
Chapter 12
Phase-Type Distribution Approximations
of the Waiting Time Until Coordinated
Mutations Get Fixed in a Population

Ola Hössjer, Günter Bechly and Ann Gauger

Abstract In this paper we study the waiting time until a number of coordinated
mutations occur in a population that reproduces according to a continuous time
Markov process of Moran type. It is assumed that any individual can have one of
m + 1 different types, numbered as 0, 1, . . . , m, where initially all individuals have
the same type 0. The waiting time is the time until all individuals in the population
have acquired type m, under different scenarios for the rates at which forward muta-
tions i → i + 1 and backward mutations i → i − 1 occur, and the selective fitness
of the mutations. Although this waiting time is the time until the Markov process
reaches its absorbing state, the state space of this process is huge for all but very
small population sizes. The problem can be simplified though if all mutation rates
are smaller than the inverse population size. The population then switches abruptly
between different fixed states, where one type at a time dominates. Based on this,
we show that phase-type distributions can be used to find closed form approxima-
tions for the waiting time law. Our results generalize work by Schweinsberg [60] and
Durrett et al. [20], and they have numerous applications. This includes onset and
growth of cancer for a cell population within a tissue, with type representing the
severity of the cancer. Another application is temporal changes of gene expression
among the individuals in a species, with type representing different binding sites that
appear in regulatory sequences of DNA.
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12.1 Introduction

A central problem of population genetics is to calculate the probability that a new
germline point mutation survives and spreads from one individual to the rest of the
population. This fixation probability depends not only on the selective fitness of
the mutant compared to the wildtype variant, but also on the size of the popula-
tion. Fisher [22, 23], Haldane [30], and Wright [67, 69] derived formulas for the
fixation probability of a homogeneous one-sex or two-sex population without any
subdivision. Their results were generalized by Kimura [34, 35], who formulated the
fixation probability as a solution ofKolmogorov’s backward equation.More recently,
Lambert [41] gave a unified continuous branching process framework for calculating
fixation probabilities of different population models. However, in order to know how
fast genetic changes occur in a population, it is not only important to know the fixa-
tion probability, but also how long it takes for a surviving mutation to spread. This
can be quantified in terms of the expected time until fixation, and for a homogeneous
population this expected time was derived by Kimura and Ohta [38], Maruyama and
Kimura [47, 48], and Kimura [36].

The above mentioned results have been generalized in different directions. First,
a number of authors have analyzed fixation probabilities or the time to fixation of
one single point mutation for models with geographic subdivision (Maruyama [46],
Slatkin [61], Barton [3], Whitlock [65], Greven et al. [28]). Second, others have
studied the waiting time until a more general type of DNA target gets fixed in a
population, a process which involves several point mutations. This target could, for
instance, be a doublemutant at two loci with or without recombination (Bodmer [10],
Christiansen et al. [14]). Another target is a subset of all possible DNA sequences
at a number of tightly linked nucleotides. The evolutionary process then becomes a
random walk on a fitness landscape of DNA strings, until the target set is reached
(Gillespie [26], Chatterjee et al. [13]). This DNA string could, for instance, represent
a regulatory region of a gene, and the target may consist of all sequences that contain
a certain binding site of length 6–10 nucleotides, to which a transcription factor
attaches and affects the expression of the gene (Stone and Wray [63], MacArthur
and Brockfield [45], Yona et al. [70]). The waiting time until the new binding site
arrives and gets fixed not only depends on the mutation rate, its selective advantage,
and the size of the population, but also on the length of the regulatory region and the
binding site, see for instance Durrett and Schmidt [18], Behrens and Vingron [7],
Behrens et al. [8], Nicodéme [51], Tuğrul et el. [64], and Sanford et al. [56, 57].

Third, if several point mutations are required to reach a target that represents a
complex adaption, these mutations must be coordinated in some way. For instance,
it has been known for long that it is very difficult for several coordinated mutations
to spread and get fixed if the intermediate states convey a selective disadvantage.
In order for this to happen, the population has to be small or the mutations have to
arrive fairly close in time. Wright’s shifting balance theory (Wright [67, 68]) is an
early attempt to explain this through geographic subdivision, where the coordinated
mutations first occur and get fixed locally, before they spread to other subpopulations.
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Kimura [37] considered a diploid model, and used a diffusion approach in order
to find the expected waiting time until two coordinated mutations get fixed in the
population, when each mutation by itself is negatively selected for, and the two
loci are tightly linked or have a small recombination fraction between them. He
approximated the two-dimensional process for the frequencies of the two mutant
genes by a simpler, one-dimensional process. Stephan [62] generalized Kimura’s
model by allowing the two pathways towards the double mutation to have different
mutation rates and selective disadvantages. Phillips [53] studied waiting times for
two coordinated mutations to appear, using a somewhat similar model. He applied
the solution to the first local phase of Wright’s shifting-balance theory, and argued
that this phase dominates the total waiting time until global fixation occurs.

The waiting time problem for coordinated mutations has several applications.
It is widely believed, for instance, that many types of cancer occur when several
somatic mutations spread in a population of cells within a tissue (Knudson [39]).
This has been analyzed mathematically by Komarova et al. [40], Iwasa et al.
[32, 33], Nowak [52], and Schinazi [58, 59]. A second related application is immune
system response, where coordinated somatic mutations are triggered in reaction to
certain antigens (Radmacher et al. [54]). A third application is to analyze the waiting
time until multiple germline mutations arrive in duplicate genes in order to make
them functional (Behe and Snoke [5, 6], Lynch [43]). A fourth application is coor-
dinated germline mutations in regulatory regions, where changes at two different
binding sites have to occur in a given order (Carter and Wagner [11], Durrett and
Schmidt [19]). A fifth application is coordinated mutations in bacterial populations,
where each surviving mutant gives rise to a daughter population that grows at an
exponential rate (Axe [2]).

It is challenging to define a population genetic model that gives explicit formulas
for the waiting time until several coordinated mutations occur. The reason is that
such a model has to incorporate random gene frequency variation in terms of genetic
drift, apart from selection and mutation. It is therefore necessary to study the time
dynamics of the population’s genetic composition by means of a stochastic process,
and with at least two coordinated mutations, the state space of this process gets huge
for all but very small populations sizes. Under certain assumptions the problem can
be simplified though. For models with two coordinated mutations, this has been done
in the above mentioned papers by Komarova et al. [40], Iwasa et al. [32, 33], and
Durrett and Schmidt [19]. More recently, Schweinsberg [60] and Durrett et al. [20]
obtained the asymptotic distribution for the waiting time until an arbitrary number
m of coordinated mutations occur, when the intermediate alleles are neutral and no
backward mutations are allowed. Their models have been used and extended by
Lynch and Abegg [44], in order to study the waiting time until complex adaptive
mutations are fixed. This work has been criticized by Axe [2], who argued that
backward mutations should be included in models of complex adaptations.

The purpose of this paper is to generalize the framework of Schweinsberg [60]
and Durrett et al. [20]. We derive asymptotic properties of the waiting time distri-
bution until an arbitrary number m of coordinated mutations appear and the last
one of them gets fixed, in a large population without any type of subdivision.
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The mutations are allowed to have different selective fitness and mutation rates,
and backward mutations are possible. The mutation probabilities are assumed to be
smaller than the inverse population size, so that the genetic composition of the popu-
lation changes rapidly between fixation of different genetic variants. This fixed state
population model (Komarova et al. [40], Tuğrul et al. [64]) is conveniently modeled
by a continuous time Markov process with a finite state space; the wildtype genetic
variant and the m mutants. It is shown that asymptotically, the time until the mth
mutant gets fixed in the population, has a phase-type distribution, that is, the distribu-
tion of the time theMarkov process spends in non-absorbing states (or phases) before
the absorbing state is reached (Neuts [50], Asmussen et al. [1]). We also give explicit
approximations of the transition intensities of the Markov process. This includes
transitions between non-adjacent mutations through stochastic tunneling (Carter and
Wagner [11], Komarova et al. [40], Iwasa et al. [32]), where the intermediate genetic
variants (the tunnel) are kept at a low frequency.

The paper is organized as follows: In Sect. 12.2 we introduce the framework for
how the genetic composition of the population evolves over time bymeans of aMoran
model (Moran [49], Section3.4 ofEwens [21])with deaths, births, andmutationswith
different selective fitness. In Sect. 12.3 we introduce the Markov process for fixed
population stateswhen themutation rates are smaller than the inverse population size,
and define the phase-type distribution for the time until this Markov process reaches
its absorbing state. Then inSect. 12.4wegive conditions underwhich thewaiting time
until the last mutant gets fixed, converges weakly towards a phase-type distribution,
as the size of the population grows. After stating some results for the fixation of one
single mutant in Sect. 12.5, we then provide explicit approximations, in Sect. 12.6,
of the transition rates of the Markov process between different fixed states. Then
we illustrate the theory for a number of asymptotic scenarios in Sect. 12.7, provide
some adjustments of the asymptotic theory in Sect. 12.8, and give a summary with
further extensions in Sect. 12.9. In Appendix A we provide a simulation algorithm,
in Appendix B we derive an explicit approximation of the expected waiting time for
one single mutant to get fixed, and in Appendix C we sketch proofs of main results.

12.2 Moran Model with Mutations and Selection

Consider a homogeneous and haploid population of constant size that consists of N
individuals, all ofwhich have the same sex. Each individual has one ofm + 1 possible
types 0, 1, . . . , m. We can think of these types as different genetic variants or alleles,
where 0 is a wildtype allele that is modified by m successive mutations. The genetic
composition of the population is summarized by means of an (m + 1)-dimensional
vector

Zt = (Zt0, . . . , Ztm) ∈ Z, (12.1)

whose components represent the fraction of all alleles at time t ≥ 0. It is assumed
that t is a continuous parameter counted in units of generations. The allele frequency
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configuration (12.1) is a stochastic process whose state space Z is the intersection of
the m-simplex

Δ =
{

z = (z0, . . . , zm); zi ≥ 0,
m∑

i=0

zi = 1

}

spanned by the vectors

e0 = (0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , em = (0, 0, . . . , 1),

and the setN(m+1)/N of vectors z whose coordinates are natural numbers divided by
N . More specifically, we will assume that (12.1) is a Moran model, where mutations
between neighboring types i → i + 1 and i → i − 1 are possible, andwhere individ-
uals with allele i have a selective fitness si , with s0 = 1 and si > 0 for i = 1, . . . , m.
In our model, these numbers correspond to negative selection, neutral selection, and
positive selection for allele i , depending on whether 0 < si < 1, si = 1, and si > 1
respectively. The population starts with all individuals having type 0, so that Z0 = e0.
It has overlapping generations, with a reproduction scheme defined as follows:

(i) Each individual dies independently according to a Poisson process with rate 1.
(ii) When an individuals dies, an offspring of some randomly chosen individual

(including the one that dies) replaces it. The parent is chosen among the N
individuals in the population, with probabilities proportional to their selection
coefficients si .

(iii) If the parent has type i < m, the offspring in step (ii) mutates to i + 1 with
probability ui+1 > 0 and to i − 1 with probability vi−1 ≥ 0 (with v−1 = 0).

It follows from these reproduction rules that {Zt ; t ≥ 0} is a continuous time
and time homogeneous Markov process on Z. Our primary objects of study are the
waiting time

Tm = inf{t ≥ 0; Zt = em} (12.2)

until allele m gets fixed in the population; and the waiting time

T̃m = inf{t ≥ 0; Ztm > 0} (12.3)

until this allele first appears. Notice that Tm is the time until Zt reaches the absorbing
state em . On the other hand, T̃m is the hitting time of Zm = {z = (z0, . . . , zm) ∈
Z; zm > 0}, which is not an absorbing set of states, since the descendants of a type
m individual may die out before this allele gets fixed in the population. However, if
we modify the dynamics of Zt and stop it as soon as it reaches Zm , we may treat this
set as one single absorbing state.

It is also possible to allow for backward mutations when offspring of type m
individuals are born, with probability vm−1. Although this will affect the distribution
of Tm , it will not impact the approximations of this distribution that we discuss in
the following sections.
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12.3 Phase-Type Distribution Approximation of Waiting
Time

12.3.1 Asymptotic Notation

We will analyze the waiting times Tm = Tm,N and T̃m = T̃m,N asymptotically as
the population size N tends to infinity. The various parameters of the model will
in general depend on N as well, such as ui = ui,N , vi = vi,N , and si = si,N . We
will use Bachmann–Landau asymptotic notation as N → ∞, for instance aN ∼ bN

if aN /bN → 1, bN = O(aN ) if bN /aN stays bounded, bN = Ω(aN ) if bN /aN is
bounded away from zero, bN = Θ(aN ) if aN and bN are of the same order (that
is, bN = O(aN ) and bN = Ω(aN )), and bN = o(aN ) if bN /aN → 0. We will also
make use of the analogous notation for sequences of random variables YN , with
YN = Op(aN ) if YN /aN stays bounded in probability and YN = op(aN ) if YN /aN

converges to zero in probability. Suppose Y is a random variable with distribution F .

We denote this as Y
L∈ F , and if YN is a sequence of random variables converging

weakly towards Y , we often use the shorthand notation YN
L−→ F . For simplicity of

notation, we will mostly omit index N for sequences of numbers or random variables
that are functions of N . Sometimes, we also write aN � bN or bN � aN instead of
aN = o(bN ).

12.3.2 Simplified Markov Process Between Fixed Population
States

For all but very small N , it is not possible to get explicit and easily computable
expressions for the distributions of Tm and T̃m , since the state spaceZ gets huge when
N grows. It is however possible to get accurate approximations of these distributions
under appropriate conditions. The most crucial assumption is that the forward and
backward mutation rates ui and vi tend to zero at a rate faster than the inverse
population size, i.e.

ui = o(N−1), (12.4)

and
vi = o(N−1) (12.5)

for all i as N → ∞. The implication of (12.4)–(12.5) is that most of the time,
all individuals of the population will have the same type, and changes of this type
occur rapidly when an individual with a new mutation gets many descendants that
eventually take over the population. For this reason it may appear that a certain
allele i < m has been fixed permanently. But this is only temporary, since forward
or backward mutations may later drive the population towards other fixed states.
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This phenomenon was referred to as quasi-fixation in Hössjer et al. [31] for certain
one-way mutation models with two possible alleles. Because of these rapid changes
of the genetic decomposition Zt of the population, it is well approximated by a
continuous time Markov process defined on the finite subset

Zhom = {e0, . . . , em} (12.6)

of Z that consists of all possible states of a type-homogeneous population. Here ei

refers to fixed state i of the population, so that all its individuals have the same type i .
The simplified process has intensity matrix Λ = (λi j )

m
i, j=0, where λi j > 0 is the rate

of jumping from ei to e j when j 	= i , and −λi i = ∑
j; j 	=i λi j is the rate of leaving

ei . Since em is an absorbing state, the intensity matrix can be decomposed as

Λ =
(

Λ0 λ

0 0

)
, (12.7)

where Λ0 = (λi, j )
m−1
i, j=0 contains the transition rates from and among the non-

absorbing states, 0 = (0, . . . , 0) is a row vector withm zeros, T denotes vector trans-
position, and λ = (λ0m, . . . , λm−1,m)T is a column vector containing the transition
rates from all non-absorbing states to em . A transition of Zt from ei to e j corresponds
to a stochastic tunneling event when | j − i | ≥ 2. For instance, when j ≥ i + 2, it
represents a scenario where some individual who lives in a homogeneous type i pop-
ulation, has descendants from the same line of descent that experience mutations to
i + 1, i + 2, . . . , j , and then type j spreads to the whole population before any of
the intermediate types do.

12.3.3 Defining Phase-Type Distribution Approximation

Since Tm is the time until the absorbing state em is reached, the simplified Markov
process assumption with state space (12.6) and intensity matrix (12.7) implies that
approximately

Tm
L∈ PD(ẽ0,Λ0) (12.8)

has a phase-type distribution, where ẽi is a unit vector of length m that contains the
first m components of ei . This phase-type distribution has two arguments, where
the first, ẽ0, refers to the starting distribution of the Markov process among the non-
absorbing states, and the second argument gives the intensity matrix among and from
the non-absorbing states. From (12.8) we get very explicit approximate expressions
for the density function

fTm (t) = ẽ0 exp(Λ0t)λ, t > 0, (12.9)
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the expected value
E(Tm) = −ẽ0Λ

−1
0 1 (12.10)

and the variance
Var(Tm) = 2ẽ0Λ

−2
0 1 − (

ẽ0Λ
−1
0 1

)2
(12.11)

of Tm , with 1 = (1, . . . , 1)T a column vector of m ones.
In order to approximate the law of the waiting time T̃m in (12.3), we approximate

{Zt } by a Markov process on

Z̃hom = {e0, . . . , em−1,Zm}. (12.12)

Then we may use (12.8) as a distributional approximation for T̃m rather than Tm , if
λim is interpreted as a transition rate from ei to Zm when i < m, rather than from ei

to em .

12.4 Waiting Time Asymptotics

12.4.1 Regularity Conditions

In order to formulate precise asymptotic distributional results for Tm and T̃m when
N → ∞, we need some additional definitions and assumptions. We will focus on
Tm , and then briefly point out the differences for T̃m .

As a first step, let {τk}M
k=0 be the time points when a new allele gets fixed in the

population. They are defined recursively as τ0 = 0 and

τk = inf{t > τk−1; Zt ∈ {e0, . . . , em} \ Zτk−1}, (12.13)

for k = 1, 2, . . . , M , with τM = Tm the time point when Zt reaches its absorbing
state em . Clearly, {Zτk ; k = 0, 1, . . .} is a Markov chain with state space Zhom and
transition probabilities

pi j = pi j,N =
⎧⎨
⎩

P(Zτk+1 = e j |Zτk = ei ), i = 0, . . . , m − 1,
j = 0, . . . , m,

0, i = m, j = 0, . . . , m − 1.
(12.14)

Since Zτk 	= Zτk+1 for k < M , the diagonal elements of the transition matrix
P = (pi j )

m
i, j=0 vanish for all non-absorbing states, i.e. pii = 0 for i < m.

Assume that Zτk = ei for some k < M and i < m. We will study what happens
between the time points τk and τk+1, and refer to a forward mutation i → i + 1
as successful if its descendants eventually take over the population. Let fi = fi,N

be the probability that a forward mutation that happens while all individuals of the
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population have the same type i , is successful. Likewise, if i > 0, a successful back-
ward mutation of type i → i − 1 is one whose descendants eventually take over the
population. Denote by bi = bi,N the probability that a backward mutation is success-
ful, given that it happens in a homogeneous type i population. For definiteness, we
also put b0 = 0. A successful mutation from type i is either forward or backward, and
due to (12.4)–(12.5), it will arrive when the population is homogeneous or almost
homogeneous of type i . Therefore, a successful mutation from type i arrives at a rate
close to

μi = μi,N = Nvi−1bi + Nui+1 fi , i = 0, . . . , m − 1, (12.15)

since new backward and forward mutations appear at rates Nvi−1 and Nui+1 among
N individualswith the same type i , but only a fractionbi and fi of themare successful,
and cause a change in the population to another fixed state. For the absorbing state
we put μm = 0.

