0, N } are of order O(ε−1)

while all other terms are of order O(1). By using the product rule and multiple
summation rule for Laurent asymptotic expansions, we conclude that the asymptotic
relation given in part (vi) also holds for i ∈ 〈1,N−1〉X. �

The following theorem gives second order asymptotic expansions for stationary
and conditional quasi-stationary probabilities. In particular, part (i) of this theorem
shows that there exist limits for stationary probabilities,πi (0) = limε→0 πi (ε), i ∈ X,
where π0(0) > 0, πN (0) > 0, and πi (0) = 0 for i ∈ 〈1,N−1〉X. Furthermore, part (ii)
of the theorem shows, in particular, that there exist limits for conditional quasi-
stationary probabilities, π̂i (0) = limε→0 π̂i (ε), i ∈ 〈1,N−1〉X, where π̂i (0) > 0, i ∈
〈1,N−1〉X.

Theorem 11.4 Assume that conditions A–G and H3 hold. Then:

(i) We have the following asymptotic relation for the stationary probabilities πi (ε),
i ∈ X,

πi (ε) = ci [l̂i ]εl̂i + ci [l̂i + 1]εl̂i +1 + oi (ε
l̂i +1), ε ∈ (0, ε0],
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where l̂i = I (i 
= 0, N ), oi (ε
l̂i +1)/εl̂i +1 → 0 as ε → 0, and

ci [l̂i ] = bi [0]
Bii [−l̂i ]

> 0, ci [l̂i + 1] = bi [1]Bii [−l̂i ] − bi [0]Bii [−l̂i + 1]
Bii [−l̂i ]2

,

where Bii [−1], i ∈ 〈1,N−1〉X, Bii [0], i ∈ X, and Bii [1], i = 0, N, can be com-
puted from the formulas given in Lemma11.5.

(ii) We have the following asymptotic relation for the conditional quasi-stationary
probabilities, π̂i (ε), i ∈ 〈1,N−1〉X,

π̂i (ε) = ĉi [0] + ĉi [1]ε + ôi (ε), ε ∈ (0, ε0],

where ôi (ε)/ε → 0 as ε → 0 and

ĉi [0] = ci [1]
d[1] > 0, ĉi [1] = ci [2]d[1] − ci [1]d[2]

d[1]2 ,

where d[l] = ∑
j∈ 0,NX

ci [l], l = 1, 2.

Proof It follows from parts (i) and (vi) in Lemma11.5 that, for i ∈ X,

πi (ε) = bi [0] + bi [1]ε + ȯi (ε)

Bii [γi + βi − 1]εγi +βi −1 + Bii [γi + βi ]εγi +βi + ȯi i (εγi +βi )
. (11.98)

We also have γi + βi = I (i = 0) + I (i = N ) = 1 − I (i 
= 0, N ) = 1 − l̂i . Using
this relation for indicator functions and the division rule for Laurent asymptotic
expansions in relation (11.98) we obtain the asymptotic relation given in part (i).

For the proof of part (ii), we first use part (i) for i ∈ 〈1,N−1〉X to get

π̂i (ε) = πi (ε)∑
j∈ 0,NX

π j (ε)
= ci [1]ε + ci [2]ε2 + oi (ε

2)∑
j∈ 0,NX

(c j [1]ε + c j [2]ε2 + o j (ε2))
,

and then we apply the multiple summation rule (i) given in Lemma11.2 and the
division rule (iv) given in Lemma11.1. �

11.6.5 Asymptotic Expansions of Higher Orders for
Stationary and Conditional Quasi-stationary
Distributions

In Sects. 11.6.2–11.6.4, we give asymptotic expansions of the first and second orders
(with length, respectively, 1 and 2) for stationary and conditional quasi-stationary
distributions of perturbed semi-Markov birth-death processes, under the assumption
that conditions A–G and Hi (i = 1, 2, 3) hold.
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It is readily seen from the proofs of Lemmas11.3–11.5 and Theorems11.2–11.4
that the perturbation conditions D and E can be weaken in the case of first order
asymptotics. The asymptotic expansions of the length 2 appearing in these conditions
can be replaced by the analogous asymptotic expansions of the length 1. Namely,
the upper indices 1 + li,± in the sums representing these asymptotic expansions
and power indices in the corresponding remainders should be, just, replaced by
indices li,±.

