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1 Correlation functions are the experimental observable

The probe will couple to the system through an interaction potential which in the leading order can be written
as a linear coupling to an operator Â with an classical field strength F

V̂ = FÂ+ c.c. (1)

What is usually measured in experiment is proportional to the transition probability which at zero temperature
follows the Fermi’s golden role ∑

n

|〈ψn|FÂ|ψ0〉|2δ(ω − ωn0) = |F |2S(ω) (2)

where at T = 0 we have

S(ω) =
∑
n

|〈ψn|Â|ψ0〉|2δ(ω − ωn0) (3)

At finite temperature the equilibrium distribution function Pm must be taken into account

S(ω) =
∑
nm

Pm|〈ψn|Â|ψm〉|2δ(ω − ωnm) (4)

1



After Fourier transform we obtain

S(τ) =
1

2π

∫ ∞
−∞

dωS(ω)e−iωt (5)

S(τ) =
1

2π

∑
nm

Pm|〈ψn|Â|ψm〉|2e−iωnmτ (6)

S(τ) =
1

2π

∑
nm

Pm〈ψm|Â(τ)|ψn〉〈ψn|Â†|ψm〉 (7)

S(τ) =
1

2π

∑
m

Pm〈ψm|Â(τ)Â†(0)|ψm〉 = 〈Â(τ)Â†(0)〉 (8)

S(τ) =
1

2π
〈Â(τ)Â†(0)〉 (9)

2 Linear response function in terms of correlation function

We consider an interacting system in the thermal equilibrium described by Hamiltonian ĥ and temperature T .

ĥ|ϕn〉 = εn|ϕn〉 (10)

Energy levels are populated by canonical distribution

Pn =
e−βεn∑
n e
−βεn

(11)

with β = 1/T after adapting the notation kB = 1 for the Boltzmann’s constant. Macroscopic value of an
arbitrary operator Â follows

〈Â〉h =
∑
n

Pn〈ϕn|Â|ϕn〉 (12)

Now we expose the system with an external probe which can interact with our system through a perturbation
potential V̂ (t). Therefore, the total Hamiltonian is given by

Ĥ(t) = ĥ+ V̂ (t)eηt (13)

The term eηt with η → 0+ is added to turn on the perturbation in an adiabatic manner (i.e. very slowly). In fact

it implies the total Hamiltonian approach to the equilibrium hamiltonian in the remote past: limt→−∞ Ĥ → ĥ.
The adiabatic switch-on ensure that the Pn function will not change in the presence of probe. Note that this is
an approximation and mostly valid when the probe energy (or frequency) is much larger than the thermalization
rate. However, with some care it can be used also for the static perturbation potential. However, ground state
eigenfunction will be evolved in time based on the following Schrödinger’s equation (after setting h̄ = 1 for the
reduced Planck’s constant):

i
∂

∂t
|ψn(t)〉 = Ĥ(t)|ψn(t)〉 (14)

with the boundary condition at t0: |ψn(t0)〉 = |ϕn〉. Therefore, using the time-evolution operator Û(t, t0) we
have

|ψn(t)〉 = Û(t, t0)|ϕn〉 (15)

where

i
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0) (16)
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The macroscopic fluctuation an arbitrary operator with respect to its equilibrium value is given by

δA(t) = 〈Â〉H − 〈Â〉h (17)

Note that

〈Â〉H =
∑
n

Pn〈ψn(t)|Â|ψn(t)〉 (18)

Now we just need to estimate time-evolution operator. In the absence of interaction V̂ , we have

i
∂

∂t
Ûh(t, t0) = ĥÛh(t, t0)→ Ûh(t, t0) = e−iĥ(t−t0) . (19)

We define

Û(t, t0) = Ûh(t, t0)ÛV (t, t0) (20)

where

i
∂

∂t
ÛV (t, t0) = V̂ (t; t− t0)eηtÛV (t, t0). (21)

Within the interaction-picture we have

V̂ (t; t− t0) = Û†h(t, t0)V̂ (t)Ûh(t, t0) (22)

Using the boundary condition |ψn(t0)〉 = |ϕn〉 we have ÛV (t0, t0) = 1. The equation of motion for ÛV can be
solved in a perturbative manner (i.e. Dyson series). For the case of linear response theory we just need to solve
it up to the linear order in V̂ :