There will be at least one successful mutation within (τk, τk+1), and let τ ′
k+1 be

the time point when the first of these mutations arrives. We will assume below that
τk+1 − τ ′

k+1 is asymptotically negligible in comparison to the total waiting time Tm ,
which reflects that fact that all transitions of Zt occur rapidly. This suggests that it
is asymptotically accurate to use transition rates

λi j =
{−μi , i = j,

μi pi j , i 	= j,
(12.16)

in (12.8). In order to verify this we need to make some additional assumptions on
how the rates in (12.16) behave as N → ∞. We will first of all assume that the
transition probabilities in (12.14) satisfy

pi j → πi j , i, j = 0, 1, . . . , m, (12.17)

as N → ∞, so that Π = (πi j )
m
i, j=0 is the asymptotic transition matrix of the embed-

ded Markov chain {Zτk ; k = 0, 1, . . .}. We will then postulate that

(I − Π0)
−1 is invertible, (12.18)

with I the identity matrix of order m andΠ0 a square matrix of order m that contains
the first m rows and first m columns of Π . Condition (12.18) guarantees that the
asymptotic Markov chain reaches its absorbing state em with probability 1, since it
implies P(M < ∞) = ẽ0(I − Π0)

−1π = 1, where π = (π0m, . . . , πm−1,m)T . Let

Ias = {i; 0 ≤ i ≤ m − 1, ẽ0(I − Π0)
−1ẽT

i > 0} (12.19)

refer to the asymptotic states. It consists of those non-absorbing states that are
visited with a positive probability asymptotically as N → ∞, since i ∈ Ias is
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equivalent to requiring that (Π k)0i > 0 for at least one k = 0, 1, . . .. The remaining
non-asymptotic states are denoted as

Inas = {1, . . . , m − 1} \ Ias. (12.20)

Among the asymptotic states, it is also important to know for how long time they are
visited. We therefore express the expected waiting time

E(Tm) = E0 + E1 + · · · + Em−1

until allele m gets fixed as a sum of m terms, with Ei = Ei,N = −ẽ0Λ
−1
0 ẽT

i the
expected time spent in state ei before absorption into state em takes place. Notice
that Λ0 is invertible for each finite N , and therefore each Ei is well defined with
0 < Ei < ∞. Indeed, since all ui > 0, it follows that any fixed population state e j

with j = i + 1, . . . , m can be reached from fixed population state ei in one step.
Therefore, all entries of Λ0 above the diagonal are strictly positive, whereas the
diagonal elements and row sums of Λ0 are strictly negative. From the Gershgorin
Circle Theorem we deduce that all eigenvalues of Λ0 have a strictly negative real
part, so that Λ0 is invertible. We will assume that the limits

Ei/E(Tm) → ci , 0, 1, . . . , m − 1, (12.21)

exist as N → ∞, and define

Ilong = {i; 0 ≤ i ≤ m − 1, ci > 0} (12.22)

as the set of asymptotic states ei that are visited for such a long time that they have
an asymptotic contribution to the expected waiting time (12.10). We also put

Ishort = Ias \ Ilong (12.23)

for those non-absorbing states that are asymptotic, but visits to them are too short
to have an asymptotic impact on the expected waiting time. It follows from (12.21)
that the transition rates from the states in Ilong have the same order

μmin = μmin,N = min{μi ; i ∈ Ilong}, (12.24)

and it is the inverse of (12.24) that determines the asymptotic size of the waiting
time (12.2). We will therefore rescale time in units of μmin and assume that

μi

μmin
→ κi , i = 0, . . . , m, (12.25)

as N → ∞, where the normalized rate κi of leaving state ei satisfies 1 ≤ κi < ∞
for i ∈ Ilong, κi = ∞ for i ∈ Ishort, 0 ≤ κi ≤ ∞ for i ∈ Inas, and κm = 0. In order to
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ensure that the time between the appearance of a successful mutation and fixation of
a new allele is asymptotically negligible, we assume that

P
(
τk+1 − τ ′

k+1 > εμ−1
min|Zτk = ei

) → 1 ∀ε > 0 and i ∈ Ias, (12.26)

as N → ∞. Notice that the probability on the left hand side of (12.26) does not
depend on k, because of the Markov property of {Zτk }.

12.4.2 Main Results on Waiting Time Asymptotics

The following theorem specifies the asymptotic phase-type distribution of thewaiting
time Tm until allele m gets fixed. A proof of it is sketched in Appendix C.

Theorem 12.1 Consider a Moran model for a population of size N with types (alle-
les) 0, . . . , m that starts with all its individuals in allelic state 0 and then repro-
duces according to (i)–(iii) of Sect. 12.2, so that forward (i → i + 1) and backward
(i → i − 1) mutations between nearby alleles are possible. Assume that the forward
and backward mutation rates satisfy (12.4)–(12.5), that the transition probabilities
between fixed population states where all individuals have the same allele, converge
as in (12.17)–(12.18), that the expected times spent in various fixed states converge
as in (12.21), that the rates of leaving the various fixed states satisfy (12.25), and
that the time between appearance of a new successful mutation and fixation of a new
allele is asymptotically negligible (12.26), as N → ∞. Then the waiting time Tm

until allele m gets fixed has a phase-type distribution

μminTm
L−→ PD(ẽ0,Σ0), (12.27)

asymptotically as N → ∞, when rescaled by μmin in (12.24), the minimal rate of
leaving a fixed state, among those that are visited for a positive fraction of time. The
second argument Σ0 on the right hand side of (12.27) contains the first m rows and
first m columns of the intensity matrix Σ = (Σi j )

m
i, j=0, with

Σi j =
{−κi , j = i,

κiπi j , j 	= i,
(12.28)

πi j is the asymptotic transition probability (12.17) between fixed states i and j , and
κi is the normalized rate (12.25) of leaving fixed state i .

We will make some comments on the asymptotic inverse size μmin of the waiting
time Tm , and the matrix Σ0 of the limit distribution in (12.27). In some applications,
it convenient to generalize (12.24) and let

μmin = C min{μi ; i ∈ Ilong} (12.29)
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for some constant C > 0, chosen in order to get a simple expression for μmin. It is
straightforward to see that Theorem12.1 remains unchanged with this minor mod-
ification. The matrix Σ0 contains asymptotic transition rates among and from all
non-absorbing states, after the change of time scale in (12.24). It will be degenerate
when either Ishort or Inas are non-empty. However, it turns out that (12.27) is still well
defined, if we disregard those rows and columns of Σ0 that correspond to Inas and
take the limit κi → ∞ for all i ∈ Ishort.

Consider the special case when either all vi = 0, or that backward mutations have
no asymptotic impact on the waiting time distribution. An important instance of
(12.27) occurs if, in addition, successful forward mutations in a homogeneous type
i environment always causes the same allele F(i) > i to get fixed in the population,
i.e.

πi,F(i) = 1, i ∈ Ias. (12.30)

With this extra regularity condition, we obtain the following corollary of
Theorem12.1:

Corollary 12.1 Consider the Moran model of Sect.12.2. Assume that the conditions
of Theorem12.1 hold, that only forward mutations have an asymptotic impact on the
population dynamics in such a way that the forward jumps between fixed population
states occur according to (12.30). Then the waiting time Tm until allele m gets fixed
has a hypoexponential limit distribution

μminTm
L−→

∑
i∈Ilong

κ−1
i Xi (12.31)

as N → ∞, where X0, . . . , Xm−1 are independent and exponentially distributed
random variables with expected value 1.

Remark 12.1 The asymptotic result for the waiting time distribution of T̃m is analo-
gous to (12.27), if we replace em by Zm in all definitions. In particular, we inter-
pret Σim as a normalized transition rates from ei to Zm (rather than to em) for
i = 0, . . . , m − 1.

12.5 Fixation in a Two Type Moran Model Without
Mutations

As a preparation for the next sections, we will state two well known result on the
fixation probability and expected time to fixation, for aMoranmodel with two alleles
(m = 1) and no mutations. If these two alleles start at frequencies N − 1 and 1, and
have selection coefficients 1 and s > 0 respectively,

β(s) = βN (s) =
{
1/N , s = 1,
(1 − s−1)/(1 − s−N ), s 	= 1

(12.32)
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is the probability that the second allele gets fixed, whereas 1 − β(s) is the probability
that the first allele does (Komarova et al. [40], Section 6.1 of Durrett [17]). We will
make frequent use of asymptotic expressions for the fixation probability of large
populations. It follows from (12.32) that

β(s) ∼
⎧⎨
⎩

(s−1 − 1) × s N , 1 − s � 1/N ,

x/
[
1 − exp(−x)

]× 1/N , s = 1 + x/N ,

1 − s−1, s − 1 � 1/N ,

(12.33)

as N → ∞, where x 	= 0 in the second line is a constant, not depending on N .
Given that the second alleles takes over, we let α(s) be the expected time it takes

for this to happen. Kimura and Ohta [38] derived a general diffusion approximation
of α(s) for a large class of models with two alleles, see also Section 8.9 of Crow and
Kimura [15], or Theorems1.32 and 6.3 of Durrett [17]. In Appendix B we calculate
this diffusion approximation α(s) for the Moran model of Sect. 12.2. In particular,
we show that this diffusion approximation is of the order

α(s) = αN (s) ∼
⎧⎨
⎩

(1 + s) log(N )/(1 − s), if s < 1,
N , if s = 1,
(1 + s) log(N )/(s − 1), if s > 1,

(12.34)

asymptotically as N → ∞, if s is kept fixed. The expected time to fixation in (12.34)
is much different for neutral and non-neutral alleles. This is also true for the more
accurate diffusion approximation of α(s) in Appendix B, although it has a somewhat
smoother transition between s = 1 and s 	= 1.

12.6 Explicit Approximate Transition Rates Between Fixed
Population States

Returning to the general model with m mutations, we recall that Theorem12.1 gives
quite general conditions under which the normalized waiting times μminTm and
μminT̃m have asymptotic phase-type distributions as the population size N → ∞.
Under these assumptions the unnormalized waiting times Tm (cf. (12.8)) and T̃m

are also well approximated by phase-type distributions. But in order to apply these
results we still need to find explicit approximations of the Markov transition rates
λi j in (12.8) and (12.15)–(12.16) between fixed population states. As in Sect. 12.4
we focus on Tm and then pinpoint the difference when T̃m is of interest.
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12.6.1 Defining Approximate Transition Rates

We introduce

λ̂i j =
{

Nui+1ri jβ(s j/si ), j > i,
Nvi−1ri jβ(s j/si ), j < i

(12.35)

as an approximation of λi j when i < m and j 	= i . The quantity ri j = q̂i j approxi-
mates a certain probability qi j . When | j − i | = 1 we put qi,i−1 = qi,i+1 = 1. When
j ≥ i + 2, qi j is a probability of tunneling from i + 1 to j . In more detail, qi j is
the probability that a forward mutation i → i + 1, that occurs in a homogeneous
type i population, gets a at least one descendant that mutates from j − 1 to j before
any other allele gets fixed. Analogously when j ≤ i − 2, qi j is the probability of
tunneling backwards from i − 1 to j . That is, qi j is the probability for a backward
mutation i → i − 1, that occurs in a homogeneous population of type i individuals,
to get at least one descendant that mutates to from j + 1 to j before any other allele
gets fixed. For definiteness, we also put λ̂mj = 0 for all j .

It follows from (12.32) that the β(s j/si ) term of (12.35) is the probability that
descendants of one single type j individual take over a populationwhere all the others
have type i , if further mutations do not occur. In our setting, it is an approximation
of the probability that the descendants of the individual that first mutated into j , take
over the population before any new mutations occur. In order for this approximation
to be accurate, it is required that no other allele than i attains a high frequency before
j gets fixed (recall that the type j mutation itself was a descendant of a successful
i → i ± 1 mutation, that appeared in homogeneous or almost homogeneous type i
population).

In order to finalize the definition of λ̂i j in (12.35) wemust specify how ri j approxi-
mates qi j . When | j − i | = 1 we put ri j = 1.When |i − j | ≥ 2, we introduce explicit
approximations

ri j =
⎧⎨
⎩
∏ j−1

l=i+1R(ρil j )
2−(l−i−1)

u2−(l−i)

l+1 , j > i,∏i−1
l= j+1R(ρil j )

2−(i−l−1)
v2

−(i−l)

l−1 , j < i
(12.36)

of the tunneling probabilities qi j that are accurate when no other allele reaches a high
frequency during a transition from i to j . The parameters ρil j in (12.36) quantify
the difference between selection coefficients si and sl , on a scale determined by a
tunneling probability from l to j . When i < j , they are defined through

sl

si
= 1 + ρil j

√
ul+1ril j (12.37)

for l = j − 1, . . . , i + 1. This involves some other quantities ril j , which are also
defined recursively, for l = j − 1, . . . , i , starting with ri, j−1, j = 1 and then using
the relation

ril j = R(ρi,l+1, j )
√

ri,l+1, j ul+2. (12.38)
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When this recursion has stopped at l = i weobtain the upper rowof (12.36) byputting
ri j = rii j . Here ril j approximates the probabilityqil j that amutation l → l + 1,which
occurs in a homogeneous type i population, gets a least one descendant that mutates
into j , before any other allele gets fixed. In particular, qii j = qi j . Similarly, when
i > j , we have that

sl

si
= 1 + ρil j

√
vl−1ril j (12.39)

for l = j + 1, . . . , i − 1. The probabilities ril j are defined recursively for l = j +
1, . . . , i , starting with ri, j+1, j = 1, then iterating

ril j = R(ρi,l−1, j )
√

ri,l−1, j vl−2, (12.40)

and finally getting the lower row of (12.36) from ri j = rii j . The function

R(ρ) =
√

ρ2 + 4 + ρ

2
(12.41)

specifies the way in which differences between the selection coefficients si , . . . , s j−1

affect the probability ri j in (12.36), see also equation (10) of Iwasa et al. [32] or
equation (5) of Durrett and Schmidt [19]. Intuitively, if type l is more fit than i , then
ρil j > 0, and the probability in (12.36) increases (since R(ρ) > 1 when ρ > 0, in
particular R(ρ) ∼ ρ when ρ → ∞), if sl = si then ρil j = 0 will have no impact on
ri j (since R(0) = 1), and finally, if l is less fit than i and therefore ρil j < 0, this
will decrease the probability in (12.36) (since R(ρ) < 1 when ρ < 0, in particular
R(ρ) ∼ −1/ρ as ρ → −∞).

It is possible to obtain a more accurate approximation of qi j than (12.36), without
using the quantities ρil j nor the function R (see the end of the proof of Lemma12.3
in Appendix C for details). Formula (12.36) is more explicit though, and therefore
it gives more insight into how the mutation rates and the selection coefficients affect
the approximate tunneling probabilities ri j .

12.6.2 Conditions Under Which Approximate Transition
Rates Are Accurate

It turns out that Eqs. (12.35) and (12.36) are good approximations of λi j for those
forward transition rates ( j > i) and backward transition rates ( j < i) that dominate
asymptotically, provided there is exactly one forward rate and at most one backward
rate from i that dominate. This can be formulated as follows. Define

μ̂i = −λ̂i i =
∑
j; j 	=i

λ̂i j for i = 0, . . . , m − 1, (12.42)
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as an approximation of the rate μi in (12.15) at which a successful mutation occurs
in a type i population, and suppose that

p̂i j = λ̂i j

μ̂i
→ π̂i j (12.43)

as N → ∞ for all 0 ≤ i ≤ m − 1 and j 	= i . For definiteness we also put π̂i i =
0 and π̂mj = 0 for j = 0, . . . , m − 1. We assume there is at most one index 0 ≤
B(i) < i for each i = 1, . . . , m − 1, and exactly one index i < F(i) ≤ m for each
i = 0, . . . , m − 1, such that fixation events from i will always be to B(i) for backward
mutations, and to F(i) for forward mutations. This can phrased as

π̂0,F(0) =1,

π̂i,B(i) + π̂i,F(i) =1, i = 0, . . . , m − 1,

π̂i,F(i) >0, i = 1, . . . , m − 1,

(12.44)

with π̂i,B(i) = 0 in themiddle equationwhen B(i) = ∅, i.e. when backwardmutations
froma type i population have no asymptotic impact. In particular, the forward fixation
from i involves stochastic tunneling if F(i) ≥ i + 2. In order for this to happen, λ̂i F(i)

must have a larger order asymptotically than all other λ̂i j with j > i . It follows from
(12.36) and someof the regularity conditions below, that a necessary condition for this
to happen is that type j is more beneficial for reproduction than all the intermediate
alleles. A similar condition applies for backward mutations, and we can summarize
these necessary tunneling conditions as follows:

F(i) ≥ i + 2 =⇒ sF(i) > max
(
si+1, . . . , sF(i)−1

)
,

B(i) ≤ i − 2 =⇒ sB(i) > max
(
sB(i)+1, . . . , si−1

)
,

(12.45)

where the lower equation only applies when B(i) 	= ∅. We will need some additional
regularity conditions. The first one consists of four relations

ui/ui+1 = O(1), i = 0, . . . , m − 1,
vi−1 = O(ui+1), i = 1, . . . , m − 1,

v j/v j−1 = O(1), if B(i) < j < i for some i = 2, . . . , m − 1,
u j+1 = O(v j−1), if B(i) < j < i for some i = 2, . . . , m − 1,

(12.46)

each of which imposes some restrictions on themutation rates. The second and fourth
relations of (12.46) guarantee that backward mutations will have no asymptotic
impact on forward fixations, and vice versa. The first equation of (12.46) requires
that mutation rates to higher types are at least of the same order as mutation rates
to lower types. Otherwise forward stochastic tunneling will be more difficult, and
the formulas for some of the tunneling probabilities in (12.36) will look different.
The third equation of (12.46) is the analogous requirement on backward mutations.
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Notice that neither the third nor the fourth relation of (12.46) apply when back
mutations do not exist or have no asymptotic impact, i.e. if B(i) = ∅ for all i .

In order to assure that condition (12.26) holds, i.e. that the time for successful
mutations to get fixed are asymptotically negligible, we will assume that

N mini∈Ilong u2−2−(F(i)−i−1)

F(i) β(sF(i)/si )

= o
(
mini∈Ias min

[
α−1

(
sB(i)

si

)
, α−1

(
sF(i)

si

)])
,

(12.47)

where β(s) and α(s) are the fixation probability (12.32) and expected fixation time
(12.34), respectively. If (12.47) does not hold, Tm will not only be affected by the
waiting times for successful mutations to occur, but their fixation time will also have
an impact.

The next regularity condition requires that the parameters of Eqs. (12.37)–(12.39)
are bounded, i.e.

|ρil j | = O(1), i < l < j or j < l < i (12.48)

when N → ∞. This means that the fitness s1, . . . , sm−1 of the first m − 1 mutant
alleles approach 1 as N grows, so that each one of them is either slightly deleterious,
neutral or slightly advantageous compared to the wildtype allele 0. The case of strong
negative or positive selection (ρil j → ±∞ respectively) is not included in (12.48),
but has been studied by Komarova et al. [40].

12.6.3 Asymptotic Distribution of Wating Time Based on
Approximate Transition Rates

Equipped with the definitions and regularity conditions of Sect. 12.6.2, we are ready
to formulate an asymptotic distributional result for thewaiting time Tm (seeAppendix
C for a sketch of proof), where its limiting phase-type distribution can be derived
from the explicit approximation (12.35) of the transition intensities between the fixed
population states of the simplified Markov process.