Moreover, the method of construction of asymptotic expansions for stationary
distributions and conditional quasi-stationary distribution of perturbed semi-Markov
birth-death processes based on the use of operational rules for Laurent asymptotic
expansions presented in Lemmas11.1 and 11.2 let one also construct the correspond-
ing asymptotic expansions of higher orders, with the length larger than 2. In this case,
the asymptotic expansions of the length 2 appearing in the perturbation conditionsD
andE should be replaced by the analogous asymptotic expansions of the correspond-
ing length larger than 2. Namely, the upper indices 1 + li,± in the sums representing
these asymptotic expansions and power indices for the corresponding remainders
should be formally replaced by indices L + li,±, with parameter L > 1. In this case,
the length of the corresponding asymptotic expansions will be L + 1.

The algorithm for construction of the corresponding asymptotic expansions, with
length L + 1 > 2 is absolutely analogous to those used in Theorems11.2–11.4. The
difference is that at all steps the asymptotic expansions, with length L + 1, are
constructed for the corresponding intermediate quantities, �i, j,±(ε), etc., using oper-
ational rules for Laurent asymptotic expansions given in Lemmas11.1 and 11.2.

This program is realised in book by Silvestrov, D. and Silvestrov, S. [41].

11.7 Numerical Examples

In this section, the results of the present paper are illustrated by numerical examples
for some of the perturbed models of birth-death-type discussed in Sect. 11.2. Let us
first note that each model presented in Sect. 11.2 is defined in terms of intensities
for a continuous time Markov chain and the perturbation scenarios considered give
intensities which are linear functions of the perturbation parameter, that is,

λi,±(ε) = gi,±[0] + gi,±[1]ε, i ∈ X, (11.99)

where the coefficients gi,±[l] depend on the model under consideration. Conse-
quently, the higher order (l ≥ 2) terms in (11.43) all vanish.

In order to use the algorithm based on successive reduction of the phase space,
we first need to calculate the coefficients in perturbation conditions D and E. This
can be done from relations (11.5), (11.6) and (11.44) by applying the operational
rules for Laurent asymptotic expansions given in Lemmas11.1 and 11.2. By relation
(11.5), we have λi (ε) = λi,−(ε) + λi,+(ε), so it follows immediately from (11.99)
that
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λi (ε) = gi [0] + gi [1]ε, i ∈ X, (11.100)

where gi [l] = gi,−[l] + gi,+[l], l = 0, 1. From (11.6), (11.99), (11.100) and
Lemma11.1 we deduce the following asymptotic series expansions, for i ∈ X,

pi,±(ε) = λi,±(ε)

λi (ε)
= gi,±[0] + gi,±[1]ε

gi [0] + gi [1]ε

=
1+li,±∑
l=li,±

ai,±[l]εl + oi,±(ε1+li,±). (11.101)

The expansion (11.101) exists and its coefficients can be calculated from the divi-
sion rule for asymptotic expansions. Then, using (11.44), (11.100), (11.101) and
Lemma11.1, the following asymptotic series expansions can be constructed, for
i ∈ X,

ei,±(ε) = pi,±(ε)

λi (ε)
=

1+li,±∑
l=li,±

bi,±[l]εl + ȯi,±(ε1+li,±). (11.102)

Once the coefficients in the expansions (11.101) and (11.102) have been calculated,
we can use the algorithm described in Sect. 11.6, in order to construct asymptotic
expansions for stationary and conditional quasi-stationary probabilities.

The remainder of this section is organised as follows. In Sect. 11.7.1 we illus-
trate our results with numerical calculations for the perturbed models of population
genetics discussed in Sect. 11.2.3. We first consider an example where condition
H1 holds and then an example where condition H3 is satisfied. Numerical exam-
ples for the perturbed model of epidemics presented in Sect. 11.2.2 are discussed in
Sect. 11.7.2. This provides an example where conditionH2 holds. All illustrations for
the numerical examples are placed in a special subsection at the end of this section
for convenience.