ÛV (t, t0) = 1− i
∫ t

t0

V̂ (t′; t′ − t0)eηt
′
dt′ +O(V̂ 2) (23)

Therefore,

Û(t, t0) ≈ e−iĥ(t−t0)

{
1− i

∫ t

t0

V̂ (t′; t′ − t0)eηt
′
dt′
}

(24)

〈Â〉H ≈
〈(

1 + i

∫ t

t0

V̂ (t′; t′ − t0)eηt
′
dt′
)
eiĥ(t−t0)Âe−iĥ(t−t0)

(
1− i

∫ t

t0

V̂ (t′; t′ − t0)eηt
′
dt′
)〉

h

= 〈Â(t− t0)〉h − i
∫ t

t0

dt′〈[Â(t− t0), V̂ (t′, t′ − t0)]〉heηt
′

= 〈Â〉h − i
∫ t

t0

dt′〈[Â(t− t′), V̂ (t′, 0)]〉heηt
′

(25)

Therefore, we have

δA(t) = −i
∫ t−t0

0

dt′〈[Â(τ), V̂ (t− τ, 0)]〉heη(t−τ) (26)

We set t0 → −∞ and we use τ = t− t′ > 0:

δA(t) = −i
∫ ∞

0

dτ〈[Â(τ), V̂ (t− τ, 0)]〉heη(t−τ) (27)

V̂ (t− τ, 0) = F (t− τ)B̂(0) (28)

δA(t) =

∫ ∞
0

dτ〈[Â(τ), B̂(0)]〉hF (t− τ)eη(t−τ) (29)

δA(t) =

∫ +∞

−∞
dτχAB(τ)F (t− τ)eη(t−τ) (30)
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χAB(τ) = −iΘ(τ)〈[Â(τ), B̂(0)]〉h (31)

F (t) =
1

2π

∫ +∞

−∞
dωF (ω)e−iωt (32)

δA(t) =
1

2π

∫ ∞
−∞

dω

∫ +∞

−∞
dτχAB(τ)F (ω)e−iω(t−τ)eη(t−τ) (33)

δA(t) =
1

2π

∫ ∞
−∞

dωe−i(ω+iη)tF (ω)

∫ +∞

−∞
dτχAB(τ)ei(ω+iη)τ (34)

χAB(ω) =

∫ +∞

−∞
dτχAB(τ)ei(ω+iη)τ (35)

χAB(ω) = −i
∫ ∞

0

dτei(ω+iη)τ 〈[Â(τ), B̂(0)]〉h

= −i
∫ ∞

0

dτei(ω+iη)τ
∑
nm

Pn(Anm(τ)Bmn −BnmAmn(τ))

= −i
∫ ∞

0

dτei(ω+iη)τ
∑
nm

Pn(AnmBmne
iεnmτ −BnmAmne−iεnmτ )

= −i
∑
nm

(Pn − Pm)AnmBmn

∫ ∞
0

dτei(εnm+ω+iη)τ

=
∑
nm

(Pn − Pm)
AnmBmn

εnm + ω + iη
(36)

χAB(ω) =
∑
mn

Pm − Pn
ω − εnm + iη

AmnBnm (37)

3 Symmetry properties

Any static response function is real valued and since for Pnm = Pn − Pm < 0 for εnm = εn − εm > 0 we have
the following inequality

χ
AA†(ω = 0) =

∑
nm

Pnm
εnm
|Amn|2 ≤ 0 (38)

Moreover, we have

χAB(ω = 0) =
∑
nm

Pnm
εnm

AmnBnm =
∑
nm

Pmn
εmn

BmnAnm = χBA(ω = 0) (39)

Another general property of the linear response function reads

χAB(−ω) = [χA†B†(ω)]∗ (40)

Proof:

[χA†B†(ω)]∗ =
∑
mn

Pm − Pn
ω − εnm − iη

(A†)∗mn(B†)∗nm =
∑
mn

Pm − Pn
ω − εnm − iη

AnmBmn

=
∑
mn

Pn − Pm
ω + εnm − iη

AmnBnm

=
∑
mn

Pm − Pn
−ω − εnm + iη

AmnBnm = χAB(−ω) (41)
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Finally, one of the most important symmetry property is Onsager relation:

χAB(ω,B) = χ
BtAt(ω,−B) (42)

where Ât = (Â†)∗ stand for the transpose of operator Â. First we check the transpose of observable operators:

it = (i†)∗ = (−i)∗ = i (43)

rt → (r†)∗ = r (44)

p̂t → (p̂†)∗ = (−i∇)∗ = −p (45)

and

[n̂(r)]t = n̂(r) (46)