Theorem 12.2 Consider a Moran model for a population with N individuals and
alleles 0, . . . , m that starts with all its individuals in allelic state 0, and then repro-
duces according to (i)–(iii) of Sect. 12.2. Assume, as in Theorem12.1, that (12.4)–
(12.5), (12.17), (12.21), and (12.25) hold, and let λi j be the Markov transition rate
(12.16) between two fixed population states i and j where all individuals have the
same allele i and j respectively. Define λ̂i j in (12.35) as an approximation of λi j ,
with μ̂i the approximate rate (12.42) of leaving state i and π̂i j an approximation
(12.43) of the probability πi j in (12.17) of jumping from fixed state i to fixed state j ,
whereas μ̂min = mini∈Ilong μ̂i is an approximation of the minimal rate of leaving a
fixed state, among those that are visited for a positive fraction of time. Assume fur-
ther that (12.44)–(12.48) hold. Then πi j = π̂i j and μ̂i/μ̂min → κi for i = 0, . . . , m
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as N → ∞, where κi is the normalized rate (12.25) of leaving fixed state i . Moreover,
the waiting time Tm until allele m gets fixed has an asymptotic phase-type distribution

μ̂minTm
L−→ PD(ẽ0,Σ0) (12.49)

as N → ∞, where Σ0 contains the first m rows and m columns of the intensity matrix
Σ in (12.28).

Remark 12.2 The limit result for T̃m is analogous to Theorem12.2. One simply puts
sm = ∞ everywhere, which corresponds to immediate fixation of a type m mutation,
once it appears.

12.7 Illustrating the Theory

In this section we will illustrate Theorem12.2. Recall that it gives the asymptotic
waiting time distribution until the m:th mutant gets fixed in the population, based on
the transition rates λ̂i j in (12.35)–(12.36) that approximate λi j in (12.15)–(12.16). In
order to determine the approximate waiting time distribution, it suffices to specify
λ̂i j for i = 0, . . . , m − 1 and j 	= i , j = 0, . . . , m, and then look at the properties of
these rates as the population size grows. We will consider different scenarios, not all
of which satisfy the regularity conditions of Theorem12.2. But in these cases we will
argue why (12.49) still provides a fairly accurate asymptotic approximation of the
waiting distribution Tm . On the other hand, it is implicit that the mutation rates are
smaller than the inverse population size, according to (12.4)–(12.5), for all examples
of this section.

12.7.1 The Case of Two Coordinated Mutations

When there are m = 2 coordinated mutations, formula (12.35) simplifies to

λ̂01 = Nu1β(s1), λ̂02 = N R(ρ)u1u1/2
2 β(s2), λ̂10 = Nvβ(1/s1),

λ̂12 = Nu2β(s2/s1),
(12.50)

where v = v0, and ρ = ρ012 is a real-valued constant (not depending on N ) defined
in (12.37) that is either negative, zero or positive. Here, this equation simplifies to

s1 = 1 + ρu1/2
2 . (12.51)

We will investigate the limit distribution of the waiting time T2 for different asymp-
totic scenarios.
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12.7.1.1 No Backward Mutations, and Final Allele Has High Fitness

In this subsection we will make two favorable assumptions for the waiting time T2;
that there are no backward mutations (v = 0), and that allele 2 has a high fitness
(s2 = ∞). It turns out that the relative size of the two forward mutation rates, u1 and
u2, is crucial for the asymptotic properties of T2. We will look at four different cases.

Case 1: Second mutation rate very small. Assume that

u2 = o(u1N−1) (12.52)

as N → ∞. In this case, the three nonzero rates in (12.50) simplify to

λ̂01 ∼ u1, λ̂02 = N R(ρ)u1u1/2
2 , λ̂12 = Nu2. (12.53)

It follows from (12.4) to (12.52) that λ̂02 � λ̂01 and λ̂12 � λ̂01, so that μ̂0 ∼ λ̂01 �
μ̂1 = Nu2. The asymptotic states with short and long waiting times are Ishort = {0}
and Ilong = {1} respectively, the time rate to absorption is μ̂min = Nu2, the mutation
rates on the new time scale are κ0 = ∞ and κ1 = 1, and the nonzero asymptotic
transition probabilities from the non-asymptotic states, areπ01 = π12 = 1. This gives
a normalized intensity matrix

Σ =
⎛
⎝−∞ ∞ 0

0 −1 1
0 0 0

⎞
⎠

in (12.28). Because of the smallness of the second mutation rate u2, there is asymp-
totically no tunneling from 0 to 2, but allele 1 gets fixed at first. After that it takes
much longer time for the first allele 2 to arrive, in spite of the fact that this 1 → 2
mutation is successful with probability 1 (since s2 = ∞, and therefore β(s2) = 1).
Consequently, the asymptotic distribution of T2 will be dominated by the waiting
time for allele 2 to appear, after allele 1 has first been fixed in the population, i.e.

Nu2 × T2
L−→ Exp(1) (12.54)

as N → ∞. Notice that the exponential limit distribution in (12.54) is a special case
of Corollary12.1, although (12.52) violates regularity condition (12.46) of Theo-
rem12.2. However, this condition is only needed in order to get a good approximation
of the tunneling rate λ̂02. But since stochastic tunneling 0 → 2 has no asymptotic
impact (λ̂02 � λ̂01), we still believe (12.54) is accurate.

Case 2: Second mutation rate small. If

u1N−1 � u2 � N−2 (12.55)
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as N → ∞, we get slightly different asymptotics compared to Case 1. The transition
rates λ̂i j are the same as in (12.53), but their asymptotic ordering λ̂02 � λ̂01 �
λ̂12 is different. The states with short and long waiting time are therefore switched
compared toCase 1 (Ilong = {0}, Ishort = {1}), with a time rate μ̂min = μ̂1 ∼ λ̂01 ∼ u1

to absorption. The rescaledmutation rates from states 0 and 1 are κ0 = 1 and κ1 = ∞
respectively, whereas the nonzero asymptotic transition probabilities from the non-
asymptotic states are the same as for Case 1 (π01 = π12 = 1). This gives a normalized
intensity matrix

Σ =
⎛
⎝−1 1 0

0 −∞ ∞
0 0 0

⎞
⎠ .

The second mutation rate u2 in (12.55) is too small to allow for tunneling, but large
enough to make the waiting time for allele 2 much shorter than the waiting time
until allele 1 gets fixed at first. Notice that (12.55) allows for any of u1 or u2 to
dominate asymptotically. In either case, the waiting time for allele 2 to fix is shorter,
because of the selective advantage of this allele (s2 = ∞). Therefore, the asymptotic
distribution of T2 will be dominated by the waiting time for allele 1 to fix, i.e.

u1 × T2
L−→ Exp(1) (12.56)

as N → ∞. This limit result is also special case of Corollary12.1, and it agrees with
Theorem2 of Durrett and Schmidt [19].

Case 3: Second mutation rate of intermediate size. We assume that

u2 = γ

N 2
(12.57)

for some constant γ as N → ∞. The transition rates in (12.50) then simplify to

λ̂01 ∼ u1η(ργ 1/2), λ̂02 = R(ρ)γ 1/2u1, λ̂12 = γ /N , (12.58)

where η(x) is an asymptotic approximation of Nβ(1 + x/N ). From formula (12.33)
we deduce that

η(x) =
{
1, x = 0,
x/
[
1 − exp(−x)

]
, x 	= 0.

It follows from (12.4) and (12.58) that λ̂0i � λ̂12 for i = 1, 2, whereas λ̂01 and λ̂02

have the same asymptotic order. Therefore, Ilong = {0}, Ishort = {1}, μ̂min = μ̂0 =
λ̂01 + λ̂02 � μ̂1 = λ̂12, κ0 = 1, and κ1 = ∞. This gives an asymptotic rescaled
intensity matrix of the form

Σ =
⎛
⎝−1 π01 π02

0 −∞ ∞
0 0 0

⎞
⎠ , (12.59)



12 Phase-Type Distribution Approximations of the Waiting … 265

where π02 = R(ρ)γ 1/2

R(ρ)γ 1/2+η(ργ 1/2)
is the asymptotic probability for tunneling to occur,

and π01 = 1 − π02 is the corresponding probability of no tunneling. Since the two
transition rates from allele 0 are of similar size asymptotically, allele 2 will either
get fixed directly through stochastic tunneling, or in two steps where allele 1 spreads
in the population at first, and then almost immediately after that, allele 2 takes over.
Formula (12.49) suggests that

[
η(ργ 1/2) + R(ρ)γ 1/2

]
u1 × T2

L−→ Exp(1) (12.60)

as N → ∞. However, (12.60) is not correct since (12.44) is violated, that is, there
is asymptotic competition between the two forward rates from allele 0, so that F(0)
does not exist. In order to see that (12.60) is wrong, consider the case when the
intermediate allele 1 has the same selective advantage as allele 0 (ρ = 0). Then
(12.60) simplifies to

(1 + γ 1/2)u1 × T2
L−→ Exp(1) (12.61)

as N → ∞, since η(0) = R(0) = 1. But this is different from Theorem 3 of Durrett
et al. [20], which states that

χ(γ )u1 × T2
L−→ Exp(1) (12.62)

as N → ∞, where

χ(γ ) =
∑∞

k=1
γ k

(k−1)!(k−1)!∑∞
k=1

γ k

k!(k−1)!
. (12.63)

In order to quantify the difference between (12.61) and (12.62), we have plotted the
ratio

ξ(γ ) = 1 + γ 1/2

χ(γ )
(12.64)

of the two intensities in Fig. 12.1. It can be seen that the approximate intensity is
always a bit larger than the exact one, with a maximum difference of 40%, although
for most values of γ the difference is less than 20%. This implies that the approx-
imate approach will underestimate the expected waiting time by up to 40%, since
competition between the two fixation rates 0 → 1 and 0 → 2 is ignored. In Sect. 12.8
we will discuss a method that to some extent corrects for this.

Case 4: Second mutation rate large. Suppose

u2 � N−2, (12.65)

so that the transition rates in (12.50) simplify to

λ̂01 ∼ Nu1ψ(ρu1/2
2 ), λ̂02 = N R(ρ)u1u1/2

2 , λ̂12 = Nu2, (12.66)
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Fig. 12.1 Plot of the ratio ξ(γ ) between the approximate and exact asymptotic rates of the expo-
nential limit distribution for the waiting time T2 until the second mutation gets fixed in model with
no backward mutations and neutral alleles (s1 = s2 = 1, i.e. ρ = 0 in (12.51)). The argument γ is
the normalized rate (12.57) at which the second mutation occurs. It can be shown that ξ(γ ) > 1
for all γ > 0, with ξ(γ ) → 1 as either γ → 0 or γ → ∞, and the maximum value ξ(γ ) = 1.40 is
attained for γ = 0.82

where

ψ(ρu1/2
2 ) =

⎧⎨
⎩
0, ρ < 0,
1/N , ρ = 0,
ρu1/2

2 , ρ > 0,

relies on the asymptotic approximation of β(s1) = β(1 + ρu1/2
2 ) defined in (12.33),

when s1, the selective fitness of allele 1, is given by (12.51). If follows from (12.4)
that max(λ̂01, λ̂02) � λ̂12 as N → ∞, so that Ilong = {0}. Regarding λ̂01 and λ̂02,
their asymptotic ordering will depend on s1. We have that λ̂01 � λ̂02 if ρ ≤ 0,
whereas λ̂01 and λ̂02 are of the same order when ρ > 0. This means that 1 is an
asymptotic state with a short waiting time when ρ > 0 (Ishort = {1}), whereas it is a
non-asymptotic state when ρ ≤ 0 (Inas = {1}).We follow the remark below Theorem
12.1 in (12.29), and let μ̂min = Nu1u1/2

2 be the asymptotic rate until allele m gets
fixed in the population, which differs fromμ0 by a conveniently chosen constant. The
normalized rates of leaving states 0 and 1, on the new time scale determined by μ̂min,
are κ0 = 1(ρ > 0)ρ + R(ρ), κ1 = ∞, where 1(A) is the indicator function for the
event A (that is, it equals 1 if A occurs and 0 it if does not). The asymptotic probabil-
ity of tunneling from 0 to 2, is π02 = R(ρ)

1(ρ>0)ρ+R(ρ)
, and the other nonzero asymptotic

transition probabilities from non-absorbing states, are π01 = 1 − π02 and π12 = 1.
This gives a rescaled intensity matrix Σ that equals (12.59). Therefore, when the
mutation rate of allele 2 is large, as in (12.65), it will always become fixed in the
population through tunneling 0 → 2 when allele 1 is selectively neutral or deleteri-
ous compared to allele 0 (ρ ≤ 0). On the other hand, when allele 1 has higher fitness
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than allele 0 (ρ > 0), it is possible to reach allele 2 either by tunneling, or by first
having allele 1 fixed. In the latter case, the subsequent waiting time for allele 2 to
spread is negligible. Formula (12.49) suggests a limit distribution

[1(ρ > 0)ρ + R(ρ)] Nu1u1/2
2 × T2

L−→ Exp(1) (12.67)

as N → ∞ for the total waiting time T2 until allele 2 takes over the population.
However, we only expect (12.67) to be correct when ρ ≤ 0, since (12.44) is violated
when ρ > 0, due to the competition between alleles 1 and 2 to take over the popu-
lation at first. When ρ ≤ 0, formula (12.67) agrees with Theorem 4 in Durrett and
Schmidt [19]. In particular, when ρ = 0 we find that

Nu1u1/2
2 × T2

L−→ Exp(1) (12.68)

as N → ∞, since R(0) = 1. This agrees with a result given on pp. 231–232 of
Nowak [52], and (12.68) is also a special case of Theorem 1 of Durrett et al. [20].

12.7.1.2 Backward Mutations, and Final Allele Is Neutral

In this subsection we will make three assumptions that increase the difficulty of hav-
ing allele 2 fixed in the population, so that the waiting time T2 gets longer compared
to Sect. 12.7.1.1. First, we allow for backward mutations (v > 0), second, we assume
that the fitness of the final allele 2 is the same as for allele 0 (s2 = 1), and third, the
intermediate allele 1 does not have a selective advantage in comparison to the other
two alleles, so that ρ ≤ 0 in (12.51). In order to avoid too many parameters of the
model, we will also assume that the two forward mutation rates are identical, i.e.,
u1 = u2 = u. We will not consider the case when the forward mutation rate is small
in comparison to the backward rate (u = o(v)), since (12.18) is violated then. For-
mally, the expected value of the limit distribution (12.27) is infinite when u = o(v),
since the asymptotic intensity matrixΣ0 of fixation rates is not invertible. This is due
to the fact that when backward mutations are frequent, they will effectively block
the opportunities for allele 2 to spread to the whole population. In order to handle
such a scenario we need to generalize Theorem12.1 and let μ−1

min be determined
by the asymptotic growth rate in (12.10). Here, we will therefore confine ourselves
to scenarios where the backward mutation rate satisfies v = Cu for some constant
C > 0.

The above mentioned assumptions imply that the intensities (12.50) at which new
alleles get fixed, simplify to

λ̂01 = Nuβ(1 + ρu1/2), λ̂02 = R(ρ)u3/2, λ̂10 = NCuβ(1 − ρu1/2),

λ̂12 = Nuβ(1 − ρu1/2).
(12.69)
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It turns out that the asymptotic properties of T2 depend on the size of the mutation
rates, and we will look at three different scenarios.

Case 1. Small mutation rate. If

u = o(N−2), (12.70)

as N → ∞, then (12.69) simplifies to

λ̂01 ∼ u, λ̂02 ∼ R(ρ)u3/2, λ̂10 ∼ Cu, λ̂12 ∼ u, (12.71)

so that the tunneling rate λ̂02 � min(λ̂01, λ̂10, λ̂12) can be ignored, whereas the other
three fixation rates λ̂01, λ̂10, and λ̂12 are of the same order. This implies that the two
non-absorbing states are asymptotic, and they both contribute to the total waiting
time (Ilong = {0, 1}), with μ̂0 ∼ λ̂01 = u and μ̂1 = λ̂10 + λ̂12 = (C + 1)u. Putting
μ̂min = u, we find that the normalized rates of leaving states 0 and 1 are κ0 = 1 and
κ1 = C + 1 respectively, whereas the nonzero asymptotic transition probabilities
from the non-absorbing states are π01 = 1, π10 = C/(C + 1), and π12 = 1/(C + 1).
This gives a matrix

Σ =
⎛
⎝−1 1 0

C −(C + 1) 1
0 0 0

⎞
⎠ (12.72)

of rescaled fixation rates. Formula (12.49) implies a limit distribution

u × T2
L−→ PD ((1, 0),Σ0) (12.73)

of the waiting time for allele 2 to take over the population as N → ∞. In particular,
without backward mutations (C = 0), we find that T2 has an asymptotic gamma
distribution

u × T2
L−→ Γ (2, 1), (12.74)

where 2 is the form parameter and 1 the intensity parameter. Since the form parameter
is integer valued, the limit is also referred to as an Erlang distribution. Notice that
(12.74) is a special case of Corollary12.1, with κ0 = κ1 = 1.

Case 2. Intermediate sized mutation rate. Suppose u = γ

N 2 for some positive con-
stant γ . The fixation intensities in (12.50) then simplify to

λ̂01 ∼ uργ 1/2/(1 − exp(−ργ 1/2)), λ̂02 = R(ρ)u3/2,

λ̂10 ∼ Cuργ 1/2/(exp(ργ 1/2) − 1), λ̂12 ∼ uργ 1/2/(exp(ργ 1/2) − 1),
(12.75)

as N → ∞. The distribution of the waiting time T2 turns out to be similar to
Case 1, with the difference that the selection parameter ρ will have an asymp-
totic impact. As in Case 1, the tunneling from allele 0 to 2 can be ignored
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(λ̂02 � min(λ̂01, λ̂10, λ̂12)), whereas the other three fixation rates λ̂01, λ̂10, and λ̂12

have the same order of magnitude. Therefore, both non-absorbing states are asymp-
totic, with a long waiting time (Ilong = {0, 1}). Following the remark below Theo-
rem12.1, we standardize the time scale with an appropriately chosen constant, so
that μ̂min = u has a simple form. On the new time scale, the intensities to leave states
0 and 1 are κ0 = ργ 1/2/(1 − exp(−ργ 1/2)), κ1 = (C + 1)ργ 1/2/(exp(ργ 1/2) − 1)
respectively. Since the nonzero transition probabilities πi j of jumping between var-
ious fixation states, are the same as in Case 1, the rates of fixation between all pairs
of states, after the time transformation, are

Σ =
⎛
⎝ −κ0 κ0 0

C
C+1κ1 −κ1

1
C+1κ1

0 0 0

⎞
⎠ . (12.76)

It follows from formula (12.49) that the asymptotic distribution for the total waiting
time to reach allele 2, is given by

u × T2
L−→ PD ((1, 0),Σ0) (12.77)

as N → ∞. In particular, when there are no backward mutations (C = 0), (12.77)
simplifies to

u × T2
L−→ κ−1

0 X0 + κ−1
1 X1. (12.78)

This is a special case of Corollary12.1, with X0 and X1 two independent and expo-
nentially distributed random variables with expected value 1. Notice also that Case
1 is essentially a ρ → 0 limit of Case 2.

The expected value of the limit distribution of u × T2, on the right hand side of
(12.77), has an explicit form. Using formula (12.10) for the expected value of a
phase-type distribution, and putting x = ργ 1/2, we find that

u × E(T2) ∼ −(1, 0)Σ−1
0 (1, 1)T

=
{
2 + C, ρ = 0,[
(ex − 1) + (1 − e−x )(1 + C)

]
/x, ρ < 0,

(12.79)

increases linearly with the backward rate C . In Fig. 12.2 we have plotted u × E(T2)

as a function of C for various values of the selection parameter ρ, and validated the
accuracy of (12.79) with simulations.

Further details for the neutral case (x = 0) are given in Fig. 12.3, where the density
function fT2 of T2 based on (12.9) is compared with simulation based histograms,
for different values of C . Whereas fT2 is gamma distributed for C = 0, it can be seen
that its form approaches an exponential density as C grows.