11.7.1 Numerical Examples for Perturbed Models
of Population Genetics

Recall that the perturbation conditions for the model in Sect. 11.2.3 are formulated
in terms of the mutation parameters as

U1(ε) = C1 + D1ε, U2(ε) = C2 + D2ε. (11.103)

Additionally, the model depends on the size N/2 of the population and the selection
parameters S1 and S2 which are assumed to be independent of ε. Thus, there are in
total seven parameters to choose.
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In our first example, we choose the following values for the parameters: N =
100, C1 = C2 = 5, D1 = 0, D2 = N and S1 = S2 = 0. Recall that the mutation
probabilities are related to themutation parameters by u1(ε) = U1(ε)/N and u2(ε) =
U2(ε)/N . It follows from (11.103) that u1(ε) = 0.05 and u2(ε) = 0.05 + ε. Thus,
in the limiting model, a chosen allele mutates with probability 0.05 for both types
A1 and A2. In this case, we have no absorbing states which means that conditionH1

holds.
Since we have no selection, the stationary distribution for the limiting model will

be symmetric around state 50. The perturbation parameter ε can be interpreted as
an increase in the probability that a chosen allele of type A2 mutates to an allele of
type A1. Increasing the perturbation parameter will shift the mass of the stationary
distribution to the right.

With model parameters given above, we first used relations (11.20), (11.21),
(11.22), (11.24), and (11.26) to calculate the coefficients in (11.99) for the intensi-
ties. Then, these coefficients were used to compute the coefficients in the perturbation
conditions D and E as described above. After this, we used the algorithm outlined in
Sect. 11.6 to calculate the asymptotic expansions for the stationary distribution given
in Theorem11.2, with parameters L = 0, 1, i.e., lengths L + 1 = 1, 2.Moreover, we
also computed the analogous asymptotic expansions, with parameter L = 2, 3, i.e.,
lengths L + 1 = 3, 4, using the higher order variant of the corresponding algorithm
described in Sect. 11.6.5. Approximations for the stationary distribution based on
these expansions were obtained by approximating the corresponding remainders by
zero.

Let us first compare our approximations with the exact stationary distribution
for some particular values of the perturbation parameter. Figure11.1a shows the
stationary distribution for the limiting model (ε = 0) and, as already mentioned
above, we see that it is symmetric around state 50. The stationary distribution for the
model with ε = 0.01 and the approximation corresponding to L = 1 are shown in
Fig. 11.1b. Here, the approximation seems the match the exact distribution very well.
The approximation for L = 2 is not included here since it will not show any visible
difference from the exact stationary distribution. In Fig. 11.1c, d, corresponding to the
models where ε = 0.02 and ε = 0.03, respectively, we also include the approxima-
tions for L = 2. As expected, the approximations for the stationary distribution get
worse as the perturbation parameter increases. However, it seems that even for higher
values of the perturbation parameter, some parts of our approximations fit better to
the exact stationary distribution. In this example, it seems that the approximations
are in general better for states that belong to the right part of the distribution.

In order to illustrate that the quality of the approximations differs depending on
which states we consider, let us compare the stationary probabilities for the states
40 and 80. The stationary probabilities of these two states are approximately of the
same magnitude and we can compare them in plots with the same scale on both
the horizontal and the vertical axes. Figure11.2a shows the stationary probability
for state 40 as a function of the perturbation parameter and its approximations for
L = 1, 2, 3. The corresponding quantities for state 80 are shown in Fig. 11.2b where
we have omitted the approximation for L = 3 since the approximation is very good
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already for L = 2. When L = 2, the approximation for state 80 is clearly better
compared to the approximation for state 40.

Another point illustrated by Figs. 11.1 and 11.2 is that for a fixed value of the
perturbation parameter, the quality of an approximation based on a higher order
asymptotic expansion is not necessarily better. For instance, in Fig. 11.2a we see that
for ε ∈ [0.04, 0.05] the approximations for L = 1 is better compared to both L = 2
and L = 3. However, asymptotically as ε → 0, the higher order approximations are
better. For example, we see in Fig. 11.2a that when ε ∈ [0, 0.02] the approximations
for L = 3 are the best.