[̂j(r)]t = −ĵ(r) (47)

n̂tq =

∫
dr n̂t(r)[eiq·r]t =

∫
dr n̂(r)eiq·r = n̂q (48)

ĵtq =

∫
dr ĵt(r)[eiq·r]t = −

∫
dr ĵ(r)eiq·r = −ĵq (49)

Proof: In the presence of time reversal symmetry (e.g. zero magnetic field B = 0) for an spin-less system
we have

ψn(r) = 〈r|ψn〉 = ψ∗n(r) = 〈ψn|r〉 (50)

which implies

(At)nm = 〈ψn|At|ψm〉 = 〈ψm|A∗|ψn〉∗ = 〈ψm|A|ψn〉 = Amn (51)

Therefore, we have

χ
BtAt(ω) =

∑
mn

Pm − Pn
ω − εnm + iη

(Bt)mn(At)nm =
∑
mn

Pm − Pn
ω − εnm + iη

BnmAmn

= χAB(ω) (52)

In the presence of the magnetic field we have

ψn(r,B) = ψ∗n(r,−B) (53)

4 Dissipation

Let us consider a coupling of an external field to operator Â:

Ĥ(t) = ĥ+ F (t)Â† + F ∗(t)Â (54)

The time-averaged power transfer from the external field to the system (absorbance power) is a period of time
∆t is given by

W =
1

∆t

∫ ∆t/2

−∆t/2

dt
∂〈Ĥ(t)〉H

∂t
(55)

Noting that

∂〈Ĥ(t)〉H
∂t

=

〈
∂Ĥ(t)

∂t

〉
H

(56)

Therefore, we find

W =
1

∆t

∫ ∆t/2

−∆t/2

dt

{
∂F (t)

∂t
〈Â†〉H + c.c.

}
(57)
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Let us consider a periodic driving field

F (t) = F (ω)e−iωt , ∆t =
2π

ω
(58)

Using the linear response response function, we have

〈Â†〉H = 〈Â†〉h + χ
A†A(ω)F ∗(ω)eiωt + χ

A†A†(ω)F (ω)e−iωt (59)

Therefore, we obtain

W = i|F (ω)|2ω {χA†A(ω)− [χA†A(ω)]∗} (60)

W = −2ωIm[χA†A(ω)]|F (ω)|2 (61)

Note that

Im[χA†A(ω)] = π
∑
mn

|Anm|2(Pn − Pm)δ(ω − εnm) (62)

Note that εn > εm we have Pn < Pm and accordingly we obtain

ωIm[χA†A(ω)] < 0 (63)

Therefore, we find W > 0.

5 Causality: Kramers–Krönig relationship

Figure 1: Contour C enclosing the upper half complex plane and the real axis.

We remind the following integration using contour techniques:∫ ∞
−∞

f(x)eiaxdx =

∮
C

f(z)eiazdz = 2πi
∑

residues of eiazf(z) in contour C. (64)

• a > 0

• lim|z|→∞ f(z)→ 0

Figure 2: Contour C enclosing the upper half complex plane and excluding a pole at z = ω on the real axsis.
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For retarded (casual) response function we have

χAB(τ < 0) =

∫ +∞

−∞
dωχAB(ω)e−iωτ =

∮
C

dωχAB(ω)e−iωτ

=

∮
C

dωχAB(ω)eiω|τ | = 0 (65)

Therefore, for the upper half complex frequency plane including the real axis ( i.e. Im[ω] ≥ 0), the response
function χAB(ω) must be analytic implying that all poles and branch cuts of χAB(ω) must in the lower-half
plane. Based on the Lehmann representation of the response function given in Eq. (37) we have a branch cut
(quasiparticle continuum) just below the real axis in the lower-half plane. In extended there is also possible to
observe simple pole in the lower-half plane representing collective excitations (e.g. sound and plasmon modes).
In order to observe collective excitations we need to take the thermodynamical limit and perform the momentum
integration. Collective modes pole occur at ω = ωq − iΓq with Γq > 0 being the Landau damping (inverse life-
time) of the collective mode with dispersion ω ∼ ωq. Since the casual response function is analytic in the
upper-half plane, we have ∮

C

dz
χAB(z)

z − ω
= 0 (66)