Case 3. Large mutation rate. Assume that the mutation rate and the selection
coefficient of allele 1 satisfy
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Fig. 12.2 Plot of the rescaled expected waiting time u × E(T2), for a model with m = 2, forward
mutation rates u1 = u2 = u = γ /N 2, and backward mutation rate v0 = Cu. The lines are based on
the approximate formula (12.79), and shown as functions of C . All lines have s2 = 1, but the value
of s1 = 1 + ρ

√
u varies. The intermediate allele is either neutral ρ = 0 (solid line), or has a selective

disadvantage with ρ = −1/γ 1/2 (dashed line), ρ = −2/γ 1/2 (dash-dotted line), and ρ = −3/γ 1/2

(dotted line). Result from 1000 simulations, for a population of size N = 100 with γ = 1, are
shown for ρ = 0 (squares), ρ = −1/γ 1/2 (circles), ρ = −2/γ 1/2 (diamonds), and ρ = −3/γ 1/2

(pentagrams). The parameters of the simulation algorithm are Nc = 10 and ε = 0.2 (see Appendix
A). The simulation based estimates are also compared with the more accurate analytical solution
(stars) based on (12.10) and (12.35)

u � N−2,

ρ < 0,
(12.80)

respectively. (If ρ = 0, it turns out that the asymptotics of T2 is identical to Case 1.)
The fixation rates in (12.50) then simplify to

λ̂01 = 0,
λ̂02 = R(ρ)u3/2,

λ̂10 ∼ −NCρu3/2,

λ̂12 ∼ −Nρu3/2

(12.81)

as N → ∞.We notice that λ̂01 � λ̂02 � min(λ̂10, λ̂12). This implies that there is one
asymptotic state Ilong = {0} with a long waiting time, and one non-asymptotic state
Inas = {1}. Time is therefore rescaled according to μ̂min = μ̂0 ∼ λ̂02 = R(ρ)u3/2, so
that κ0 = 1 and κ1 = ∞ are the rescaled rates of leaving states 0 and 1,whereasπ02 =
1, π10 = C/(C + 1), and π12 = 1/(C + 1) are values of the three nonzero transition
probabilities from non-absorbing states. The matrix of standardized fixation rates is
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Fig. 12.3 Density functions (12.9) of the waiting time T2 for a model with N = 100 individuals
and m = 2 selectively neutral coordinated mutations (s1 = s2 = 1). The forward mutation rates
are u1 = u2 = 1/N 2, whereas the backward mutation rates are v0 = C/N 2 and v1 = 0. The four
graphs have C = 0 (upper left), C = 1 (upper right), C = 2 (lower left), and C = 3 (lower right),
corresponding to the four simulations of Fig. 12.2 that are marked with squares. Shown in each plot
is also a histogram from 1000 simulations, with parameters Nc = 10 and ε = 0.2 (see Appendix
A). The estimated coefficients of variation

√
Var(T2)/E(T2) from these four simulations are 0.704,

0.882, 0.941, and 0.965. This agrees well with the coefficients of variation of the density functions,
which are 1/

√
2 = 0.707 for C = 0, and 1 in the limit as C → ∞

Σ =
⎛
⎝ −1 0 1

C × ∞ −(C + 1) × ∞ ∞
0 0 0

⎞
⎠ , (12.82)

where ∞ of the second row should be interpreted as a limit. However, since the
selective disadvantage of allele 1 is so large compared to alleles 0 and 2, allele 1 will
never be fixed in a large population, and the second row of Σ will have no impact.
Therefore, the only way of reaching allele 2 is through stochastic tunneling from
allele 0. Formula (12.49) gives the limit distribution
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R(ρ)u3/2 × T2
L−→ Exp(1) (12.83)

as N → ∞ for the waiting time of allele 2 to get fixed. This is also a special case of
Corollary12.1.

12.7.2 Arbitrary Number of Coordinated Mutations

In this subsection we look at models with an arbitrary number m of coordinated
mutations and number m + 1 of alleles. We will consider two different kinds of
models. The first one has no backward mutations, but the forward mutations have to
arrive in a pre-specified order. The second model incorporates backward mutations,
but the forward mutations may enter the population in any order.

12.7.2.1 Equal Forward Mutation Rates, No Backward Mutations

Assume there are no backward mutations (v0 = · · · = vm−1 = 0), and that forward
mutations have to appear in a pre-determined order with identical mutation rates, i.e.

u1 = · · · = um = u. (12.84)

We will also assume that all intermediate alleles are neutral or deleterious with the
same selective fitness

s1 = · · · = sm−1 = s ≤ 1, (12.85)

where
s = 1 + ρu1−2−(m−1)

(12.86)

for some fixed constant ρ ≤ 0, not depending on N , and that the final allele m has a
high fitness (sm = ∞).

With these assumptions, formulas (12.35)–(12.36) for the fixation rates between
different pairs of alleles simplify to λ̂i j = 0 when j < i , and to

λ̂i j ∼
{

N R(ρ)I ( j=m)u2−2−( j−1)
β(1 + ρu1−2−(m−1)

)I ( j<m), i = 0,
Nu2−2−( j−i−1)

(1/N )I ( j<m), i = 1, . . . , m − 1
(12.87)

when j > i , where I (·) is the indicator function. In (12.87) we simplified the expres-
sions for the terms R(ρil j ) on the right hand side of Eq. (12.36), for all i, l, j with
0 ≤ i < l < j ≤ m. More specifically, we utilized that
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ρ01m ∼ ρ,

ρ0l j = o(1), (l, j) 	= (1, m),

ρil j = 0, i = 1, . . . , m − 2,

(12.88)

which, in view of (12.41), implies R(ρ01m) ∼ R(ρ) and R(ρil j ) ∼ 1 for the other
terms of (12.36). In order to motivate (12.88), we use formulas (12.37) and (12.85)–
(12.86) to find that

1 + ρil j u1/2r1/2il j = sl
si

=
{
1 + ρu1−2−(m−1)

, i = 0, l = 1, . . . , j − 1,
1, i = 1, . . . , m − 2, l = i + 1, . . . , j − 1.

(12.89)

When i > 0, (12.88) follows immediately from (12.89). When i = 0, we find that

ρil j = ρu1/2−2−(m−1)
r−1/2

il j , (12.90)

and therefore we also need to find expressions for ril j . To this end, we use formula
(12.143) of Appendix C to deduce

r0l j = Θ(u1−2−( j−l−1)
),

r01m ∼ u1−2−(m−2)
.

(12.91)

Then we insert (12.91) into (12.90) and use formula (12.4) to notice that u → 0 as
N → ∞, in order to prove the upper two equations of (12.88).

Having established formula (12.87) for the transition rates between different fixed
states, we will next investigate which jumps from state i ≤ m − 2 that are possible
when N gets large. It follows from (12.87) that the transition rates from i to the
intermediate states i + 1, . . . , m − 1 are related as

λ̂i,i+1 � λ̂i,i+2 � · · · � λ̂i,m−1 (12.92)

when N → ∞, and therefore it is not possible to have a direct transition from state
i to any of j = i + 2, . . . , m − 1. This can also be deduced directly from formula
(12.45). A transition from i to i + 2 ≤ j < m is not possible asymptotically, since
s j is not larger than max(si+1, . . . , s j−1).

Consequently, it is only possible for a population with allele i , to transfer either
to a population with i + 1 alleles, or to one in which the final allele m has been fixed.
Therefore, the rate of leaving state i is of the order

μ̂i = ∑m
j=i+1 λ̂i j

= Θ
(
max(λ̂i,i+1, λ̂im)

) (12.93)
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Table 12.1 Some possible scenarios for m coordinated mutations when all mutation rates (12.84)
are identical, and the selective fitness (12.85) is the same for all alleles i < m. The dots indicate
successive transitions i → i + 1 between neighboring alleles

Case Scenario Transitions Mutation rate u

3 0 0 → m Large

2 1 ≤ n ≤ m − 2 0 → · · · → n → m Intermediate

1 m − 1 0 → · · · → m Small

as N → ∞. The asymptotic properties of thewaiting time Tm until allelem gets fixed,
will depend on which of the rates on the right hand side of (12.93) that dominate
as N → ∞ among the asymptotic states. We will consider m different scenarios,
numbered as n = 0, . . . , m − 1, where Scenario n is characterized by a set

Ias = {0, . . . , n} (12.94)

of asymptotic states. These scenarios can be divided into three groups, depending
on the size of the mutation rate u (see Table 12.1). As a general rule, the larger the
mutation rate is, the earlier stochastic tunneling will kick in and drive the population
towards its final state, where allele m has been fixed.

Case 1. Small mutation rate. Suppose

u = o(N−2) (12.95)

as N → ∞, so that the rates of fixation between different pairs of alleles in (12.87)
simplify to

λ̂i j ∼ N R(ρ)I (i=0, j=m)u2−2−( j−i−1)
(1/N )I ( j<m), (12.96)

for i = 0, . . . , m − 1 and i < j ≤ m. We used (12.33) to simplify the fixation prob-
ability in (12.87) to

β(1 + ρu1−2−(m−1)
) ∼ N−1, (12.97)

since (12.95) implies u1−2−(m−1) = o(N−1).
Recall from (12.93) that asymptotically, we only have to consider transitions

from i to i + 1 and m. We deduce from formula (12.96) that the rates of leaving
the non-absorbing states are μ̂i ∼ λ̂i,i+1 = u for i = 0, 1, . . . , m − 2, and μ̂m−1 =
λ̂m−1,m = Nu. This corresponds to Scenario m − 1 in (12.94), but only the first
m − 1 asymptotic states will contribute to the overall waiting time, so that Ilong =
{0, . . . , m − 2} and Ishort = {m − 1}. Rescaling time by a factor μ̂min = u, we find
that the normalized rates of leaving state i are κi = 1 for i ∈ Ilong and κm−1 = ∞.
Since the nonzero asymptotic transition probabilities for jumps from non-absorbing
allelic states are πi,i+1 = 1 for i = 0, . . . , m − 1, the conditions of Corollary12.1
are satisfied. It follows from formula (12.31) that
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u × Tm
L−→ Γ (m − 1, 1) (12.98)

as N → ∞, in agreement with Case 1 in Theorem 2 of Schweinsberg [60].

Case 2. Intermediate mutation rate. Let n ∈ {1, . . . , m − 2} be a fixed number,
and assume that the mutation rate has size

N−1/(1−2−(m−n−1)) � u � N−1/(1−2−(m−n)) (12.99)

as N → ∞. The transition rates λ̂i j and the fixation probability satisfy (12.96) and
(12.97), also forCase 2. It follows that the rate atwhich allele i is lost in a large popula-
tion is μ̂i ∼ λ̂i,i+1 = u for i = 0, . . . , n − 1, and μ̂n ∼ λ̂nm = Nu2−2−(m−n−1) � u for
i = n. The nonzero asymptotic transition probabilities from non-absorbing states are
thereforeπi,i+1 = 1 for i = 0, . . . , n − 1, andπnm = 1. This corresponds to Scenario
n in (12.94), where the first n asymptotic states contribute to the overall waiting time
(Ilong = {0, . . . , n − 1}), the remaining asymptotic state n does not (Ishort = {n}),
and the other non-absorbing states are non-asymptotic (Inas = {n + 1, . . . , m − 1}).
If time is standardized by μ̂min = u, the rescaled rates of leaving state i are κi = 1
for i ∈ Ilong, and κn = ∞. Since the conditions of Corollary12.1 are satisfied, we
apply formula (12.31) and deduce an asymptotic distribution

u × Tm
L−→ Γ (n, 1) (12.100)

as N → ∞ for the waiting time until allele m gets fixed in the population. This
corresponds to Case 2 of Theorem 2 in Schweinsberg [60].

Case 3. Large mutation rate. Assume that

N−1/(1−2−(m−1)) � u � N−1/(1−2−m)) (12.101)

as N → ∞. It can be seen that the fixation probability satisfies (12.97) when ρ = 0,
whereas β(1 + ρu1−2−(m−1)

) = o(N−1) when ρ < 0. In any case, it follows from
(12.87) that λ̂01 ≤ u � λ̂0m = N R(ρ)u2−2−(m−1)

. Transitions from 0 will therefore
be to state m when N is large, so that the rate of leaving state 0 is of the order
μ̂0 ∼ λ̂0m . This corresponds to Scenario 0 in (12.94), with one single state Ilong = {0}
that contributes to the waiting time Tm asymptotically, and since π0m = 1, all other
non-absorbing states are non-asymptotic (Inas = {1, . . . , m − 1}). With μ̂min = μ̂0,
the normalized rate of leaving state 0 is κ0 = 1. Since Corollary12.1 is satisfied, we
deduce from (12.31) that the waiting time for the m:th mutant to get fixed, has a
limiting distribution

N R(ρ)u2−2−(m−1) × Tm
L−→ Exp(1) (12.102)

as N → ∞. This results generalizes Case 3 of Theorem 2 in Schweinsberg [60] from
the neutral case ρ = 0 to ρ ≤ 0.
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Boundary scenarios. As in Schweinsberg [60], it is possible to consider m − 1
additional asymptotic scenarios for the mutation rate, which can be interpreted as
boundaries between the m scenarios of Table12.1. For simplicity, we confine our-
selves to the neutral caseρ = 0. Supposen ∈ {0, . . . , m − 2}.As a boundarybetween
scenarios n and n + 1 of Table12.1, we assume that the mutation rate satisfies

u = γ

N−1/(1−2−(m−n−1))
(12.103)

as N → ∞, for some constant γ > 0. In this case the population dynamics starts
with n fixation events 0 → 1 → · · · → n. Then in the next step there is competition
between fixation n → n + 1 and tunneling n → m. If n + 1 gets fixed, in the next
step there will be a much faster transition n + 1 → m that does not contribute to the
overall waiting time. Therefore, among the asymptotic states Ias = {0, . . . , n + 1},
only those in Ilong = {0, . . . , n} contribute asymptotically to Tm .

In more detail, combining the arguments for Cases 1–3 above, it can be seen
that the rates of leaving state i is μ̂i ∼ λ̂i,i+1 = u for i = 0, . . . , n − 1, whereas
μ̂n ∼ λ̂n,n+1 + λ̂nm = u + Nu2−2−(m−n−1) = (1 + γ 1−2−(m−n−1)

)u for state n. We then
transform the time scale by μ̂min = u, and find that the normalized rates are κi = 1
of leaving states i = 0, . . . , n − 1, κn = 1 + γ 1−2−(m−n−1)

to leave state n, and it is
κn+1 = ∞ to leave state n + 1. Therefore, Theorem12.2 suggests a limit distribution

u × Tm
L−→ X0 + · · · Xn−1 + 1

1 + γ 1−2−(m−n−1) Xn (12.104)

as N → ∞, for the waiting time until allele m gets fixed, where X0, . . . , Xn are
independent random variables with an identical distribution that is exponential with
expected value 1. However, the limit distribution in (12.104) is incorrect. The reason
is that regularity condition (12.44) is violated for transitions from state n. Asymp-
totically it is possible to either have a transition n → n + 1 or stochastic tunneling
n → m, and therefore πn,n+1 and πnm are both positive. The correct limit distribution
for Tm is given in Theorem 3 of Schweinsberg [60]. It states that

u × Tm
L−→ X0 + · · · Xn−1 + 1

χ(γ 2(1−2−(m−n−1)))
Xn (12.105)

as N → ∞, with χ(·) defined in (12.63). We notice that (12.104)–(12.105) gener-
alize (12.61)–(12.62), which corresponds to the special case n = 0 and m = 2. The
approximate limit distribution in (12.104) has a slightly lower expected value than
the correct one in (12.105), and their ratio will depend on n and γ ′ = γ 2(1−2−(m−n−1)).
In Table12.2 we have displayed the maximal possible ratio between expected values
of the correct and approximate limit distribution, as a function of n. It can be seen
that this ratio quickly approaches 1 as n grows. For most values of γ ′ (or γ ), the ratio
will be even closer to 1. See also Sect. 12.8, were we introduce a method that to some
extent corrects for the different expected waiting times of (12.104) and (12.105).
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Table 12.2 The table refers to a model with no backward mutations and m forward mutations
with equal rate (= u) that satisfies (12.103) for some γ > 0 and 0 ≤ n ≤ m − 2, so that a direct
transition n → n + 1 and tunneling n → m are both possible. Displayed is the maximal possible
ratio between the expected values of the correct and approximate limit distributions of the time
until allele m gets fixed, in (12.105) and (12.104) respectively, as a function of the number n of
transitions 0 → · · · → n without any tunneling. The maximum ratio in the table is attained for a
value of γ that depends on n. When n = 0, it equals the maximum of the function that is plotted in
Fig. 12.1

n Maximal ratio

0 1.398

1 1.143

2 1.088

3 1.064

4 1.050

12.7.2.2 Forward and Backward Mutations in Any Order

When forward and backward mutations are allowed to arrive in any given order, it
is reasonable to identify type i with the number of mutations that have appeared in
the population so far. Suppose that u and v = Cu are the rates at which each single
forward and backward mutation arrive. When i mutants have been fixed in the popu-
lation, there arem − i additional forwardmutations not present in the population, and
i possible types of back mutations. Consequently, ui+1 = (m − i)u, vi−1 = Ciu, for
i = 0, . . . , m − 1. We will also assume a neutral model, so that s1 = · · · = sm = 1.
Then formulas (12.35)–(12.36) simplify to

λ̂i j =
{∏ j−1

l=i [(m − l)u]2
−(l−i)

, j > i,∏i
l= j+1(Clu)2

−(i−l)
, j < i.

(12.106)

Since the model is neutral, the tunneling condition in (12.45) is violated for all pairs
i, j of states. Wemay therefore disregard the possibility of tunneling, asymptotically
as N → ∞, so that the rate of leaving state i is of the order

μ̂i ∼ λ̂i,i−1 + λ̂i,i+1 = [m + (C − 1)i] u,

for i = 0, . . . , m − 1. Since all μ̂i have the same asymptotic order, it follows that all
non-absorbing states are asymptotic with a long waiting time (Ilong = {0, . . . , m −
1}). It is convenient to transform the time scale by μ̂min = u, so that the asymptotic
rescaled intensity matrix in (12.28) has elements

Σi j =

⎧⎪⎪⎨
⎪⎪⎩

m − i, j = i + 1,
Ci, j = i − 1,
0, | j − i | ≥ 2,
− [m + (C − 1)i] , j = i,

(12.107)
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Fig. 12.4 Plot of standardized asymptotic expected waiting time u × E(Tm), according to formula
(12.108), as a function of the number of requiredmutationsm. The forward and backwardmutations
may appear in any order. The forward mutation rate per allele is u, and the symbols correspond to
different rates v = Cu of backward mutations per allele, with circles (C = 0), squares (C = 0.5),
diamonds (C = 1), and pentagrams (C = 2)

for the rows that correspond to non-absorbing states (i < m). Combining (12.10)
and (12.49), we find that the expected waiting time is given by

E(Tm) ∼ ẽ0Σ
−1
0 1 × u−1, (12.108)

asymptotically as N → ∞. In Fig. 12.4 we plotted the expected waiting time in
(12.108) as a function of m, for different values of C . While E(Tm) increases quite
slowly with m in absence of backward mutations, there is a dramatic increase of
E(Tm) for positive C as the number m of required mutations increases. In Appendix
Cwe derive an explicit formula for the asymptotic approximation (12.108) of E(Tm).
It follows from this derivation that (12.108) can be approximated by the simpler but
somewhat less accurate expression

u × E(Tm) ∼
{
log(m) + 0.577, C = 0,
(1 + C)m/(Cm), C > 0,

(12.109)

whenC is fixed andm gets large. Formula (12.109) underscores the staircase behavior
of the expected waiting time with increasing m when C > 0. This behavior would
be even more dramatic if the intermediate states had a selective disadvantage (si < 1
for i = 1, . . . , m − 1), cf. Figure 2 of Axe [2].