Let us now consider a second example for the perturbed model of popula-
tion genetics. We now choose the parameters as follows: N = 100, C1 = C2 = 0,
D1 = D2 = N and S1 = S2 = 0. In this case, both types of mutations have the same
probabilities and are equal to the perturbation parameter, that is, u1(ε) = u2(ε) = ε.
This means that both boundary states will be asymptotically absorbing, so condition
H3 holds. In this case, we calculated the asymptotic expansions for the stationary
and conditional quasi-stationary stationary distribution, given in Theorem11.4.

Let us illustrate the numerical results for conditional quasi-stationary distribu-
tions. Figure11.3a shows the conditional quasi-stationary distribution for ε = 0.005
and some of its approximations. Since it is quite hard to see the details near the
boundary states for this plot, we also show the same curves restricted to the states
1–20 in Fig. 11.3b. As in the previous example, it can be seen that the qualities of the
approximations differ between the states. In this case, we see that the approximations
for states close to the boundary are not as good as for interior states. Similar type of
behaviour also appears for different choices of the selection parameters S1 and S2.
We omit the plots showing this since they do not contribute with more understanding
of the model.

Let us instead study the limiting conditional quasi-stationary distributions (11.51)
for some different values of the selection parameters S1 and S2. These types of
distributions are interesting in their own right and are studied, for instance, by Allen
and Tarnita [1], where they are called rare-mutation dimorphic distributions. In our
example, if mutations are rare (i.e., ε is very small), the probabilities of such a
distribution can be interpreted as the likelihoods for different allele frequencies to
appear during periods of competition which are separated by long periods of fixation.

Figure11.4a shows the limiting conditional quasi-stationary distribution in the
case S1 = S2 = 0, that is, for a selectively neutral model. Now, let the selection
parameters be given by S1 = 10 and S2 = −10. In this case, the gene pairs with
genotypes A1A1, A2 A2 and A1A2 have survival probabilities approximately equal to
0.37, 0.30 and 0.33, respectively. Thus, allele A1 has a selective advantage and this is
reflected in Fig. 11.4b where the limiting conditional quasi-stationary distribution is
shown in this case. Themass of the distribution is now shifted to the right compared to
a selectively neutral model. Next, we take the selection parameters as S1 = S2 = 10
which implies that gene pairs with genotypes A1A1, A2 A2 and A1A2 have survival
probabilities approximately equal to 0.345, 0.345 and 0.31, respectively. This means
that we have a model with underdominance and we see in Fig. 11.4c that the limiting
conditional quasi-stationary distribution then has more of its mass near the boundary
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compared to a selectively neutral model. Finally, we set the selection parameters
as S1 = S2 = −10. Then, gene pairs with genotypes A1A1, A2 A2 and A1A2 have
survival probabilities approximately equal to 0.32, 0.32 and 0.36, respectively. This
gives us a model with overdominace or balancing selection and in this case we see in
Fig. 11.4d that the limiting conditional quasi-stationary distribution has more mass
concentrated to the interior states compared to a selectively neutral model.

11.7.2 Numerical Examples for Perturbed Epidemic Models

In our last numerical example, we consider the perturbed epidemic model described
in Sect. 11.2.2. Recall from the variant of condition H2 given in this subsection that
the contact rate ν for each individual and the group of infected individuals outside
the population is considered as a perturbation parameter, that is, ν = ν(ε) = ε. In
this case, state 0 is asymptotically absorbing which means that condition H2 holds.

It follows directly from (11.15) and (11.16) that the intensities of the Markov
chain describing the number of infected individuals are linear functions of ε given by
λi,+(ε) = λi(1 − i/N ) + (N − i)ε, λi,−(ε) = μi, i ∈ X. In this model, we only
have three parameters to choose: N , λ, and μ. As in the previous examples, let us
take N = 100 which here corresponds to the size of the population. Furthermore,
we let μ = 1 so that the expected time for an infected individual to be infectious
is equal to one time unit. Numerical illustrations will be given for the cases where
λ = 0.5 and λ = 1.5. For the limitingmodel, we have in the former case that the basic
reproduction ratio R0 = 0.5 and in the latter case R0 = 1.5. The properties of the
model are quite different depending on which of these two cases we consider. For the
two choices of model parameters given above, we calculated asymptotic expansions
for stationary and conditional quasi-stationary distributions given in Theorem11.3.