Using the fact that χAB(|z| → ∞)→ 0, we obtain

P
∫ +∞

−∞
dν
χAB(ν)

ν − ω
− iπχAB(ω) = 0 (67)

Using the fact that the real and imaginary parts of the response function are even and odd function of frequency,
respectively, one can prove

Re[χAB(ω)] =
2

π
P
∫ ∞

0

νIm[χAB(ν)]

ν2 − ω2
dν (68)

6 2-level system

We consider Ĥ(t) = ĥ+ V̂ (t) where

ĥ =
εg
2
σ̂z (69)

V̂ (t) = E(t)dcvσ̂x (70)

where d̂ = −ex̂ and dcv = 〈c|(−ex̂)|v〉. Lets assume density of two-level atoms is equal to n0 and P (t) =
n0〈(−ex̂)〉H is the total polarization. Therefore, the polarization (total dipole per volume) is given by P(ω) =
χ(ω)E(ω) where

χ(ω) = n0|dcv|2(Pc − Pv)
{

1

ω + εg + iη
− 1

ω − εg + iη

}
(71)

We assume Pc = 0 and Pv = 1 which implies

χ(ω) = n0|dcv|2
{

1

ω − εg + iη
− 1

ω + εg + iη

}
(72)

Displacement vector is defined:

D(ω) = E(ω) + 4πP(ω) = (1 + 4πχ(ω))E(ω) = ε(ω)E(ω) (73)

where the dynamical dielectric constant is given by

ε(ω) = 1 + 4πχ(ω) = 1 + 4πn0|dcv|2
{

1

ω − εg + iη
− 1

ω + εg + iη

}
= ε′(ω) + iε′′(ω) (74)

The absorption coefficient is related to the imaginary part of the dielectric function:

α(ω) ∝ ωε′′(ω) = (4π2n0|dcv|2)ω {δ(ω − εg)− δ(ω + εg)} (75)
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7 Dynamical structure factor: fluctuation-dissipation theorem

We define a quantity called dynamical structure factor:

SAA†(ω) =
1

2π

∫ +∞

−∞
〈Â(t)Â†(0)〉heiωtdt (76)

If we decompose Â = A0 + δÂ where 〈δA〉h = 0 is the fluctuation part. Therefore, we have

SAA†(ω) = |Â0|2δ(ω) +
1

2π

∫ +∞

−∞
〈δÂ(t)δÂ†(0)〉heiωtdt (77)

which implies for ω 6= 0, SAA†(ω) conveys the information about dynamics of the fluctuation part of Â operator.
It is easy to show that

SAA†(ω) =
∑
nm

Pm|Amn|2δ(ω − εnm) , Pm =
e−βεm∑
m e
−βεm

(78)

SAA†(−ω) =
∑
nm

Pm|Amn|2δ(−ω − εnm) =
∑
nm

Pn|Anm|2δ(−ω + εnm) (79)

Note that for ω = ωnm we have Pn = Pme
−βω and therefore we find

Detailed balance:
SAA†(−ω)

SAA†(ω)
= e−βω (80)

Moreover, it is easy to show the following relation known as the fluctuation-dissipation theorem:

Im[χAA†(ω)] = −π(1− e−βω)SAA†(ω) (81)

For ω > 0:

SAA†(ω) stands for the absorption spectrum (82)

SAA†(−ω) stands for the stimulated emission spectrum (83)

Two conclusions from the fluctuation-dissipation theorem: (i) At finite temperature a power absorption (i.e.
dissipation) from an external field is always accompanied by a stimulated emission (i.e. fluctuation) in order to
keep the system in the thermal equilibrium. (ii) At zero temperature there is no stimulated emission.

The static (instaneous) structure factor is defined as the frequency integral of the dynamical structure factor

SAA† = 〈Â(0)Â†(0)〉h =

∫ +∞

−∞
SAA†(ω)dω (84)

Particularly, the static density structure factor is very important quantity in quantifying crystalline

S(q) =
1

N

∫ ∞
−∞

Snqn
†
q
(ω) =

〈n̂†qn̂q〉h
N

(85)

Having density operator as n̂(r) =
∑N
i=1 δ(r− ri) with N being the total number of particles, we note

n̂q =

∫
dr

N∑
i=1

δ(r− ri)e
−iq·r =

N∑
i=1

e−iq·ri (86)