12.8 Some Improvements of the Asymptotic Waiting Time
Theory

The practical implication of Theorem12.2 is to approximate the distribution of the
waiting time Tm until the mth mutant gets fixed. We expect this distribution to be
accurate for large populations with mutation rates (12.4)–(12.5) smaller than the
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inverse population size. Second, according to (12.44) there should not be competition
between different alleles to get fixed. That is, for any allele i there should be at
most one forward rate of fixation from i , and at most one backward rate of fixation
from i , that dominate. Third, the time it takes for alleles to get fixed should be
asymptotically negligible because of (12.47). In this section we will highlight some
possible improvement of formula (12.10) for the expected waiting time E(Tm) based
on transition rates (12.35), when some of these conditions fail. Our discussion is not
at all complete, but we hope it will open up for further research.

We will first revisit Case 4 of Sect. 12.7.1.1, that is, a model with m = 2 mutants
and a large second forward mutation rate u2. We will see what happens when the first
forward mutation rate u1 is no longer of smaller order than the inverse population
size. The following result, which generalizes Theorem 1 of Durrett et al. [20], is
proved in Appendix C:

Theorem 12.3 Consider a Moran model with m = 2 and no backward mutations
(v0 = 0), where the sizes of the two forward mutation rates satisfy Nu1 → a for some
a ≥ 0 and N

√
u2 → ∞ as N → ∞. Assume that the first selection coefficient s1 = s

is given by (12.51) for some fixed ρ ≤ 0, and the second one is large (s2 = ∞). Let
also T ′′

2 be the time point when the first successful mutant 2 appears in the population.
Then

P(N R(ρ)u1
√

u2 × T ′′
2 ≥ t) ∼ exp

(
−
∫ t

0
h(x)dx

)
(12.110)

as N → ∞, where R(ρ) is defined in (12.41), h(x) = h(x; a, ρ) is a hazard function
that satisfies h(x) = 1 when a = 0, and

h(x) =
1 − exp

(
− 2

√
ρ2+4

ρ+
√

ρ2+4
× x

a

)

1 +
√

ρ2+4+ρ√
ρ2+4−ρ

exp

(
− 2

√
ρ2+4

ρ+
√

ρ2+4
× x

a

) (12.111)

when a > 0. In particular, the expected waiting time is approximated by

E(T ′′
2 ) ∼ [

N R(ρ)u1
√

u2
]−1

θ(a, ρ) = λ̂−1
02 θ(a, ρ), (12.112)

where λ̂02 is the transition rate defined in (12.66), and

θ(a, ρ) =
∫ ∞

0
exp

(
−
∫ t

0
h(x; a, ρ)dx

)
dt.

In Theorems12.1 and 12.2, we imposed conditions so that the time of tunneling
and fixation were asymptotically negligible. Theorem12.3 reveals that this is no
longer the case when u1 = Θ(N−1), since the waiting time T ′′

2 includes two parts
of comparable size; the time T ′

2 until the first successful 0 → 1 mutation appears,
and the time T ′′

2 − T ′
2 of tunneling, that is, the time between the arrival of the first
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successful 1 mutant and the first successful 2 mutant. It follows from the proof of
Theorem12.3 that the time T ′

2 until the first successful 1 mutant appears has an
asymptotic exponential distribution with expected value E(T ′

2) ∼ λ̂−1
02 . Therefore, in

view of (12.112), we find that tunneling multiplies the expected waiting time by a
factor θ(a, ρ). On the other hand, we recall from Sect. 12.5 that the time it takes for
allele 2 to become fixed after its first appearance, adds a term α(s2) ∼ E(T2 − T ′′

2 )

to the expected waiting time E(T2) = E(T ′′
2 ) + E(T2 − T ′′

2 ).
We will apply these findings as follows: Let λ̂i j be the approximate fixation rates

in (12.35). When j 	= i we modify these rates as

λ̃i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
λ̂−1

i j + α(s j/si )
]−1

, j 	= i, | j − i | 	= 2,[
λ̂−1

i j θ(ai,i+1, ρi,i+1) + α(si+2/si )
]−1

, j = i + 2,[
λ̂−1

i j θ(ai,i−1, ρi,i−1) + α(si−2/si )
]−1

, j = i − 2,

(12.113)

to take tunneling and fixation into account, where ai,i+1 = Nui+1β(si+2/si ) and
ai,i−1 = Nvi−1β(si−2/si ) are the size normalized rates at which new mutations
appear and get fixed, conditionally on that tunneling is successful, whereas si+1/si =
1 + ρi,i+1

√
ui+2 and si−1/si = 1 + ρi,i−1

√
vi−2 are special cases of (12.37) and

(12.39) for tunneling over one allele (| j − i | = 2). When i = j , we define λ̃i i so
that all row sums of the matrix with elements λ̃i j , are zero. The modified transition
rates in (12.113) only incorporate the impact of tunneling over one allele, because
it is more complicated to correct for tunneling over larger distances, and it is likely
that this has less impact in many applications.

As a next step, we will correct for competition between different states to become
fixed. We will confine ourselves to the case when all mutants except the last one
are selectively neutral (s1 = · · · = sm−1 = 1), and the last mutant has a selective
advantage (sm > 1). It follows from this and the discussion above (12.45) that it is
only possible to have competition between fixation events i → i + 1 and i → m for a
population whose current fixed state is i . We therefore compare these two transition

rates, as defined in (12.113), and denote their squared ratio by γi =
(

λ̃im

λ̃i,i+1

)2
. In

Appendix C we motivate that the forward transition rates in (12.113) should be
modified as

λ̄i j = χ
[
γi/β(sm)

]
1 + √

γi
× λ̃i j , j = i + 1, . . . , m, (12.114)

where χ(γ ) was introduced in (12.63). We put λ̄i j = λ̃i j when j < i , whereas the
diagonal terms λ̄i i are chosen so that all row sums of the matrix Λ̄ = (λ̄i j ), are zero.
When sm = ∞ (so thatβ(sm) = 1), we notice that themultiplicative correction factor
of (12.114) is ξ(γ )−1, where ξ(γ ) is the function defined in (12.64) and plotted in
Fig. 12.1. Therefore, when the last mutant has high fitness, this figure tells howmuch
the expectedwaiting time of a forward fixation from i will increasewhen competition
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between fixed states i + 1 and m is taken into account. This also agrees with formula
(12.105).

Putting everything together, we define the adjusted expected waiting time as

E(Tm)adj = ẽ0Λ̄
−1
0 1T , (12.115)

where Λ̄0 is a matrix containing the first m rows and the first m columns of Λ̄, and
adj is an acronym for adjusted. We regard (12.115) as the expected time until a semi-
Markov process of allele frequencies Zt with state space (12.6) reaches the absorbing
state em . By this we mean that jumps between fixed states follow a Markov chain
with a transition probability −λ̄i j/λ̄i i from ei to e j . But the holding time in each
state is no longer exponentially distributed, when tunneling and the time of fixation
of alleles is taken into account. Although the time until a semi-Markov processes
reaches an absorbing state does not have a phase-type distribution, if −λ̄−1

i i is the
expected holding time in fixed state i , formula (12.115) will still give the correct
expected waiting time until the m:th mutant gets fixed.

12.8.1 One Mutation

In this subsection we consider a model with only one mutant (m = 1). Formulas
(12.10) and (12.35) approximate the expected waiting time until fixation as

E(T1) = 1

Nu1β(s1)
. (12.116)

For a model with only two alleles, there is no tunneling and no competition between
different states to become fixed. It is therefore only the expected time of a successful
mutation to get fixed, that will influence the adjusted waiting time formula (12.115).
It can be seen that this equation simplifies to

E(T1)adj = 1

Nu1β(s1)
+ α(s1), (12.117)

for a model with one single mutant. In Table12.3, we have compared the accuracy of
(12.116) and (12.117) with simulation based estimates of the expected waiting time.
It can be seen that (12.117) is consistently amuchmore accurate approximation of the
simulation based values. We also notice from this table that the smaller the mutation
rate is, the smaller is the impact of the expected fixation time α(s1). The general
condition for asymptotic negligibility of the fixation time is (12.47). It simplifies to
α(s1) � [Nu1β(s1)]

−1 for a model with one mutant, that is, scenarios for which the
second term of (12.117) is small in comparison to the first term.
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Table 12.3 Comparison between the expected waiting time formulas E(T1) and E(T1)adj, defined
in (12.116) and (12.117) respectively, for a model with m = 1 mutant. The rightmost column are
sample averages from 10000 simulations, with ε = 0.04 and Nc = 10 in the algorithm of Appendix
A

N u1 s1 E(T1) E(T1)adj Ê(T1)

100 0.001 10/9 100.00 153.19 152.62

2 20.00 33.95 33.36

5 12.50 20.53 20.05

9 11.25 18.21 17.50

1000 10.01 15.89 15.34

1000 0.0001 10/9 100.00 198.78 197.76

2 20.00 40.90 40.12

5 12.50 23.99 23.52

9 11.25 21.10 20.33

1000 10.01 18.20 17.55

100 0.0005 10/9 200.00 253.19 250.33

2 40.00 53.95 53.11

5 25.00 33.03 32.72

9 22.50 29.46 28.74

1000 20.02 25.90 25.03

100 0.0001 10/9 1000.0 1053.2 1049.15

2 200.0 213.95 211.63

5 125.0 133.03 131.97

9 112.5 119.46 117.30

1000 100.1 105.98 105.64

12.8.2 Two Coordinated Mutations, and No Back Mutations

Here, we will revisit the model of Sect. 12.7.1.1, with two mutants (m = 2) and no
backmutations (v0 = 0).We assume that the first allele is selectively neutral (s1 = 1),
whereas the second one has high fitness (s2 = 105).

In Table12.4 we compare the accuracy of two analytical formulas for the expected
waiting time until the second mutant gets fixed, with simulation based estimates. We
follow the scenarios of Durrett and Schmidt [19], with different population sizes and
forward mutation rates u1 and u2. The first expected waiting time formula is based
on (12.10) and (12.35), whereas the second formula is the adjustment defined in
(12.115).

It can be seen from Table12.4 that the unadjusted expected waiting time is too
low, whereas the adjusted expected waiting time is consistently much closer to the
simulation based estimates. The reason for this discrepancy varies between scenarios.
For those scenarios where Nu1 is not small (Case 1–2 and Drosophila), an important
feature of the adjusted formula is to incorporate the time it takes for the first successful
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Table 12.4 Comparison between the expected waiting time formula E(T2) based on (12.10) and
(12.35), and the adjusted waiting time formula E(T2)adj, based on (12.115), for a model withm = 2
mutants with selective fitness s1 = 1 and s2 = 105. We use the same scenarios as in Table12.2 of
Durrett and Schmidt [17], with different values of the two forward mutation rates u1 and u2, and
no backward mutations. The quantity Ê(T2) refers to a sample average from B simulations based
on the algorithm of Appendix A, with the first simulation parameter ε reported in the rightmost
column, and the second simulation parameter Nc set to 10

Scenario N Nu1 N
√

u2 E(T2) E(T2)adj Ê(T2) B ε

Case 1 1000 1 10 92.6 163.2 166.9 10000 0.04

10000 919.0 1557.8 1588 10000 0.2

Case 2 1000 1/4 10 367.7 463.8 470.5 10000 0.04

10000 3649 4564 4644 2000 0.1

Case 3 1000 1/10 10 917.9 1051 1074 10000 0.1

10000 9108 10434 10143 1000 0.1

Case 4 1000 1/10 4 2018 2523 2484 5000 0.1

10000 20131 25150 26420 1000 0.2

Case 5 1000 1/10 1 5501 8053 8240 2000 0.1

10000 55002 80471 85288 1000 0.2

Drosophila 1000 1/2 10/
√
3 301.0 449.2 460.5 10000 0.04

10000 2998 4417 4440 2000 0.1

allele 1 to tunnel into allele 2. For those scenarios where λ02/λ01 = N
√

u2 is not
large (Case 4–5 and Drosophila), an important fact is rather that the adjusted formula
incorporates competition between alleles 1 and 2 to get fixed. On the other hand, it is
not crucial, for any of the scenarios of Table 12.4 to correct for the time it takes for
alleles to get fixed. This has two reasons. First, the expected fixation time of allele
2 is very short (α(105) ∼ log(N )). Although the expected fixation time of allele 1
is much larger (α(1) ∼ N ), for those scenarios where a transition 0 → 1 happens
fairly often (that is, when N

√
u2 is not too large, as for Case 5), the overall expected

waiting time is still much larger than α(1).

12.9 Discussion

In this paper we analyzed the waiting time until the last of m mutations appears
and gets fixed in a population of constant size without any substructure. We showed
that approximately, this waiting time has a phase-type distribution whenever a fixed
state model is applicable, where one genetic variant at a time dominates the popula-
tion. The rationale behind this result is to approximate the dynamics of the genetic
composition of the population by a continuous time Markov process with m + 1
states; the wildtype variant and the m mutants. We also provided a general scheme
for calculating the intensity matrix of this process, and thereby obtained an explicit
approximation of the waiting time distribution. Our model allows for forward and
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backwardmutations, with different selective fitness, to appear at different rates. Once
the intensity matrix of the Markov process is known, the phase-type distribution of
the waiting time automatically incorporates all the pathways towards them:th mutant
that the model allows for.

We believe the findings of this paper can be extended in several ways. First, we
have provided quite a detailed sketch of proofs of main results, derived previously
known results as special cases, and confirmed several others by simulations. While
it is outside the scope of this paper to provide full proofs; this is an important topic
for further research.

Second, we argued that our explicit approximation of the expected waiting time
has the correct order of magnitude, even when some of the assumptions behind the
intensity rate calculations are violated. In more detail, the transition rates between
pairs of fixed states will only be correct when competition between different forward
and backward transitions can be neglected asymptotically. We provided an adjust-
ment of the expected waiting time for neutral models when such competition is
present, using Theorem 3 of Schweinsberg [60] and Theorem 3 of Durrett et al. [20].
A challenging task is to generalize these results to scenarios where the mutants of
the model have different selective fitness.

Third, we have assumed a homogeneous population of haploid individuals with
constant size. We believe our main results can be extended to include varying popu-
lation size, diploidy, and recombination, as well as geographic subdivision and other
types of population structure.

Fourth, in some applications there are several possible orders in which the m
mutations may arrive. This can still be handled by a fixed state population model,
with a phase-type distribution for the waiting time, as in Sect. 12.7.2.2. But for some
scenarios of partially ordered mutations, the state space of the Markov process has
to be enlarged in order to keep track of the subset of mutations that has occurred
(Gerstung and Beerenwinkel [24]).

Fifth, a challenging generalization is to derive a phase-type distribution approx-
imation of the waiting time until m coordinated targets have been fixed in the pop-
ulation. For instance, each type i ∈ {1, . . . , m} could represent a sequence of DNA,
which, compared to previous targets j < i , requires one or several additional point
mutations. This would extend results in Durrett and Schmidt [18] from m = 1 to
higher values of m.

Sixth, the results of this paper could serve as a building block in order to understand
the genomewide rate of molecular evolution of m coordinated mutations. In order
to obtain such a rate, a selection model has to be specified, whereby the selection
coefficients of the m mutants at various loci are drawn from some multivariate dis-
tribution. This can viewed as an extension of the simulation studies in Gillespie [27]
and Rupe and Sanford [55] for single mutations (m = 1) to larger m.

Seventh, our phase-type distribution approximation of the waiting time relies
heavily on the assumption that all mutation rates are smaller than the inverse pop-
ulation size, in order to guarantee that successful mutations arrive so infrequently
and then spread so quickly that one genetic variant at a time dominates. While this is
a reasonable assumption for moderately-sized populations, it is not appropriate for
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large populations where different mutations will coexist, interfere, and overlap. This
includes virus, bacterial or simple eukaryotic populations, as well as large cell pop-
ulations of cancer progression with diverse mutational patterns. While we adjusted
for non-small mutation rates for some of these models in Sect. 12.8, it is still impor-
tant to derive more general results for the waiting time of coordinated mutations in
large populations. Several papers have addressed this issue, see for instance Iwasa
et al. [33], Desai and Fisher [16], Beerenwinkel et al. [4], Gerstung and Beeren-
winkel [24], Theorem 4 of Schweinsberg [60], and Theorem 1 of Durrett et al. [20].
It is an interesting topic of future research to generalize these results to our setting of
forward and backward mutations, where the mutants have a varying selective fitness.

Finally, we have developed analytical and simulation based tools in Matlab for
the waiting time of coordinated mutations, based on the results of this paper. They
are freely available from the first author upon request.

Acknowledgements The authors wish to thank an anonymous reviewer for several helpful sug-
gestions that improved the clarity and presentation of the paper.

Appendix A. A Simulation Algorithm

Recall from Sect. 12.2 that the allele frequency process Zt of the Moran model
is a continuous time and piecewise constant Markov process with exponentially
distributed holding times at each state z = (z0, . . . , zm) ∈ Z. For all but very small
population sizes, it is infeasible to simulate this process directly, since the distances
between subsequent jumps are very small, of size Op(N−1). The τ -leaping algorithm
was introduced (Gillespie [25], Li [42]) in order to speed up computations for a certain
class of continuous timeMarkov processes. It is an approximate simulation algorithm
with time increments of size τ . According to the leaping condition of Cao et al. [12],
one chooses τ = τ(ε) in such a way that

E
[|Zt+τ,i − Zti ||Zti = zi

] ≤ εzi (12.118)

for i = 0, . . . , m and some fixed, small number ε > 0, typically in a range between
0.01 and 0.1.

Zhu et al. [71] pointed out that it is not appropriate to use τ -leaping for the Moran
model when very small allele frequencies are updated. For this reason they defined a
hybrid algorithm that combines features of exact simulation and τ -leaping. Although
most time increments are of length τ , some critical ones are shorter. Then they showed
that (12.118) will be satisfied by the hybrid algorithm for a neutral model with small
mutation rates, when

τ ≤ ε/2. (12.119)

We will extend the method of Zhu et al. [71] to our setting, where forward and
backward mutations are possible. In order to describe the simulation algorithm, we
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first need to define the transition rates of the Moran model. From any state z ∈ Z,
there are at most (m + 1)m jumps z → z + δi j/N possible, where δi j = e j − ei ,
0 ≤ i, j ≤ m and i 	= j . Each such change corresponds to an event where a type
i individual dies and gets replaced by a another one of type j . Since the process
remains unchanged when i = j , we need not include these events in the simulation
algorithm. It follows from Sect. 12.2 that the transition rate from z to z + δi j/N is

ai j = ai j (z)

= zi × z j s j∑m
k=0 zk sk

(1 − u j+1 − v j−1) + zi × z j−1s j−1∑m
k=0 zk sk

u j + zi × z j+1s j+1∑m
k=0 zk sk

v j

= zi∑m
k=0 zk sk

[
z j s j (1 − u j+1 − v j−1) + z j−1s j−1u j + z j+1s j+1v j

]
,

(12.120)

with um+1 = v−1 = z−1 = zm+1 = 0. Let Nc be a threshold. For any given state z,
define the non-critical set Ω of events as those pairs (i, j) with i 	= j such that both
of zi and z j exceed Nc/N . The remaining events (i, j) are referred to as critical,
since at least one of zi and z j is Nc/N or smaller. The idea of the hybrid simulation
method is to simulate updates of critical events exactly, whereas non-critical events
are updated approximately. In more detail, the algorithm is defined as follows:

1. Set t = 0 and Zt = e0 = z.
2. Compute the m(m + 1) transition rates ai j = ai j (z) for 0 ≤ i, j ≤ m and i 	= j .
3. Compute the set Ω = Ω(z) of critical events for the current state z.