Let us first compare the limiting conditional quasi-stationary distributions in
(11.49). Figure11.5a shows this distribution for the case where λ = 0.5 and μ = 1
and in Fig. 11.5b it is shown for the case where λ = 1.5 and μ = 1. In the former
case, the limiting conditional quasi-stationary distribution has most of its mass con-
centrated near zero and in the latter case the distribution has a shape which resembles
a normal curve and most of its mass is distributed on the states between 0 and 60.

We can also study plots of the type given in Figs. 11.1, 11.2 and 11.3. Also in
this example, intervals for the perturbation parameter, where the approximations are
good, depend on which state is considered. In this case, states close to zero are more
sensitive to perturbations. Let us here just show two of the plots for illustration. For
the model with λ = 1.5 andμ = 1, Fig. 11.6a shows the conditional quasi-stationary
distribution for ε = 0.02 and the corresponding approximations for L = 1and L = 2.
For the samemodel parameters, the quasi-stationary probability for state 10 is shown
in Fig. 11.6b as a function of the perturbation parameter together with some of its
approximations.

Finally, let us compare the stationary probabilities for state 0. Note that, despite
that the limiting conditional quasi-stationary distribution is very different depending
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on whether R0 = 0.5 or R0 = 1.5 for the model with ε = 0, the limiting stationary
distribution is concentrated at state 0 in both these cases. Figure11.7a shows the
stationary probability of state 0 as a function of the perturbation parameter and
some of its approximations in the case where λ = 0.5 andμ = 1. The corresponding
quantities for the case where λ = 1.5 and μ = 1 are shown in Fig. 11.7b.

Qualitatively the plots show approximately the same behavior, but note that the
scales on the horizontal axes are very different. We see that the stationary probability
of state 0 for the limiting model is much more sensitive to perturbations in the case
where R0 = 1.5. It follows from (11.52) that this is due to fact that the expected time
E10(ε) for the infection to (temporarily) die out after one individual gets infected, is
much larger for the model with R0 = 1.5.

Illustrations for Numerical Examples

Fig. 11.1 Comparison of the stationary distribution πi (ε) and some of its approximations for the
population genetic example of Sect. 11.2.3. The plots are functions of the number of A1 alleles i , for
different values of the perturbation parameter ε, with N = 100, C1 = C2 = 5, D1 = 0, D2 = N
and S1 = S2 = 0
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Fig. 11.2 Comparison of stationary probabilities πi (ε) for states i = 40 and i = 80 and some of
its approximations considered as a function of the perturbation parameter ε. The model is based on
the population genetic example of Sect. 11.2.3, with the same parameter values as in Fig. 11.1

Fig. 11.3 The conditional quasi-stationary distribution π̂i (ε) and some of its approximations for
the population genetic example of Sect. 11.2.3. The plots are functions of the number of A1 alleles
i , with the perturbation parameter ε = 0.005 fixed. Plot a shows the distribution for all states while
plot b is restricted to states 1–20. The parameter values of the model are N = 100, C1, C2 = 0,
D1, D2 = N and S1, S2 = 0
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Fig. 11.4 Plots of the limiting conditional quasi-stationary distribution π̂i (0) for the population
genetic example of Sect. 11.2.3, as a function of the number of A1-alleles i , for different values of
the selection parameters. The model parameters N , C1, C2, D1 and D2 are the same as in Fig. 11.3.
Note that the scales of the vertical axes differ between the plots

Fig. 11.5 Comparison of the limiting conditional quasi-stationary distribution π̃i (0) for the epi-
demic model of Sect. 11.2.2, as a function of the number of infected individuals i , for a population
of size N = 100 with recovery rate μ = 1. The force of infection parameter is λ = 0.5 in a and
λ = 1.5 in b. Note that the scales of the vertical axes differ between the two plots
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Fig. 11.6 Conditional quasi-stationary probabilities π̃i (ε) and some approximations for the epi-
demic model of Sect. 11.2.2, with N = 100, λ = 1.5 andμ = 1. Note that the horizontal axes in the
two plots represent different quantities; the number of infected individuals i in a and the perturbation
parameter ε in b