Therefore, we obtain

S(q) =
1

N

N∑
i=1

N∑
j=1

e−iq·(rj−ri) =
1

N

∣∣∣∣ N∑
j=1

e−iq·rj
∣∣∣∣2 (87)

The static density structure factor can be utilized to evaluate pair-correlation function that contain in classical
and quantum liquids. For example in isotropic liquid we have

g(r) = g(r, 0) = 1 +
1

N

∑
q

∫
[S(q)− 1]eiq·r (88)

where the pair-correlation function is defined in terms of the density-density correlation function:

g(r1, r2) =
〈n̂(r2)n̂(r1)〉h
n(r2)n(r1)

− δ(r2 − r1)

n(r1)
(89)
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8 Density response

Let us consider an external scalar potential which couples to particle density as

V̂ (t) =

∫
dr Vext(r, t)n̂(r) (90)

where the density operator is given by

n̂(r) =

N∑
i=1

δ(r− r̂i) (91)

and in the Fourier space it reads

n̂q =

∫
dr n̂(r)e−iq·r =

∑
i

e−iq·r̂i (92)

The induced time-dependent density thus follows

n1(r, t) = 〈n̂(r)〉H − 〈n̂(r)〉h =

∫
dτ

∫
dr′χnn(r, r′, τ)Vext(r

′, t− τ) (93)

where the density-density response function reads

χnn(r, r′, τ) = χ
n(r)n(r′)(τ) = −iΘ(τ)〈[n̂(r, τ), n̂(r′, 0)]〉h (94)

Note that

n̂(r, τ) = eiτĥn̂(r)e−iτĥ (95)

χnn(q,q′, ω) =

∫
dr

∫
dr′
∫
dτeiq·reiq

′·r′eiωtχnn(r, r′, τ) (96)

For translationally invariant system we have χnn(r, r′, τ) just depends on r− r′. We use change of variables as
follows

r = R− ρ

2
(97)

r′ = R +
ρ

2
(98)

and note that ∫
dRei(q+q′)·R = Ldδq,−q′ (99)

and therefore we have

χnn(q,q′, ω) = χnqnq′ (ω) = Ldδq,−q′χnn(q, ω) (100)

where

χnn(q, ω) =
1

Ld
χnqn−q(ω) =

1

Ld

∑
nm

Pm − Pn
ω − εnm + iη

|(n̂q)nm|2 (101)

In the non-interacting model ψnk(r) are plain (or Bloch) wave

|n〉 → |n,k〉 = |unk〉
eik·r

Ld/2
(102)

Pn → fn(k) Fermi-Dirac distribution function (103)

where n stands for any discrete, such as band, indices and k is the wave vector. Note that

(n̂q)nm → 〈n,k|n̂q|m,k′〉 = 〈n,k|e−iq·r|m,k′〉 = 〈unk|umk′〉δk′,k+q (104)

Therefore, we find

χ(0)
nn(q, ω) =

1

Ld

∑
k

∑
nm

fm(k + q)− fn(k)

ω + εm(k + q)− εn(k) + iη
|〈unk|umk+q〉|2 (105)

in which the Fermi distribution function follows

fn(k) =
1

1 + eβεn(k)
(106)

Note that the chemical potential µ is already taken into account in the definition of the Hamiltonian (e.g.

ĥ(k) = k2/2m− µ). Note that

1

Ld

∑
k

→
∫

ddk

(2π)d
(107)
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8.1 Lindhard function in 1D

We consider as 1D parabolic model ε(k) = k2/2m− µ = (k2 − k2
F )/2m and we set ω = 0. Therefore we find

χnn(q) =

∫
dk

2π

f(k + q)− f(k)

ε(k + q)− ε(k)
=

∫
dk

2π
f(k)

{
1

ε(k)− ε(k − q)
+

1

ε(k)− ε(k + q)

}
= 2m

∫ kF

−kF

dk

2π

{
1

k2 − (k − q)2
+

1

k2 − (k + q)2

}
=
m

πq
ln

∣∣∣∣q − 2kF
q + 2kF

∣∣∣∣ (108)

Peierls instability :

Q̈q + Ω2(q)Qq ∝
√

Ω(q)nq (109)

Φq ∝
√

Ω(q)Qq (110)

nq = χ(q)Φq ∝ χ(q)
√

Ω(q)Qq (111)

Therefore, the phonon energy will be renormalized as follows

Ω2
ren(q)− Ω2(q) ∝ Ω(q)χ(q) (112)

Transition temperature TCDW is the temperature at which Ω2
ren(q = 2kF ) = 0. The Phonon mode become

soften, highly populated, and the system become unstable and a structure phase transition occurs to harden
the phonon mode again.