4. Determine the exponentially distributed waiting time e
L∈ Exp(a) until the next

critical event occurs, where a = ∑
(i, j)/∈Ω ai j is the rate of the exponential distri-

bution.
5. If e < τ , simulate a critical event (I, J ) /∈ Ω from the probability distribution

{ai j/a; (i, j) /∈ Ω}, and update the allele frequency vector as z ← z + δI J /N .
Otherwise, if e ≥ τ , simulate no critical event and leave z intact.

6. Let h = min(e, τ ). Then simulate non-critical events over a time interval of length
h, and increment the allele frequency vector as

z ← z + 1

N

∑
(i, j)∈Ω

ni jδi j ,

where ni j ∼ Po(ai j h) are independent and Poisson distributed random variables.
7. Update date time (t ← t + h) and the allele frequency process (Zt ← z).
8. If z = em , set Tm = t and stop. Otherwise go back to step 2.

We have implemented the hybrid algorithm, with Nc and ε as input parameters and
τ = ε/2. When the selection coefficients si are highly variable, a smaller value of τ

is needed though in order to guarantee that (12.118) holds.
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Appendix B. The Expected Waiting Time for One Mutation

In this appendix we will motivate formula (12.34). It approximates the expected
number of generationsα(s) until a singlemutantwith fitness s spreads and get fixed in
a population where the remaining N − 1 individuals have fitness 1, given that such a
fixationwill happen and that no further mutations occur. This corresponds to aMoran
model of Sect. 12.2withm = 1mutant, zeromutation rates (u1 = v0 = 0), and initial
allele frequency distribution Z0 = (1 − p, p), where p = 1/N . For simplicity of
notation we write Zt = Zt1 for the frequency of the mutant allele 1.

Kimura and Ohta [38] derived a diffusion approximation of α(s), for a general
class of models. It involves the infinitesimal mean and variance functions M(z) and
V (z) of the allele frequency process, defined through

E(Zt+h |Zt = z) = z + M(z)h + o(h),

Var(Zt+h |Zt = z) = V (z)h + o(h)

as h → 0. In order to apply their formula to a mutation-free Moran model, we first
need to find M(z) and V (z). To this end, suppose Zt = z. Then use formula (12.120)
with m = 1 to deduce that

z → z + 1/N at rate a01(z) = N (1 − z)
zs

1 − z + zs
, (12.121)

whereas

z → z − 1/N at rate a10(z) = N z
1 − z

1 − z + zs
. (12.122)

From this it follows that

M(z) = 1

N
[a01(z) − a10(z)] = (s − 1)

(1 − z)z

1 + z(s − 1)
(12.123)

and

V (z) = 1

N 2
[a01(z) + a10(z)] = 1

N
(1 + s)

(1 − z)z

1 + z(s − 1)
. (12.124)

We will also need the function

G(z) = exp

(
−
∫ z

0

2M(y)

V (y)
dy

)
= exp(−2Ns ′z),

with s ′ = (s − 1)/(s + 1). The formula of Kimura and Ohta [38] takes the form

α(s) =
∫ 1

p
ψ(z)β̂(z)

[
1 − β̂(z)

]
dz + 1 − β̂(p)

β̂(p)

∫ p

0
ψ(z)β̂2(z)dz, (12.125)
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where

β̂(z) = β̂(s; z) =
∫ z
0 G(y)dy∫ 1
0 G(y)dy

= 1 − e−2Ns ′z

1 − e−2Ns ′ (12.126)

approximates the fixation probability of a mutant allele that starts at frequency Z0 =
z. In particular, β̂(1/N ) approximates the exact probability (12.32) that one single
copy of an allele with fitness s takes over a population where all other individuals
have fitness 1. This diffusion approximation is increasingly accurate in the limit of
weak selection (s → 1).

The other function of the two integrands in (12.125), is

ψ(z) = 2
∫ 1
0 G(y)dy

V (z)G(z)
= 1 − e−2Ns ′

e−2Ns ′z × 1 + z(s − 1)

1 + s
× 1

s ′z(1 − z)
. (12.127)

In order to verify (12.34)wewill approximate (12.125) separately for neutral (s = 1),
advantageous (s > 1), and deleterious (s < 1) alleles. In the neutral case s = 1we let
s ′ → 0 and find that β̂(z) = z and ψ(z) = N/[z(1 − z)]. Inserting these functions
into (12.125), we obtain an expression

α(1) = − 1

p

[
N (1 − p) log(1 − p)

]
for the expected fixation time. This is essentially the middle part of (12.34) when
p = 1/N .

When s > 1, we similarly insert (12.126)–(12.127) into (12.125). After some
quite long calculations, it can be shown that

α(s) ∼ 1 + s

s − 1
log(N )

+ s

s − 1

[
log(2s ′) +

∫ 1

0

1 − e−y

y
dy −

∫ ∞

1

e−y

y
dy − 1

s

∫ ∞

2s ′

e−y

y
dy

]

+ e−2s ′

1 − e−2s ′ × 1

s − 1

∫ 2s ′

0

1

y
ey(1 − e−y)2dy

(12.128)
as N → ∞. The first term of this expression dominates for large N , and it agrees
with the lower part of (12.34).

When s < 1, a similar calculation yields
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Table 12.5 Approximations of the expected waiting time α(s) = αN (s) of fixation, in units of
generations, for a single mutant with selection coefficient s, in a population of size N . The columns
markedDiff are based on the diffusion approximation (12.125), whereas the columnsmarkedAsDiff
are asymptotic approximations of the diffusion solution, based on the middle part of (12.34) for
s = 1, Eq. (12.128) for s > 1 and Eq. (12.129) for s < 1. The latter two formulas only work well
when |s − 1| � 1/N . They have been omitted when they depart from the diffusion solution by
more than 10%

s N = 100 N = 1000 N = 10000

Diff AsDiff Diff AsDiff Diff AsDiff

1/5 7.38 7.39 10.84 10.85 14.30 14.30

1/2 13.62 13.67 20.57 20.58 27.48 27.48

1/1.5 20.60 20.73 32.23 32.24 43.76 43.76

1/1.1 56.42 58.92 107.06 107.27 155.61 155.63

1/1.01 98.15 – 554.51 577.34 1038.1 1040.2

1/1.001 99.48 – 985.94 – 5535.0 5710.7

1 99.50 100.00 999.50 1000.0 9999.5 10000.0

1.001 99.48 – 985.94 – 5535.0 5710.8

1.01 98.16 – 554.52 577.35 1038.1 1040.2

1.1 56.47 58.97 107.11 107.32 155.66 155.68

1.5 20.80 10.93 32.43 32.44 43.96 43.96

2 13.95 14.00 20.90 20.91 27.81 27.82

5 8.03 8.04 11.49 11.50 14.95 14.95

α(s) ∼ 1 + s

1 − s
log(N )

+ s

1 − s

[
log(2s ′′) +

∫ 1

0

1 − e−y

y
dy −

∫ ∞

1

e−y

y
dy − 1

s

∫ ∞

2s ′′

e−y

y
dy

]

+ e−2s ′′

1 − e−2s ′′ × 1

1 − s

∫ 2s ′′

0

1

y
ey(1 − e−y)2dy

(12.129)
as N → ∞, with s ′′ = (1 − s)/(s + 1). The first, leading term of this formula is
consistent with the upper part of (12.34). The various approximations of α(s) are
shown in Table12.5.

Appendix C. Sketch of Proofs of Main Results

Lemma 12.1 Let {τk}M
k=0 be the fixation times of the process Zt , defined in (12.13),

and τ ′
k+1 the time points when a successful mutation first occurs between two succes-

sive fixation events (τk < τ ′
k+1 < τk+1). Let also μi be the rate in (12.15) at which

successful mutations appear in a homogeneous type i population. Then
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P

(
τ ′

k+1 − τk >
ζ

μi
|Ztk = ei

)
→ exp(−ζ ) (12.130)

as N → ∞ for all ζ > 0 and i = 0, 1, . . . , m − 1.

Sketch of proof. Let fi (z) = fi,N (z) and bi (z) = bi,N (z) be the probabilities that
the offspring of a type i ∈ {0, . . . , m − 1} individual who mutates to i + 1 or i − 1
is a successful forward or backward mutation, given that the allele frequency config-
uration is z just before replacement occurs with the individual that dies (when i = 0
we put b0(z) = 0). Notice in particular that fi = fi (ei ) and bi = bi (ei ), since these
two quantities are defined as the probabilities of a successful forward or backward
mutation in an environmentwhere all individuals have type i just before themutation,
that is, when z = ei .

When an individual is born in a population with allele configuration z, with prob-
ability 1 − ui+1 fi (z) − vi−1bi (z) it is not the first successful mutation between two
fixation events τk and τk+1, given that no other successful has occurred between
these two time points. Let 0 ≤ t1 < t2 < · · · be the time points when a type i indi-
vidual gets an offspring, and if we choose {Zt } to be left-continuous, the prob-
ability of no successful mutation i → i ± 1 at time tl , where τk < tl < τk+1, is
1 − ui+1 fi (Ztl ) − vi−1bi (Ztl ), given that no other successful mutation has occurred
so far (τ ′

k+1 ≥ tl). Since the left hand side of (12.130) is the probability of no
mutation i → i ± 1 being successful among those that arrive at some time point
in Ti (ζ ) = {tl; τk < tl ≤ τk + ζ/μi }, we find that

P(τ ′
k+1 − τk > ζ/μi |Zτk = ei )

= E
[∏

tl∈Ti (ζ )

(
1 − ui+1 fi (Ztl ) − vi−1bi (Ztl )

)]
≈ E

[
exp

(
−ui+1

∑
tl∈Ti (ζ ) fi (Ztl ) − vi−1

∑
tl∈Ti (ζ ) bi (Ztl )

)]
,

(12.131)

where expectation is with respect to variations in the allele frequency process Zt for
t ∈ Ti (ζ ).

Because of (12.4)–(12.5), with a probability tending to 1 as N → ∞, Zt will stay
close to ei most of the time in (τk, τ

′
k+1), that is, all alleles l 	= i will most of the time

be kept at low frequencies. In order to motivate this, we notice that by definition,
all mutations that arrive in (τk, τ

′
k+1) are unsuccessful. It is known that the expected

lifetime of an unsuccessful mutations is bounded by C log(N ) for a fairly large class
of Moran models with selection, where C is a constant that depends on the model
parameters, but not on N (Crow and Kimura [15], Section 8.9). Since mutations
arrive at rate N (vi−1 + ui+1), this suggest that all alleles l 	= i are expected to have
low frequency before the first successful mutation arrives, if

C log(N ) × N (vi−1 + ui+1) = o(1)
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as N → ∞, i.e. if the convergence rate towards zero in (12.4)–(12.5) is faster than
logarithmic. This implies that it is possible to approximate the sums on the right hand
sides of (12.131) by

∑
tl∈Ti (ζ ) fi (Ztl ) ≈ fi |Ti (ζ )| ≈ fi N × ζ/μi ,∑
tl∈Ti (ζ )bi (Ztl ) ≈ bi |Ti (ζ )| ≈ bi N × ζ/μi ,

(12.132)

where |Ti (ζ )| refers to the number of elements in Ti (ζ ). In the first step of (12.132),
we used that fi (z) → fi and bi (z) → bi as z → ei respectively, and therefore
fi (Ztl ) ≈ fi and bi (Ztl ) ≈ bi for most of the terms in (12.132). In the second step of
(12.132) we used that |Ti (ζ )| counts the number of births of type i individuals within
a time interval of length ζ/μi , and that each tl+1 − tl is approximately exponentially
distributed. By the definition of the Moran model in Sect. 12.2, the intensity of this
exponential distribution is approximately

N × Ztl i si∑m
j=0 Ztl j s j

≈ N ,

for the majority of time points tl such that Ztl stays close to ei . Consequently, |Ti (ζ )|
is approximately Poisson distributed with expected value Nζ/μi . We know from
(12.4)–(12.5) and (12.15) that μi = o(1). Because this implies that Nζ/μi � 1 is
large, and since the coefficient of variation of a Poisson distribution tends to zero
when its expected value increases, |Ti (ζ )|/(Nζ/μi ) converges to 1 in probability as
N → ∞, and therefore we approximate |Ti (ζ )| by Nζ/μi . To conclude; (12.130)
follows from (12.15), (12.131), and (12.132). �
Proof of Theorem 12.1. Let Xζ = Zζ/μmin denote the allele frequency process after
changing time scale by a factor μmin. Let Sk = μminτk refer to time points of fixation
when {Xζ } visits new fixed states in Zhom, defined in (12.6), S′

k+1 = μminτ
′
k+1 the

time point when a successful mutation first appears after Sk , and S = μminTm = SM

the time when allele m gets fixed. We need to show that

S
L−→ PD(ẽ0,Σ0) as N → ∞. (12.133)

To this end, write

S =
M−1∑
k=0

(S′
k+1 − Sk) +

M∑
k=1

(Sk − S′
k) =: Sappear + Stunfix, (12.134)

where Sappear is the total waiting time for new successful mutations to appear, and
Stunfix is the total waiting time for tunneling and fixation, after successful mutations
have appeared. We will first show that

Sappear
L−→ PD(ẽ0,Σ0) as N → ∞. (12.135)
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It follows from (12.14) to (12.17) that {X Sk } is aMarkov chain that starts at X S0 = e0,
with transition probabilities

P(X Sk+1 = e j |X Sk = ei ) = pi j,N → πi j

for i = 0, . . . , m − 1, j 	= i.
(12.136)

Because of (12.25) and Lemma12.1, the waiting times for successful mutations
i → i ± 1 have exponential or degenerate limit distributions as N → ∞, since

P(S′
k+1 − Sk > ζ |X Sk = ei ) →

{
exp(−κiζ ), i ∈ Ilong,
0, i ∈ Ishort,

(12.137)

where Ilong and Ishort refer to those asymptotic states in (12.22) and (12.23) that are
visited for a long and short time, respectively. Since by definition, the non-asymptotic
states i ∈ Inas in (12.20) will have no contribution to the limit distribution of Sappear
as N → ∞, it follows from (12.136) to (12.137) that asymptotically, Sappear is the
total waiting time for a continuous time Markov chain with intensity matrix Σ , that
starts at e0, before it reaches its absorbing state em . This proves (12.135).

It remains to prove that Stunfix is asymptotically negligible. It follows from (12.26)
that

P(ε) = PN (ε) = max
i∈Ias

P
(
Sk − S′

k > ε|X Sk−1 = ei
) = o(1) (12.138)

as N → ∞ for any ε > 0. Write M = ∑m−1
i=0 Mi , where Mi is the number of visits

to ei by the Markov chain {X Sk ; k = 0, . . . , M}, before it is stopped at time M . Let
K be a large positive integer. We find that

P(Stunfix > ε) ≤ E
[∑min(K ,M)

k=1 P(Sk − S′
k > ε/K )

]
+ P(M > K )

≤ K P(ε/K ) +∑
i∈Inas P(Mi > 0) + E(M)/K

≤ 2E(M)/K

(12.139)

for all sufficiently large N . In the second step of (12.139) we used that

E(M) = ẽ0(I − P0)
−11T → ẽ0(I − Π0)

−11T < ∞, (12.140)

where P0 is a squarematrix of orderm that contains the firstm rows andm columns of
the transitionmatrix P of theMarkov chain X Sk , so that its elements are the transition
probabilities among and from the non-absorbing states. We used in (12.140) that M
is the number of jumps until this Markov chain reaches its absorbing state, and
therefore it has a discrete phase-type distribution (Bobbio et al. [9]). And because of
(12.17)–(12.18), the expected value of M must be finite. In the last step of (12.139)
we used (12.138) and the definition of non-asymptotic states, which implies P(Mi >

0) = o(1) for all i ∈ Inas.
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Since (12.139) holds for all K > 0 and ε > 0, we deduce Stunfix = o(1) by first
letting K → ∞ and then ε → 0. Together with (12.134)–(12.135) and Slutsky’s
Theorem (see for instance Gut [29]), this completes the proof of (12.133). �

In order to motivate Theorem12.2, we first give four lemmas. It is assumed for
all of them that the regularity conditions of Theorem12.2 hold.

Lemma 12.2 Let ril j be the probabilities defined in (12.37)–(12.40). Then

ril j = O(u1−2−( j−l−1)

j ),

ril j = Ω(u1−2−( j−l−1)

l+2 ),
i ≤ l ≤ j − 2, (12.141)

and
ril j = O(v1−2−(l− j−1)

j ),

ril j = Ω(v1−2−(l− j−1)

l−2 ),
j + 2 ≤ l ≤ i, (12.142)

as N → ∞. The corresponding formulas for ri j = rii j in (12.36) are obtained by
putting l = i in (12.141)–(12.142).

Proof. In order to prove (12.141), assume i ≤ l ≤ j − 2. Since ri, j−1, j = 1, repeated
application of the recursive formula ri,k−1, j = R(ρik j )

√
rik j uk+1 in (12.38), for k =

j − 1, . . . , l + 1, leads to

ril j =
j−1∏

k=l+1

R(ρik j )
2−(k−l−1)

u2−(k−l)

k+1 . (12.143)

We know from (12.48) that all ρil j = O(1) as N → ∞. From this and the definition
of the function R(ρ) in (12.41), it follows that R(ρil j ) = Θ(1) as N → ∞, so that

ril j = Θ

(
j−1∏

k=l+1

u2−(k−l)

k+1

)
. (12.144)

Then both parts of (12.141) follow by inserting the first equation of (12.46) into
(12.144). The proof of (12.142) when j + 2 ≤ l ≤ i is analogous. Since ri, j+1, j = 1,
we use a recursion for k = j + 1, . . . , l − 1 in order to arrive at the explicit formula

ril j =
l−1∏

k= j+1

R(ρik j )
2−(l−k−1)

v2
−(l−k)

k−1 .

Then use (12.48) and the third equation of (12.46) to verify that ril j satisfies
(12.142). �

Lemma 12.3 Let qi j , qil j , ri j , and ril j be the probabilities defined in connection with
(12.35)–(12.40). Consider a fixed i ∈ {0, 1, . . . , m − 1}, and let F(i) and B(i) be
the indices defined in (12.44). Then,
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qil F(i) ∼ ril F(i), l = i, i + 1, . . . , F(i) − 1,
qil B(i) ∼ ril B(i), l = B(i) + 1, . . . , i, if i > 0 and π̂i B(i) > 0

(12.145)

as N → ∞. In particular,

qi F(i) ∼ ri F(i),

qi B(i) ∼ ri B(i), if i > 0 and π̂i B(i) > 0.
(12.146)

Sketch of proof. Notice that (12.146) is a direct consequence of (12.145), since
qii j = qi j and rii j = ri j . We will only motivate the upper part of (12.145), since the
lower part is treated similarly. Consider a fixed i ∈ {0, . . . , m − 1}, and for simplicity
of notation we write j = F(i). We will argue that

qil j ∼ ril j (12.147)

for l = j − 1, . . . , i by means of induction. Formula (12.147) clearly holds when
l = j − 1, since, by definition, qi, j−1, j = ri, j−1, j = 1. As for the induction step,
let i + 1 ≤ l ≤ j − 1, and suppose (12.147) has been proved for l. Then recall the
recursive formula

ri,l−1, j = R(ρil j )
√

ul+1ril j (12.148)

from (12.38), with R defined in (12.41). If

qi,l−1, j ∼ R(ρil j )
√

ul+1qil j (12.149)

holds as well, then (12.147) has been shown for l − 1, and the induction proof is
completed.Without loss of generalitywemay assume that j ≥ i + 2, since otherwise
the induction proof of (12.147) stops after the first trivial step l = j − 1.