Fig. 11.7 Comparison of the stationary probability πi (ε) of state i = 0 as a function of the pertur-
bation parameter ε for the epidemic model of Sect. 11.2.2 when N = 100, μ = 1, and the contact
rate parameter equals a λ = 0.5 and b λ = 1.5. Note that the scales of the horizontal axes differ
between the two plots

11.8 Discussion

The present paper is devoted to studies of asymptotic expansions for stationary and
conditional quasi-stationary distributions for perturbed semi-Markovbirth-death pro-
cesses. We employ the algorithms of sequential phase space reduction for perturbed
semi-Markov processes combined with techniques of Laurent asymptotic expan-
sions developed in the recent works by Silvestrov, D. and Silvestrov, S. [39–41],
and apply them to semi-Markov birth-death processes. In this model, the proposed
algorithms of phase space reduction preserve the birth-death structure for reduced
semi-Markov processes. This made it possible to get, in the present paper, explicit
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formulas for coefficients in the corresponding asymptotic expansions of the first and
the second orders, for stationary and conditional quasi-stationary distributions of
perturbed semi-Markov birth-death processes.

The above results are applied to three types of perturbed models from biology;
population dynamics, epidemic models and models of population genetics. We sup-
plement theoretical results by computations, illustrating numerical accuracy of the
corresponding asymptotic expansions for stationary and quasi-stationary distribu-
tions of varying form. Even though exact expressions for the (quasi-)stationary dis-
tributions of these biological models are available, the asymptotic expansions may
still be preferable when the state space is large and (quasi-)stationary distributions
are computed for several values of the perturbation parameter, since only the first
coefficients of the appropriate Laurent expansions are needed.

It should be mentioned that the semi-Markov setting is an adequate and necessary
element of the proposed method. Even in the case where the initial birth-death-type
process is a discrete or continuous time Markov chain, the time-space screening
procedure of phase space reduction results in a semi-Markov birth-death process,
since times between sequential hitting of the reduced space by the initial process
have distributions which can differ from geometrical or exponential ones.

Also, the use of Laurent asymptotic expansions for expectations of sojourn times
of perturbed semi-Markov processes is a necessary element of the proposed method.
Indeed, even when expectations of sojourn times for all states of the initial semi-
Markov birth-death process are asymptotically bounded and represented by Taylor
asymptotic expansions, the exclusion of an asymptotically absorbing state from the
initial phase space can generate states with asymptotically unbounded expectations
of sojourn times represented by Laurent asymptotic expansions, for the reduced
semi-Markov birth-death processes.

Several extensions of our work are possible. We have considered semi-Markov
processes defined on a finite and linearly ordered state space X, that is a subset of a
one-dimensional lattice. We also confined ourselves to processes of birth-death type,
where only jumps to neighboring states are possible.

For population dynamicsmodels, it is noted byLande, Engen and Saether [26] that
one needs to go beyond birth-death processes though and incorporate larger jumps in
order to account for a changing environment. State spaces that are subsets of higher-
dimensional lattices are of interest in a number of applications, for instance SIR-
models of epidemic spread where some recovered individuals get immune, Nåsell
[32], population genetic models with two sexes, Moran [28], Hössjer and Tyvand
[16], and population dynamics or population genetics models with several species or
subpopulations, see Lande, Engen and Saether [26], Hössjer et al. [15] and references
therein. It is an interesting topic of further research to apply the methodology of this
paper to such models.

The method of sequential phase space reduction proposed in this paper can
be applied to get asymptotic expansions for high order power and mixed power-
exponential moments of hitting times and, in sequel, for more complex
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quasi-stationary distributions (given by relation (11.41)) for nonlinearly perturbed
semi-Markov birth-death processes and, thus, for models of population dynamics,
epidemic spread and population genetics, which are the objects of interest in the
present paper. We hope to present such results in the future.
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