8.2 Symmetry properties

Onsager relation:

χnqn−q(ω) = χn−qnq(ω)→ χnn(q, ω) = χnn(−q, ω) (113)

Moreover we have

χnn(q, ω) = [χnn(q,−ω)]∗ (114)

8.3 Proper response function and RPA dielectric constant

Redistribution of density due to long range interaction can cause the screening of the external potential. The
screened potential then reads

Vsc(r, t) = Vext(r, t) + Vind(r, t) (115)

In the Hartree approximation we can estimate the induced potential due to the induced density

Vind(r, t) =

∫
dr′vee(|r− r′|)n1(r′, t) , vee(r) =

e2

r
(116)

which implies

Vind(q, ω) = vqn1(q, ω) (117)

with vq being the Fourier transform of the electron-electron interaction potential vee(r). Using the linear
response theory we have

n1(q, ω) = χnn(q, ω)Vext(q, ω) (118)

Therefore, we find

Vsc(q, ω) = [1 + vqχnn(q, ω)]Vext(q, ω) (119)

Now we define the proper response function as follows

n1(q, ω) = χ̃nn(q, ω)Vsc(q, ω) = χ̃nn(q, ω)[1 + vqχnn(q, ω)]Vext(q, ω) (120)
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Therefore, we find

χnn(q, ω) = χ̃nn(q, ω)[1 + vqχnn(q, ω)] (121)

which implies

χnn(q, ω) =
χ̃nn(q, ω)

1− vqχ̃nn(q, ω)
(122)

Moreover, the screened potential follows

Vsc(q, ω) =
Vext(q, ω)

ε(q, ω)
(123)

where the dielectric function is given in terms of the proper response function

ε(q, ω) = 1− vqχ̃nn(q, ω) (124)

The Random Phase Approximation (RPA) is to approximate the proper density-density response function with
the non-interacting one:

εRPA(q, ω) = 1− vqχ(0)
nn(q, ω) (125)

and

χRPA
nn (q, ω) =

χ(0)
nn(q, ω)

εRPA(q, ω)
(126)

8.4 Static screening

εstatic
RPA (q) = 1− vqχ(0)

nn(q) (127)

For small exchange momentum q:

lim
q→0

χ(0)
nn(q) = lim

q→0

1

Ld

∑
k

∑
nm

fm(k + q)− fn(k)

εm(k + q)− εn(k)
|〈unk|umk+q〉|2

= lim
q→0

1

Ld

∑
k

∑
m

fm(k + q)− fm(k)

εm(k + q)− εm(k)

=
1

Ld

∑
k

∑
m

∂fm(k)

∂εm(k)
= − 1

Ld

∑
k

∑
m

δ(0− εm(k))

= −N(0) (128)

Note that the last manipulation is done at zero temperature and N(0) is the density of states at the Fermi
surface. Moreover, we remind that

In 2D : vq =
2πe2

q
(129)

In 3D : vq =
4πe2

q2
(130)

In D=2,3 : vq = (2πe2)
D − 1

qD−1
(131)

Therefore, for small q we have

In 2D : εstatic
RPA (q) ≈ 1 +

2πe2N(0)

q
(132)

In 3D : εstatic
RPA (q) ≈ 1 +

4πe2N(0)

q2
(133)

Static screened inter-particle interaction (i.e. Thomas-Fermi screening) is given by vscq = vq/ε
static
RPA (q):

In 2D : vscq =
2πe2

q + 2πe2N(0)
(134)

In 3D : vscq =
4πe2

q2 + 4πe2N(0)
(135)

Screening of charged impurity and Friedel oscillation:

11



8.5 Collective mode: plasmon

Collective mode is exist when the response function diverges for a particular dispersion of ω = Ωq. This because
in the absence of external field we can have a density fluctuation only if a collective mode is excited . Therefore,
the collective mode dispersion and life-time can be obtained in RPA level as follows

1− vqχ(0)
nn(q,Ωq) = 0 , n1 ∼ ei(q·r−Ωqt) (136)

It can be shown that the dynamical density structure factor at zero temperature contains a simple delta function
pole:

SRPA
nn (q, ω) = − 1

π
Im[χRPA

nn (q,Ωq)] ≈
Ωq
2vq

δ(ω − Ωq) . (137)

9 Current response

In response to an external scalar or vector potential field we can in principal generate an electric current in
our system. The current can be calculated by utilizing the linear response theory. The permutation potential
energy can be written in two possible gauges:

V̂ (t) =

∫
dr′ϕ(r′, t)n̂(r′) or V̂ (t) = e

∫
dr′Aα(r′, t)ĵα(r′) (138)

where the electric and magnetic field follow (we set speed of light c = 1):

E(r, t) = −∇ϕ(r, t)− ∂tA(r, t) (139)

B(r, t) =∇×A(r, t) (140)

However, it is always possible to eliminate the scalar potential using a gauge transformation

ϕ(r, t)→ ϕ(r, t)− ∂tΛ(r, t) (141)

A(r, t)→ A(r, t) +∇Λ(r, t) (142)

We choose vector potential gauge since it is more complete in describing inhomogeneous external probe. For
a simple free electron model the vector potential is added as the minimal coupling (Peierls substitution) as
p→ p− qA with q = −e as the electron charge:

p2

2m
→ (p + eA)2

2m
=

p2

2m
+ e

p ·A + A · p
2m

+
e2A2

2m
(143)

H(t) =
∑
i

(p̂i + eA(r̂i, t))
2

2m
=
∑
i

p2
i

2m
+

e2

2m

∫
dr
∑
i

δ(r− r̂i)A
2(r, t)

+ e

∫
dr

{∑
i

p̂iδ(r− r̂i) + δ(r− r̂i)p̂i
2m

}
·A(r, t) (144)

For many-particle system we define then the charge-current operator as follows

ĵ(r) =
1

2

∑
i

{v̂iδ(r− r̂i) + δ(r− r̂i)v̂i} (145)

in whcih

vi = v(p̂i + eA(ri, t)) (146)

where the velocity operator follows

v̂(p) =
∂ĥ(p)

∂p
=

p̂

m
(147)

We can decompose

ĵ(r) = ĵp(r) + ĵd(r) (148)
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where the paramagnetic current component reads

ĵp(r) =
1

2

∑
i

{v̂(pi)δ(r− r̂i) + δ(r− r̂i)v̂(pi)} (149)

and the second contibution follows

ĵd(r) =
1

2

∑
i

{
v̂di δ(r− r̂i) + δ(r− r̂i)v̂

d
i

}
(150)

Note that

v̂di = v̂(pi + eA(ri, t))− v̂(pi) (151)

Therefore, in simple parabolic dispersion model, the diamagnetic current component reads

ĵd(r) =
e

m

∑
i

A(r̂i, t)δ(r− r̂i) =
e

m
A(r, t)n̂(r) (152)

The macroscopic current generated by external vector potential reads

jα(r, t) = 〈ĵpα(r)〉H + 〈ĵdα(r)〉H (153)

In the linear response approximation we obtain

jpα(r, t) = 〈ĵpα(r)〉H = e

∫
dτ

∫
dr′ χjpαjpβ (r, r′, τ)Aβ(r′, t− τ) (154)

where

χ
jpαj

p
β
(r, r′, τ) = −iΘ(τ)〈[ĵpα(r, τ), ĵpβ(r′, 0)]〉H (155)

The diamagnetic contribution reads (for parabolic model)

−ejdα(r, t) = −e〈ĵpα(r)〉h = (−e2)χdiaαβAβ(r, t) (156)

in which we have

χdia
αβ =

n

m
δαβ (157)

where n = 〈n(r)〉h is the equilibrium particle density. In the translationally invariant system we have

−ejpα(q, ω) = (−e2)χparaαβ (q, ω)Aβ(q, ω) (158)

where

χpara
αβ (q, ω) =

1

Ld
χ
jpα(q)jpβ(−q)(ω) (159)

In the non-interacting approximation we obtain

χpara;(0)
αβ (q, ω) =

1

Ld

∑
k

∑
mn

fm(k + q)− fn(k)

ω + εm(k + q)− εn(k) + iη

× 〈m,k + q|ĵpα(q)|n,k〉〈n,k|ĵpβ(−q)|m,k + q〉 (160)

Eventually, the linear charge current can be written in response to the external electric field