In order to motivate (12.149), we will look at what happens when the population
is in fixed state i . Suppose Zτk = ei , and recall that τ ′

k+1 is the time point when the
first successful mutation i → i + 1 in (τk, τk+1) arrives. Therefore, if Zτk+1 = e j ,
there is a non-empty set J = {i + 1, . . . , j − 1} of types that must be present among
some of the descendants of the successful mutation, before a mutation j − 1 → j
arrives at some time point τ ′′

k+1 ∈ (τ ′
k+1, τk+1). Put Zt J = maxl∈J Ztl . The regularity

condition
P( sup

τ ′
k+1<t<τ ′′

k+1

Zt J > ε|Zτk = ei ) → 0 (12.150)

for all ε > 0 as N → ∞, assures that with high probability, none of the alleles in
J reaches a high frequency after the successful i → i + 1 mutation occurred, and
before allele j first appears. We will need this condition below, for verifying the
induction step (12.149).

The rationale for (12.150) is that fixation events i → j will happen much more
frequently than other types of fixation events i → l with l ∈ J , because of (12.44).
We will motivate that
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P = P( sup
τk<t<τk+aμ−1

i

Zt J > ε|Zτk = ei ) → 0 (12.151)

for any a > 0 and ε > 0 as N → ∞, with μi the rate of leaving fixation state i . In
Lemma12.1 we motivated that τ ′

k+1 − τk = Op(μ
−1
i ), and in Lemma12.5 we will

argue that τ ′′
k+1 − τ ′

k+1 = op(μ
−1
i ). Since this implies τ ′′

k+1 − τk = Op(μ
−1
i ), formula

(12.150) will follow from (12.151).
In order to motivate (12.151), assume for simplicity there are no backward muta-

tions (the proof is analogous but more complicated if we include back mutations as
well). If allele l ∈ J exceeds frequency ε, we refer to this as a semi-fixation event.
Let λil(ε) be the rate at which this happens after time τk , and before the next fixed
state is reached. Then, the rate at which semi-fixation events happen among some
l ∈ J , is

λi J (ε) =
∑

l∈J
λil(ε)

∼Nui+1

∑
l∈J

qilβNε

(
sl

si

)

≤C(ε) × Nui+1

∑
l∈J

qilβ

(
sl

si

)

∼C(ε)
∑

l∈J
λil .

(12.152)

In the second step of (12.152) we introduced βNε(s), the probability that a single
mutant with fitness s reaches frequency ε, if all other individuals have fitness 1 and
there are no mutations. We made use of

λil(ε) ∼ Nui+1qilβNε

(
sl

si

)
. (12.153)

This is motivated as in the proof of Lemma12.4, in particular Eqs. (12.163), (12.164)
and variant of (12.167) for semi-fixation rather than fixation. In the third step of
(12.152) we utilized that βNε(s) is larger than the corresponding fixation probability
β(s) = βN (s) for a population of size N . In order to quantify how much larger the
fixation probability of the smaller population of size Nε is, we introduced C(ε),
an upper bound of βNε(sl/si )/β(sl/si ) that holds for all l ∈ J . An expression for
C(ε) can be derived from (12.32) if sl/si is sufficiently close to 1. Indeed, we know
from (12.48) that sl/si → 1 as N → ∞. However, we need to sharpen this condition
somewhat, to

s = sl

si
≥ 1 + x

N
(12.154)

for all l ∈ J and some fixed x < 0. Then it follows from (12.32) that

βNε(s)

βN (s)
= s−N − 1

s−Nε − 1
≤ (1 + x/N )−N − 1

(1 + x/N )−Nε − 1
→ e−x − 1

e−εx − 1
=: C(ε)
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is a constant not depending on N . Finally, in the last step of (12.152) we assumed

λil ∼ Nui+1qilβ

(
sl

si

)
, l ∈ J. (12.155)

This is motivated in the same way as Eq. (12.153), making use of (12.163)–(12.164)
and (12.167).

Assuming that semi-fixation events arrive according to a Poisson process with
intensity λi J (ε), formula (12.151) follows from (12.44) to (12.152), since

P ∼ 1 − exp

(
−λi J (ε) × a

μi

)

≤ 1 − exp

(
−C(ε)

∑
l∈J

λil × a

μi

)

= 1 − exp(−C(ε)a
∑

l∈J
pil)

→ 1 − exp(−C(ε)a
∑

l∈J
πil)

= 1 − exp(−C(ε)a
∑

l∈J
π̂il)

= 0

(12.156)

as N → ∞. In the third step of (12.156) we used (12.16) to conclude that pil =
λil/μi , and in the fourth step we utilized (12.17). In the fifth step of (12.156) we
claimed that πil = π̂il for l ∈ J , Although we have not given a strict proof of this,
it seems reasonable in view of the definitions of πil and π̂il in (12.17) and (12.43),
together with (12.35), (12.155), and the fact that qil ∼ ril for i < l < F(i) (which
can be proved by induction with respect to l). Finally, in the last step of (12.156) we
invoked (12.44), which implies π̂il = 0 for all l ∈ J = {i + 1, . . . , F(i) − 1}.

Equation (12.150) enables us to approximate the allele frequency Ztl by a branch-
ing process with mutations, in order to motivate (12.149). (A strict proof of this for
a neutral model s0 = · · · sm−1 = 1 can be found in Theorem 2 of Durrett et al. [20].)
We will look at the fate of the first l − 1 → l mutation at time τ ∈ (τ ′

k+1, τ
′′
k+1), that

is a descendant of the first successful i → i + 1 mutation at time τ ′
k+1, and arrives

before the first j − 1 → j mutation at time τ ′′
k+1. Recall that q = qi,l−1, j is the prob-

ability that this l mutation gets an offspring that mutates into type j , and q ′ = qil j

is the corresponding probability that one of its descendants, an l → l + 1 mutation,
gets a type j offspring. Let also r ′ = ril j be the approximation q ′, and write s = sl/si

for the ratio between the selection coefficients of alleles l and i . With this simplified
notation, according to (12.149), we need to show that

q ∼ R(ρ)
√

uq ′ (12.157)

as N → ∞, where u = ul+1, and ρ = ρil j is defined in (12.37), i.e.
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s = 1 + ρ
√

ur ′. (12.158)

We make the simplifying assumption that at time τ , the population has one single
type l individual, the one that mutated from type l − 1 at this time point, whereas all
other N − 1 individuals have type i . (Recall that we argued in Lemma12.1 that such
an assumption is asymptotically accurate.) In order to compute the probability q for
the event A that this individual gets a descendant of type j , we condition on the next
time point when one individual dies and is replaced by the offspring of an individual
that reproduces. Let D and R be independent indicator variables for the events that
the type l individual dies and reproduces respectively. Using the definition of the
Moran process in Sect. 12.2, this gives an approximate recursive relation

q = P(A)

= P(D = 0, R = 0)P(A|D = 0, R = 0)

+ P(D = 0, R = 1)P(A|D = 0, R = 1)

+ P(D = 1, R = 0)P(A|D = 1, R = 0)

+ P(D = 1, R = 1)P(A|D = 1, R = 1)

=
(
1 − 1

N

)
N − 1

N − 1 + s
× q

+
(
1 − 1

N

)
s

N − 1 + s

× [
u(q ′ + q − q ′q) + vq + (1 − u − v)(2q − q2)

]
+ 1

N

N − 1

N − 1 + s
× 0

+ 1

N

s

N − 1 + s
× [

uq ′ + v × 0 + (1 − u − v)q
]

(12.159)

for q, where v = vl−1 is the probability of a back mutation l → l − 1. In the last
step of (12.159) we retained the exact transition probabilities of the Moran process,
but we used a branching process approximation for the probability q that the type l
mutation at time τ gets a type j descendant. This approximation relies on (12.150),
and it means that descendants of the type l mutation that are alive at the same time
point, have independent lines of descent after this time point. For instance, in the
second term on the right hand side of (12.159), a type i individual dies and the type
l individual reproduces (D = 0, R = 1). Then there are three possibilities: First,
the offspring of the type l individual mutates to l + 1 with probability u. Since the
type l individual and its type l + 1 offspring have independent lines of descent, the
probability is 1 − (1 − q ′)(1 − q) = q ′ + q − q ′q that at least one of them gets a
type j descendant. Second, if the offspring mutates back to l − 1 (with probability
v), its type l parent has a probability q of getting a type j descendant. Third, if
the offspring does not mutate (with probability 1 − u − v), there are two type l
individuals, with a probability 1 − (1 − q)2 = 2q − q2 that at least one of them gets
a type j offspring.
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Equation (12.159) is quadratic in q. Dividing both sides of it by s/(N − 1 + s), it
can be seen, after some computations, that this equation simplifies to aq2 + bq + c =
0, with

a = (1 − u − v)

(
1 − 1

N

)
∼ 1,

b = N − 1

N
× 1 − s

s
+ u(1 + q ′ − q ′

N
) + v

∼ − ρ
√

ur ′

1 + ρ
√

ur ′ + (1 + q ′)u + v

∼ −ρ
√

uq ′,
c = −uq ′,

(12.160)

as N → ∞. When simplifying the formula for b, we used (12.158) in the second
step, the induction hypothesis (12.147) in the last step (since it implies q ′ ∼ r ′), and
additionally we assumed in the last step that (1 + q ′)u + v = o(

√
ur ′). In order to

justify this, from the second equation of (12.46) we know that v = O(u), and since
q ′ ≤ 1, it suffices to verify that u = o(

√
ur ′), or equivalently that r ′ = Ω(u). But

this follows from (12.46), (12.141), and the fact that u = ul+1, since

r ′ = ril j = Ω
(

u1−2−( j−l−1)

l+2

)
= Ω

(
u1−2−( j−l−1)

)
= Ω(u),

where in the last step we used that l ≤ j − 1. This verifies the asymptotic approxi-
mation of b in (12.160).

To conclude, in order to prove of (12.157), we notice that the only positive solution
to the quadratic equation in q, with coefficients as in (12.160), is

q ∼ ρ
√

uq ′

2
+
√

ρ2uq ′

4
+ uq ′

= ρ +√
ρ2 + 4

2

√
uq ′

= R(ρ)
√

uq ′,

where in the last step we invoked the definition of R(ρ) in (12.41). This finishes the
proof of the induction step (12.149) or (12.157), and thereby the proof of (12.147).

We end this proof by a remark: Recall that ri j in (12.36) is an approximation qi j ,
obtained from recursion (12.38) or (12.148) when j > i , and from (12.40) when
j < i . A more accurate (but less explicit) approximation of qi j is obtained, when
i < j , by recursively solving the quadratic equation ax2 + bx + c = 0, with respect
to x = ri,l−1, j for l = j − 1, . . . , i + 1, and finally putting ri j = rii j . The coefficients
of this equation are defined as in (12.160), with r ′ = ril j instead of q ′. When j < i ,
the improved approximation of qi j is defined analogously. �
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Lemma 12.4 Let μi be the rate (12.15) at which a successful forward or back-
ward mutation occurs in a homogeneous type i population, and let μ̂i in (12.42) be
its approximation. Define the asymptotic transition probabilities πi j between fixed
population states as in (12.17), and their approximations π̂i j as in (12.43). Then

μi ∼ μ̂i , i = 0, . . . , m − 1, (12.161)

as N → ∞, and
πi j = π̂i j , i, j = 0, 1, . . . , m. (12.162)

Sketch of proof. Consider a time point τk when the population becomes fixed with
type i , so that Zτk = ei . Denote by fi j the probability a forward mutation i → i + 1,
which appears at a time point later than τk , is the first successful mutation after τk ,
that its descendants have taken over the population by time τk+1, and that all of them
by that time have type j (so that Zτk+1 = e j ). Likewise, when j < i and i ≥ 1, we
let bi j refer to the probability that if a backward mutation i → i − 1 arrives, it is
successful, its descendants have taken over the population by time τk+1, and all of
them have type j . For definiteness we also put b0 j = 0. We argue that

λi j ∼
{

Nui+1 fi j , j > i,
Nvi−1bi j , j < i,

(12.163)

since the event that the population at time τk+1 have descended from more than one
i → i ± 1 mutation that occurred in the time interval (τk, τk+1), is asymptotically
negligible.

Let β j (z) be the probability that the descendants of a type j individual, who
lives in a population with a type configuration z, takes over the population so that
it becomes homogeneous of type j . Although β j (z) depends on the mutation rates
u1, . . . , um, v0, . . . , vm−1 as well as the selection coefficients s1, . . . , sm , this is not
made explicit in the notation. The probabilities fi j and bi j in (12.163) can be written
as a product

fi j = qi j E
[
β j (Zτ ′′

k+1
)|A j , Zτk = ei

]
, j > i,

bi j = qi j E
[
β j (Zτ ′′

k+1
)|A j , Zτk = ei

]
, j < i

(12.164)

of two terms. Recall that the first term, qi j , is the probability that the first successful
mutation i → i ± 1 at time τ ′

k+1 > τk has a descendant that mutates into type j at
some time τ ′′

k+1 ∈ (τ ′
k+1, τk+1). The second term is the probability that this mutation

has spread to the rest of the population by time τk+1. The conditional expectation of
this second term is with respect to variations in Zτ ′′

k+1
, and the conditioning is with

respect to A j , the event that the mutation at time τ ′′
k+1 is into type j .

In order to compare the transition rates in (12.163) with the approximate ones in
(12.35), we notice that the latter can be written as
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λ̂i j =
{

Nui+1 f̂i j , j > i,
Nvi−1b̂i j , j < i,

(12.165)

where

f̂i j =ri jβ(s j/si ), j > i,

b̂i j =ri jβ(s j/si ), j < i,
(12.166)

ri j is the approximation of qi j defined in (12.36), whereas β(s j/si ) is the probability
that a single type j individual gets fixed in a population without mutations, where
all other individuals have type i .

Wewill argue that the probabilities in (12.166) are asymptotically accurate approx-
imations of those in (12.164), for all pairs i, j of states that dominate asymptotically,
that is, those pairs for which j ∈ {B(i), F(i)}. In Lemma12.3 we motivated that
ri j is an asymptotically accurate approximation of qi j for all such pairs of states.
Likewise, we argue that β(s j/si ) is a good approximation of the conditional expec-
tation in (12.164). Indeed, following the reasoning of Lemma12.3, since none of the
intermediate alleles, between i and j , will reach a high frequency before the type j
mutant appears at time τ ′′

k+1, it follows that most of the other N − 1 individuals will
have type i at this time point. Consequently,

E
[
β j (Zτ ′′

k+1
)|A j , Zτk = ei

] ∼ β j

(
N − 1

N
ei + 1

N
e j

)
∼ β

(
s j

si

)
(12.167)

as N → ∞. In the last step of (12.167) we used that new mutations between time
points τ ′′

k+1 and τk+1 can be ignored, because of the smallness (12.4)–(12.5) of the
mutation rates. Sinceβ j

(
(N − 1)ei/N + e j/N

)
is the fixation probability of a single

type j mutant that has selection coefficient s j/si relative to the other N − 1 type
i individuals, it is approximately equal to the corresponding fixation probability
β(s j/si ) of a mutation free Moran model. It therefore follows from (12.164) and
(12.166) that

f̂i F(i) ∼ fi F(i), i = 0, . . . , m − 1,

b̂i B(i) ∼bi B(i), i = 1, . . . , m − 1 and B(i) 	= ∅ (12.168)

as N → ∞.
Next we consider pairs of types i, j such that j /∈ {B(i), F(i)}. We know from

(12.44), (12.165) and (12.166) that f̂il = o( f̂i F(i)) for all l > i such that l 	= F(i).
It is therefore reasonable to assume that fil = o( fi F(i)) as well for all l > i with
l 	= F(i), although f̂il need not necessarily be a good approximation of fil for all
these l. The same argument also applies to backward mutations when B(i) 	= ∅ and
π̂i B(i) > 0, that is, we should have fil = o( fi B(i)) for all l < i such that l 	= B(i).

Putting things together, it follows from (12.44), (12.163), (12.165), (12.168), and
the last paragraph that the approximate rate (12.42) at which a homogeneous type i
population is transferred into a new fixed state, satisfies
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μ̂i = Nvi−1

∑i−1

j=0
b̂i j + Nui+1

∑m

j=i+1
f̂i j

∼ 1
(
π̂i B(i) > 0

)
Nvi−1b̂i B(i) + Nui+1 f̂i F(i)

∼ 1
(
π̂i B(i) > 0

)
Nvi−1bi B(i) + Nui+1 fi F(i)

∼ Nvi−1

∑i−1

j=0
bi j + Nui+1

∑m

j=i+1
fi j

∼ μi ,

(12.169)

as N → ∞, in agreement with (12.161). Formulas (12.16)–(12.17), (12.43)–(12.44),
(12.163), (12.165), and (12.168)–(12.169) also motivate why πi j should equal π̂i j ,
in accordance with (12.162). �

Lemma 12.5 The regularity condition (12.47) of Theorem12.2 implies that (12.26)
holds.

Sketch of proof. Suppose Zτk = ei and Zτk+1 = e j for some i ∈ Ias and j 	= i . Write

τk+1 − τ ′
k+1 =

{∑ j−1
l=i+1 σl + σfix := σtunnel + σfix, j > i,∑i−1
l= j+1 σl + σfix := σtunnel + σfix, j < i.

(12.170)

If j > i , then the successful mutation at time τ ′
k+1 is from i to i + 1. This type i + 1

mutation has a line of descent with individuals that mutate to types i + 2, . . . , j ,
before the descendants of the type j mutation take over the population. The first
term σtunnel = τ ′′

k+1 − τ ′
k+1 on the right hand side of (12.170) is the time it takes for

the type i + 1mutation to tunnel into type j . It is the sumof σl , the time it takes for the
type l + 1 mutation to appear after the type l mutation, for all l = i + 1, . . . , j − 1.
The second term σfix = τk+1 − τ ′′

k+1 on the right hand side of (12.170) is the time it
takes for j to get fixed after the j mutation first appears. When j < i , we interpret
the terms of (12.170) analogously. It follows from (12.170) that in order to prove
(12.26), it suffices to show that

σtunnel = op(μ
−1
min),

σfix = op(μ
−1
min),

(12.171)

as N → ∞ for all asymptotic states i ∈ Ias. When j > i , we know from (12.44) to
(12.162) that with probability tending to 1, j = F(i). Following the argument from
the proof of Theorem 2 of Durrett et al. [20], we have that

σl = Op(q
−1
il j ). (12.172)

In the special case when l = i + 1 and j = i + 2, formula (12.172) can also be
deduced from the proof of Theorem12.3, by looking at G(x)/G(∞) in (12.191).
Using (12.172), we obtain the upper part of (12.171), since
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σtunnel =
∑ j−1

l=i+1
σl

=Op

(∑ j−1

l=i+1
q−1

il j

)
=op(q

−1
i i j )

=op(q
−1
i j )

=op(μ
−1
i )

=op(μ
−1
min).

(12.173)

In the second step of (12.173) we used that qii j ≤ qil j for i < l, which follows from
the definition of these quantities, in the third step we invoked qi j = qii j , and in the
fourth step we applied the relation

μi = Θ

(
Nui+1qi jβ

(
si

s j

))
= o(qi j ). (12.174)

The first step of (12.174) is motivated as in Lemma12.4, since j = F(i) and hence
πi j > 0, whereas the second step follows from (12.4) and the fact that β(si/s j ) is
bounded by 1. Finally, the fourth step of (12.173) follows from the definition of
μmin in (12.24), since (12.174) applies to any i ∈ Ias. When j < i , the first part of
(12.171) is shown analogously.

In order to verify the second part of (12.171), we know from the motivation of
Lemma12.4 that with high probability, σfix is the time it takes for descendants of the
type j mutation to take over the population, ignoring the probability that descendants
of other individuals first mutated into j and then some of them survived up to time
τk+1 aswell.We further recall fromLemma12.4 that because of the smallness (12.4)–
(12.5) of the mutation rates, right after the j mutation has arrived at time τ ′′

k+1, we
may assume that the remaining N − 1 individuals have type i , and after that no other
mutation occurs until the j allele gets fixed at time τk+1. With these assumptions, σfix

is the time for one single individual with selection coefficient s j/si to get fixed in a
two-typeMoran model without mutations, where all other individuals have selection
coefficient 1. From Sect. 12.5 it follows that E(σfix) ∼ α(s j/si ), and therefore the
second part of (12.171) will be proved if we can verify that

α

(
s j

si

)
= o(μ−1

min)

holds for all i ∈ Ias and j ∈ {B(i), F(i)} as N → ∞. This is equivalent to showing
that

μmin = o

(
min
i∈Ias

min

[
α−1

(
sB(i)

si

)
, α−1

(
sF(i)

si

)])
(12.175)

as N → ∞, where the α−1(sB(i)/si )-term is included only when B(i) 	= ∅ (or equiv-
alently, when πi B(i) > 0). Using (12.44), (12.46), (12.141), (12.161), (12.168), and
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(12.169), we find that

μi ∼μ̂i

=O
(
Nui+1ri F(i)β(sF(i)/s j )

)
=O

(
Nui+1u1−2−(F(i)−i−1)

F(i) β(sF(i)/s j )
)

=O
(

Nu2−2−(F(i)−i−1)

F(i) β(sF(i)/s j )
)

.

(12.176)

Inserting (12.176) into the definition of μmin in (12.24), we obtain

μmin = O

(
min

i∈Ilong
Nu2−2−(F(i)−i−1)

F(i) β(sF(i)/s j )

)
,

and formula (12.175) follows, because of (12.47). �
Proof of Theorem 12.2. We need to establish that the limit result (12.49) of Theo-
rem12.2 follows fromTheorem12.1. To this end, we first need to show that all λ̂i j are
good approximations ofλi j , in the sense specified byTheorem12.2, i.e.πi j = π̂i j and
μ̂i/μ̂min → κi as N → ∞. But this follows from Lemma12.4, and the definitions
of μmin and μ̂min in (12.24) and Theorem12.2. Then it remains to check those two
regularity conditions (12.18) and (12.26) of Theorem12.1 that are not present in The-
orem12.2. But (12.18) follows from (12.44) to (12.162), since these two equations
imply πi F(i) > 0 for all i = 0, . . . , m − 1, and (12.26) follows from Lemma12.5. �
Proof of (12.109). Let

θi = u × E(Tm |Z0 = ei ) (12.177)

be the standardized expected waiting time until all m mutations have appeared and
spread in the population, given that it starts in fixed state i . Our goal is to find an
explicit formula for θ0, and then show that (12.109) is an asymptotically accurate
approximation of this explicit formula as m → ∞.

Recall thatΣi j in (12.107) are the elements of the intensity matrix, for theMarkov
process that switches between fixed population states, when time has beenmultiplied
by μ̂min = u. When the population is in fixed state i , the standardized expected
waiting time until the next transition is 1/(−Σi i ). By conditioning on what happens
at this transition, it can be seen that the standardized expected waiting times in
(12.177), satisfy a recursive relation

θi = 1

−Σi i
+ Σi,i−1

−Σi i
× θi−1 + Σi,i+1

−Σi i
× θi+1, (12.178)

for i = 0, 1, . . . , m − 1, assuming θ−1 = 0 on the right hand side of (12.178) when
i = 0, and similarly θm = 0 when i = m − 1. Inserting the values of Σi j from
(12.107) into (12.178), we can rewrite the latter equation as
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θ0 − θ1 = 1

m
=: b0 (12.179)

and

θi − θi+1 = Ci

m − i
(θi−1 − θi ) + 1

m − i
=: ai (θi−1 − θi ) + bi , (12.180)

for i = 1, . . . , m − 1, respectively. We obtain an explicit formula for θ0 by first
solving the linear recursion for θi − θi+1 in (12.179)–(12.180), and then summing
over i . This yields

θ0 =
m−1∑
i=0

(θi − θi+1) =
m−1∑
i=0

i∑
k=0

θik, (12.181)

where

θik = bk

i∏
j=k+1

a j =
(m−1

k

)
(m − k)

(m−1
i

) × Ci−k . (12.182)

Formulas (12.181)–(12.182) provide thedesired explicit formula for θ0.WhenC = 0,
it is clear that

θ0 =
∑m−1

i=0
θi i

=
∑m−1

i=0
1/(m − i)

∼ log(m) + γ,

where γ ≈ 0.5772 is the Euler–Mascheroni constant. This proves the upper half
of (12.109). For C > 0, we will show that when m gets large, the (standardized)
expected waiting time until the last mutant gets fixed, θm−1 − θm = θm−1, dominates
the first sum in (12.181). To this end, we first look at θm−1, and rewrite this quantity
as

θm−1 =
∑m−1

k=0
θm−1,k

= 1
(m−1

m−1)

∑m−1

k=0

1
m−k

(
m − 1

k

)
Cm−1−k

=(1 + C)m−1
∑m−1

k=0

1
m−k

(
m − 1

k

) (
1

1+C

)k ( C
1+C

)m−1−k

=(1 + C)m−1E
(

1
m−Xm−1

)
=(1 + C)m−1E

(
1

1+Ym−1

)
,

(12.183)

where

Xm−1
L∈Bin (m − 1, 1

1+C

)
,

Ym−1 = m − 1 − Xm−1
L∈Bin (m − 1, C

1+C

)
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are two binomially distributed random variables. For large m, we apply the Law of
Large Numbers to Ym−1 and find that

θm−1 ≈(1 + C)m−1 1
1+E(Ym−1)

≈(1 + C)m−1 1
mC/(1+C)

=(1 + C)m/(Cm),

(12.184)

in agreement with the lower half of (12.109). In view of (12.181), in order to finalize
the proof of (12.109), we need to show that the sum of θm− j − θm− j+1 for j =
2, 3, . . . , m, is of a smaller order than (12.184). A similar argument as in (12.183)
leads to

θm− j − θm− j+1 =
∑m− j

k=0
θm− j,k

=( j − 1)!(1 + C)m− j E
[

1∏ j
n=1(n+Ym− j )

]
≤ 2

j (1 + C)m− j E
[

1
(1+Ym− j )(2+Ym− j )

]
,

(12.185)

where

Ym− j
L∈ Bin

(
m − j,

C

1 + C

)
.

For large m we have, by the Law of Large Numbers, that

θm− j − θm− j+1 ≤ 2
j (1 + C)m− j 1

[1+(m− j)C/(1+C)]2

≤
{
4(1 + C)m/2/m, j > m/2,

(1 + C)m− j/ [m/2 × C/(1 + C)]2 , 2 ≤ j ≤ m/2.

(12.186)

By summing (12.186) over j , it is easy to see that

m∑
j=2

(θm− j − θm− j+1) � (1 + C)m/(Cm) ∼ θm

as m → ∞. Together with (12.184), this completes the derivation of the lower part
of (12.109). �
Sketchofproof ofTheorem12.3.Our proofwill parallel that ofTheorem1 inDurrett
el al. [20], see alsoWodarz and Komarova [66]. We first use formula (12.66) in order
to deduce that the ratio between the two rates of fixation from a type 0 population,
satisfies λ̂02/λ̂01 → ∞ as N → ∞. When ρ = 0 in (12.51), this is a consequence of
λ̂02/λ̂01 ∼ N

√
u2 and the assumption N

√
u2 → ∞ on the second mutation rate u2.

When ρ < 0, λ̂02/λ̂01 tends to infinity at an even faster rate, due to theψ(ρu1/2
2 )-term
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of λ̂01 in (12.66). In any case, it follows that condition (12.44) is satisfied,with F(0) =
2 and π̂02 = 1. That is, tunneling from 0 to 2 will occur with probability tending to
1 as N → ∞ whether ρ = 0 or ρ < 0. As in the proof of Lemma12.3 we conclude
from this that the fraction Zt = Zt1 of allele 1 will stay close to 0, and we may use
a branching process approximation for Zt . A consequence of this approximation is
that type 1 mutations arrive according to a Poisson process with intensity Nu1, and
the descendants of different type 1 mutations evolve independently. Let 0 < σ ≤ ∞
be the time it takes for the first type 2 descendant of a type 1 mutation to appear.
In particular, if σ = ∞, this type 1 mutation has no type 2 descendants. Letting
G(x) = P(σ ≤ x) be the distribution function of σ , it follows by a Poisson process
thinning argument that

P(T ′′
2 ≥ t) ∼ exp(−Nu1

∫ t

0
G(x)dx). (12.187)

WeuseKolmogorov’s backward equation in order to determineG. To this end,wewill
first compute G(x + h) for a small number h > 0, by conditioning on what happens
during the time interval (0, h). As in formulas (12.121)–(12.122) of Appendix B,
we let ai j (z) refer to the rate at which a type i individual dies and gets replaced by
the offspring of a type j individual, when the number of type 1 individuals before
the replacement is N z. Since we look at the descendants of one type 1 individual,
we have that z = Z0 = 1/N . Using a similar argument as in Eq. (12.159), it follows
from this that

G(x + h) = a00(1/N )h × G(x)

+a01(1/N )h
[
u2 × 1 + (1 − u2)(2G(x) − G(x)2)

]
+a10(1/N )h × 0 + a11(1/N )h × [u2 × 1 + (1 − u2)G(x)]

+
[
1 −

∑
i j

ai j (1/N )h
]

G(x) + o(h)

(12.188)

for small h > 0. Notice that the two a00(1/N ) terms cancel out in (12.188), whereas
a11(1/N )(1 − G(x))u2 × h = O(N−2u2 × h) is too small to have an asymptotic
impact. Using formulas (12.121)–(12.122) for a01(1/N ) and a10(1/N ), it follows
that (12.188) simplifies to

G(x + h) = s × h
[
u2 + 2G(x) − G(x)2

]
+ 1 × h × 0 + [1 − (s + 1)h]G(x) + o(h),

when all asymptotically negligible terms are put into the remainder term. Letting
h → 0, we find that G(x) satisfies the differential equation

G ′(x) = − sG(x)2 + (s − 1)G(x) + su2

= − s(G(x) − r1)(G(x) − r2),
(12.189)



12 Phase-Type Distribution Approximations of the Waiting … 307

where

r1 =(s − 1)/(2s) +
√
[(s − 1)/(2s)]2 + u2,

r2 =(s − 1)/(2s) −
√
[(s − 1)/(2s)]2 + u2

are the two roots of the quadratic equation −sy2 + (s − 1)y + su2 = 0. Recall from
(12.51) that s = 1 + ρ

√
u2. We may therefore express these two roots as

r1 =√
u2

(
ρ +

√
ρ2 + 4s2

)
/(2s) ∼ √

u2

(
ρ +

√
ρ2 + 4

)
/(2s)

=√
u2R(ρ)/s,

r2 =√
u2

(
ρ −

√
ρ2 + 4s2

)
/(2s) ∼ √

u2

(
ρ −

√
ρ2 + 4

)
/(2s),

(12.190)

where in the second step we used that u2 → 0 and s → 1 as N → ∞, and in the last
step we invoked (12.41), the definition of R(ρ). Since r2 < 0 < r1, and G ′(x) → 0
as x → ∞, it follows from (12.189) that we must have G(∞) = r1. Together with
the other boundary condition G(0) = 0, this gives as solution

G(x) = r1
1 − e−(r1−r2)sx

1 − r1
r2

e−(r1−r2)sx
(12.191)

to the differential equation (12.189), with

r1 − r2 ∼
√

u2 ×√
ρ2 + 4

s

and

− r1
r2

∼
√

ρ2 + 4 + ρ√
ρ2 + 4 − ρ

. (12.192)

Putting things together, we find that

P
(
N R(ρ)u1

√
u2 × T ′′

2 ≥ t
) ∼P

(
Nu1r1s × T ′′

2 ≥ t
)
)

∼ exp

(
−Nu1

∫ t/(Nu1r1s)

0
G(x)dx

)

∼ exp

(
−
∫ t

0
h(y)dy

)
,

(12.193)

where formula (12.190) was used in the first step, (12.187) in the second step, in the
third step we changed variables y = Nu1r1s × x and introduced the hazard func-
tion h(x) = G (x/(Nu1r1s)) /(sr1). If Nu1 → a > 0 as N → ∞, it follows from
(12.191) and the fact that s → 1 that we can rewrite the hazard function as
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h(x) ∼ 1
sr1

G
(

x
sar1

)
= 1

s × 1−exp
(
− r1−r2

r1
× x

a

)
1− r1

r2
exp

(
− r1−r2

r1
× x

a

) ∼ 1−exp
(
− r1−r2

r1
× x

a

)
1− r1

r2
exp

(
− r1−r2

r1
× x

a

) .
(12.194)

We finally obtain the limit result (12.110)–(12.111) when a > 0 from (12.193) to
(12.194), using (12.192) and the fact that

r1 − r2
r1

∼ 2
√

ρ2 + 4

ρ +√
ρ2 + 4

.

When Nu1 → 0, one similarly shows that (12.193) holds, with h(x) = 1. Finally,
formula (12.112) follows by integrating (12.193) with respect to t . �
Motivation of formula (12.114). We will motivate formula (12.114) in terms of
the transition rates λ̂i j in (12.35), rather than those in (12.113) that are adjusted for
tunneling and fixation of alleles.

Since we assume s1 = · · · = sm−1 = 1 < sm in (12.114), it follows from (12.35)
that it is increasingly difficult to have backward and forward transitions over larger
distances, except that it is possible for some models to have a direct forward transi-
tion to the target allele m. By this we mean that the backward and forward transition
rates from any state i satisfy λ̂i,i−1 � · · · � λ̂i0, and λ̂i,i+1 � · · · � λ̂i,m−1 respec-
tively, as N → ∞. For this reason, from any fixed state i , it is only possible to
have competition between the two forward transitions i → i + 1 and i → m when
0 ≤ i ≤ m − 2. Since γi = (λ̂im/λ̂i,i+1)

2, and since the transition rates to the inter-
mediate alleles i + 1, . . . , m − 1 are of a smaller order than the transition rate to
i + 1, it follows that (12.35) predicts a total forward rate of fixation from fixed state
i of the order

Nui+1 fi ∼λ̂i,i+1 + λ̂i,i+m

=λ̂i,i+1(1 + √
γi )

=Nui+1β
(

si+1

si

)
(1 + √

γi )

=ui+1(1 + √
γi ),

(12.195)

where in the last step we used that si = si+1 and β(1) = 1/N . We will extend the
argument in the proof of Theorem 3 in Durrett et al. [20], and indicate that the total
forward rate of fixation from i should rather be

Nui+1 fi ∼ λ̂i,i+1χ

(
γi

β(sm)

)
= ui+1χ

(
γi

β(sm)

)
, (12.196)

where χ(·) is the function defined in (12.63). This will also motivate (12.114), since
this formula serves the purpose of modifying the incorrect forward rate of fixation
(12.195), so that it equals the adjusted one in (12.196), keeping the relative sizes of
the different forward rates i → j of fixation intact for j = i + 1, . . . , m.
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The rationale for (12.196) is that type i + 1mutations arrive according to aPoisson
process at rate Nui+1, and χ/N is the probability that any such type i + 1 mutation
has descendants of type i + 1 or m that spread to the whole population. We need to
show that

χ = χ

(
γi

β(sm)

)
. (12.197)

To this end, let Xt be the fraction of descendants of a i → i + 1 mutation, Nt time
units after this mutation appeared. We stop this process at a time point τ when Xt

reaches any of the two boundary points 0 or 1 (Xτ = 0 or 1), or when a successful
mutation i + 1 → i + 2 appears before that, which is a descendant of the type i + 1
mutation that itself will have typem descendants who spread to thewhole population,
before any other type gets fixed (0 < Xτ < 1). We have that x = X0 = 1/N , but
define

β̄(sm; x) = β̄(x) = P(Xτ = 0|X0 = x)

for any value of x . This is a non-fixation probability, i.e. the probability that the
descendants of N x individuals of type i + 1 at time t = 0 neither have a successful
type i + 2 descendant, nor take over the population before that. Since the descendants
of a single type i + 1mutation take over the populationwith probability 1 − β̄(1/N ),
it is clear that

χ = N

[
1 − β̄

(
1

N

)]
∼ lim

x→0

1 − β̄(x)

x
= −β̄ ′(0). (12.198)

Durrett et al. [20] prove that it is possible to neglect the impact of further i → i + 1
mutations after time t = 0. It follows that Xt will be a version of theMoran process of
Appendix Bwith s = si+1/si = 1, during the time interval (0, τ ), when time speeded
up by a factor of N . Using (12.123)–(12.124), we find that the infinitesimal mean
and variance functions of Xt are

M(x) =N × 0 = 0,

V (x) =N × 2x(1 − x)/N = 2x(1 − x),
(12.199)

respectively. At time t , a successful type i + 2 mutation arrives at rate

N × N Xt × ui+2qi+1,mβ
(

sm
si

)
∼N 2Xt × ui+2ri+1,mβ(sm)

=N 2Xt × r2imβ(sm)

=Xt × (λ̂im/λ̂i,i+1)
2β(sm)−1

=Xt × γiβ(sm)−1

=:Xt × γ ′,

(12.200)
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where in the second step we used r2im = ui+2ri+1,m , which follows from (12.36),
since all R(ρil j ) = 1 when s1 = · · · = sm−1 = 1. Then in the third step we used
λ̂im/λ̂i,i+1 = Nrimβ(sm), which follows from (12.35), and in the last step we intro-
duced the short notation γ ′ = γiβ(sm)−1. (One instance of γ ′ is presented for the
boundary scenarios of Sect. 12.7.2.1, below formula (12.105).)

We will use (12.199)–(12.200) and Kolmogorov’s backward equation in order to
derive a differential equation for β̄(x). Consider a fixed 0 < x < 1, and let h > 0
be a small number. Then condition on what happens during time interval (0, h).
When h is small, it is unlikely that the process Xt will stop because it hits any of the
boundaries 0 or 1, i.e.

P(τ < h, 0 < Xτ < 1) =xγ ′h + o(h),

P(τ < h, Xτ ∈ {0, 1}) =o(h)

as h → 0. The non-fixation probability can therefore be expressed as

β̄(x) =xγ ′h × 0 + (1 − xγ ′h)

∫ t

0
β̄(y)d P(Xh = y|X0 = x) + o(h)

=(1 − xγ ′h)
[
β̄(x) + 1

2 V (x)β̄ ′′(x)h
]+ o(h).

Letting h → 0, we find from (12.199) that β̄(x) satisfies the differential equation

x(1 − x)β̄ ′′(x) − xγ ′β̄(x) = 0. (12.201)

Durrett et al. [20] use a power series argument to prove that the solution of (12.201),
with boundary conditions β̄(0) = 1 and β̄(1) = 0, is

β̄(x) =
∑∞

k=1
(γ ′)k

k!(k−1)! (1 − x)k∑∞
k=1

(γ ′)k

k!(k−1)!
. (12.202)

Recalling (12.63) and thatγ ′ = γi/β(sm), we deduce formula (12.197) from (12.198)
and differentiation of (12.202) with respect to x . �
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