Jα(q, ω) = −ejα(q, ω) = σαβ(q, ω)Eβ(q, ω) (161)

where Aβ = −iEβ/ω and therefore the linear conductivity reads

σαβ(q, ω) = ie2
χpara
αβ (q, ω) + χdia

αβ

ω
(162)

9.1 Gauge invariance

1) For homogenous external electric field (q = 0) both scalar and vector potential gauge must give the same
result which one can postulate it and arrive at the following relationship:

χdiaαβ = −χparaαβ (q = 0, ω = 0) (163)
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9.2 Linear optical conductivity

The optical conductivity is obtained by taking the limit q → 0 and using the gauge invariance relation:

σαβ(ω) = ie2
χpara
αβ (ω)− χparaαβ (0)

ω
(164)

In the non-interacting approximation we obtain

σ
(0)
αβ (ω) = −ie2 1

Ld

∑
k

∑
mn

fm(k)− fn(k)

εm(k)− εn(k)

〈m,k|ĵpα|n,k〉〈n,k|ĵ
p
β |m,k〉

ω + εm(k)− εn(k) + iη
(165)

10 Optical conductivity of SSH model

Ĥ =

[
0 v + we−ik

v + weik 0

]
(166)

ε± = ±
√
v2 + w2 + 2vw cos(k) , |±〉 =

1√
2

[
1

±e−iφk

]
(167)

where

tan(φk) =
w sin(k)

v + w cos(k)
(168)

ĵ(q = 0) = ∂kĤ = iw

(
0 −e−ik
eik 0

)
(169)

σ(ω) = −ie2 1

L

∑
k

f+ − f−
ε+ − ε−

|〈+|ĵ|−〉|2
{

1

ω + ε+ − ε− + iη
+

1

ω + ε− − ε+ + iη

}
(170)

ε+ − ε− = 2
√
v2 + w2 + 2vw cos(k) (171)

|〈+, k|ĵ|−, k〉|2 =
w2[w + v cos(k)]2

v2 + w2 + 2vw cos(k)
(172)

lets set f+ = 0, f− = 1.

σ(ω) = i
e2

2π

∫ π

−π
dk

w2[w + v cos(k)]2

[v2 + w2 + 2vw cos(k)]3/2
ω+

ω2
+ − 4[v2 + w2 + 2vw cos(k)]

(173)

For the case of w = v = 1 we have:

σ(ω) =
e2

4π

iω+ tan−1

(
4√

ω2
+−16

)
√
ω2

+ − 16
(174)

Note that ω+ = ω + i0+.
Winding number:

Nwind =
1

2πi

∫ π

−π

∂ ln[v + weik]

∂k
(175)

|v| > |w| → Nwind = 0 (176)

|v| < |w| → Nwind = 1 (177)
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11 Final essay subjects related to the “Linear Response Theory”
lecture

• Review projects initiate by reference textbooks and papers. You may find more references
to expand your discussion on the subject.

• Calculation/Review projects contain a short calculation doable in a few days together with
result discussion and the review of the relevant concepts. You can receive guidance at the
calculation step.

• You should deliver a presentation on your project by the end of the course.

• Deadline for submitting the report is the end of November.

• The report/essay should be summited as a PDF file.

List of projects

1. (Calculation/Review) Static density-density susceptibility (Lindhard function) of the Su-Schrieffer Heeger
(SSH) model: Peierls instability, charge density waves

2. (Calculation/Review) Optical conductivity of 2D massless Dirac systems: metal, semimetal, and insulator

3. (Review) Optical sum rules, the f-sum rule, the compressibility sum rule

4. (Review) Onsager reciprocal relations: the case of thermal currents

5. (Review) Mean-field theory of linear response

6. (Review) Random Phase Approximation (RPA) density-density response function: screening, Friedel os-
cillation

7. (Review) RPA density-density response function: collective modes such as plasmon and zero sound

8. (Review) Linear response function and band topology: adiabatic geometric phases, Berry curvature

9. (Review) Thermoelectric effects: Seebeck effect, Peltier effect, Thomson effect, and Nernst effect

10. (Review) Landauer-Buttiker formalism for ballistic transport

11. (Review) Hydrodynamics transport of electron liquids: the case of graphene

12. (Review) Linear response theory for tunneling current, Scanning Tunneling Microscopy (STM)

13. (Review) Semiconductor Bloch equation: time- and Angle-Resolved Photoemission Spectroscopy (ARPES),
Optical stark effect
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